
Int. J. Mol. Sci. 2014, 15, 1511-1524; doi:10.3390/ijms15011511 

 
International Journal of 

Molecular Sciences 
ISSN 1422-0067 

www.mdpi.com/journal/ijms 

Article 

Temperature-Responsive Poly(ε-caprolactone) Cell Culture 
Platform with Dynamically Tunable Nano-Roughness and 
Elasticity for Control of Myoblast Morphology 

Koichiro Uto, Mitsuhiro Ebara and Takao Aoyagi * 

Biomaterials Unit, International Center for Materials Nanoarchitectonics (WPI-MANA),  

National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan;  

E-Mails: uto.koichiro@nims.go.jp (K.U.); ebara.mitsuhiro@nims.go.jp (M.E.) 

* Author to whom correspondence should be addressed; E-Mail: aoyagi.takao@nims.go.jp;  

Tel.: +81-29-860-4179; Fax: +81-29-860-4708. 

Received: 6 December 2013; in revised form: 15 January 2014 / Accepted: 16 January 2014 / 

Published: 21 January 2014 

 

Abstract: We developed a dynamic cell culture platform with dynamically tunable  

nano-roughness and elasticity. Temperature-responsive poly(ε-caprolactone) (PCL) films 

were successfully prepared by crosslinking linear and tetra-branched PCL macromonomers. 

By optimizing the mixing ratios, the crystal-amorphous transition temperature (Tm) of the 

crosslinked film was adjusted to the biological relevant temperature (~33 °C). While the 

crosslinked films are relatively stiff (50 MPa) below the Tm, they suddenly become soft  

(1 MPa) above the Tm. Correspondingly, roughness of the surface was decreased from  

63.4–12.4 nm. It is noted that the surface wettability was independent of temperature. To 

investigate the role of dynamic surface roughness and elasticity on cell adhesion, cells were 

seeded on PCL films at 32 °C. Interestingly, spread myoblasts on the film became rounded 

when temperature was suddenly increased to 37 °C, while significant changes in cell 

morphology were not observed for fibroblasts. These results indicate that cells can sense 

dynamic changes in the surrounding environment but the sensitivity depends on cell types.  

Keywords: temperature-responsive polymers; dynamic cell culture; poly(ε-caprolactone); 

elasticity; nano-roughness 
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1. Introduction 

Temporal variations of microenvironments are thought to be important in a wide variety of contexts 

including development, differentiation, and morphogenesis of cells, as well as progression of diseases 

and maintenance of homeostasis [1–3]. Recent reports have revealed that the stiffness and topography 

of the matrix direct cell fate [4–6]. For example, substrate stiffness has been demonstrated to be a key 

control parameter in the mechanotransduction signaling pathways by up- and down-regulating cell 

adhesion molecules [7]. Although many studies have shown that the stiffness or topography of the 

synthetic substrate can influence cell fate, current efforts are centered on rather static effects because 

properties of synthetic substrates are usually constant in time [3,8,9]. Therefore, much attention  

has been focused on the designing of dynamic cell culture substrates or matrices with tunable  

abilities [10,11]. Recent examples of dynamic materials include temperature-responsive polymers  

such as poly(N-isopropylacrylamide) (PNIPAAm). PNIPAAm-grafted surfaces enable reversible 

hydrophilic/hydrophobic alterations with temperature changes, which allow the cultivation of  

anchor-dependent mammalian cells at 37 °C, and intact cells or intact cell sheets can be collected after 

reducing temperature [12,13]. Immobilization of cell adhesive peptides [14] or carbohydrates [15] on 

the temperature-responsive surfaces also facilitate the selective adhesion and collection of cells.  

Photo-responsive polymer-based substrates can also regulate cellular functions spatially since the light 

irradiation can be applied locally with subcellular resolution [16,17]. A photocleavable group, for 

example, has been utilized to study collective cell migration [17]. Anseth and coworkers have reported 

a strategy to create photodegradable poly(ethylene glycol)-based hydrogels for remote manipulation of 

gel properties in situ. They successfully demonstrated dynamic morphological control of adhered cells 

by inducing temporal changes of viscoelastic property upon light irradiation [10,18]. Tanaka and 

coworkers reported that thin hydrogels based on ABA-type triblock copolymer, which is composed  

of pH-sensitive poly(2-(diisopropylamino)ethyl methacrylate) as A blocks and biocompatible  

poly(2-(methacryloyloxy)-ethyl phosphorylcholine) as B blocks, showed reversible modulation of 

Young’s modulus by 30-fold in a modest pH change from 7.0–8.0. This pH dependent elastic 

transition also allowed the dynamic modulation of cell-substrate contacts to induce the morphological 

transition of myoblasts [19]. In spite of a considerable amount of ongoing research, however, the 

proposed systems not only change the mechano-structural properties of the substrates such as elasticity 

or topography, but also influence the physico-chemical properties such as surface wettability or 

swelling ratio. From this regard, we have been developing semi-crystalline poly(ε-caprolactone) (PCL) 

films with different elasticity and topography but similar surface wettability [20,21]. 

PCL is an important class of the biocompatible and biodegradable synthetic polymers, which has 

been approved for biomedical applications by the US Food and Drug Administration (FDA). PCL has 

been widely studied as biodegradable scaffolds in tissue engineering or implantable devices in 

biomedical fields [22,23]. Since PCL is a semi-crystalline polymer that has a melting temperature (Tm) 

over which the mobility of polymer chains changes dramatically, it has been also considered as a class 

of temperature-responsive polymers. One of the advantages of PCL over other temperature-responsive 

polymers is that surface properties such as wettability and charge are independent of temperature. 

Therefore, the surface stiffness and roughness can transition without changing cell-surface interactions. 

We have previously shown how mechanical properties of PCL substrate influence cell behavior using 
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PCL films with a static elastic modulus ranging from 0.9–133 MPa [24–26]. Although the elastic 

moduli are supra-physiological compared to native tissue, mesenchymal stem cells (MSCs) showed a 

specific response to substrate stiffness—in terms of adhesion—as a result of differential focal adhesion 

assembly [25]. In this study, the effects of dynamic changes in the elasticity and surface roughness of 

substrate on cell behavior were investigated by the induction of the crystal-amorphous transition of 

PCL. We first prepared PCL films with Tm in the biological relevant temperature range. Both elasticity 

and surface roughness were analyzed by a tensile test and atomic force microscope (AFM) at 

crystalline and amorphous states, respectively. Then, we analyzed time-dependent changes in cell 

behavior on the PCL films during the crystal-amorphous transition using fibroblasts and myoblasts. 

2. Results and Discussion 

2.1. Crystal-Amorphous Transition Temperature  

In this study, we synthesized branched PCL by ring-opening polymerization of ε-caprolactone from 

hydroxyl end-group of tetramethylene glycol or pentaerythritol as described in the experimental 

section. PCL is semi-crystalline aliphatic polyester which has a Tm of circa (ca.) 60 °C. This feature 

has a great interest in order to shed some light on “on-off” crystal-amorphous transition property 

especially for the development of dynamic cell culture substrates (Figure S1). In other words, the 

mechanical property can be easily tuned by changing the surrounding temperature. However, the high 

Tm value has limited the potential use of PCL in mild conditions. To overcome this shortcoming, in 

this study, two-branched (2b) and four-branched (4b) PCL macromonomers were simply mixed in 

xylene at the concentration of 45 wt % and crosslinked in the presence of BPO as an initiator (10 wt %). 

Figure 1. (a) DSC curves of crosslinked poly(ε-caprolactone) (PCL) films composed of 

2b- and 4b-PCL; (b) The Tm and endothermic enthalpy change of crosslinked PCL films as 

a function of 4b-PCL content. 

 

Figure 1a shows the differential scanning calorimetry (DSC) thermograms of crosslinked PCL films 

composed of 2b- and 4b-PCLs. The endothermic peaks correspond to the Tm of the films. This analysis 

was performed because the Tm and crystallinity of the films play an important role in affecting the 

thermally induced mechanical property described in the following section. Crosslinked 4b-PCL 
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(0/100) was completely amorphous at ambient temperature and did not show an endothermic peak. On 

the other hand, the crosslinked 2b-PCL (100/0) film showed an extremely sharp transition over the Tm 

around 44 °C. Interestingly, increasing 4b-PCL content leads to a near linear decrease in Tm and 

endothermic enthalpy change (∆H) (Figure 1b). This implies that an increase in crosslinking density 

reduces the crystallization of freely mobile polymer chains. By optimizing the mixing ratios, therefore, 

the Tm of the crosslinked film can be adjusted to the biological relevant temperature. For example,  

the film with 50/50 wt % of 2b/4b-PCL had a Tm around 33 °C. The ability to tune the switching 

temperature close to the biological temperature allows for cell culture studies of these films. 

2.2. Elastic Modulus 

Next, we examined the mechanical property of the crosslinked PCL films at different temperatures 

by a tensile test. The representative stress-strain curves of the film (2b/4b = 50/50) are shown in  

Figure 2a. The films displayed distinct yield strengths at 2.2 and 1.5 MPa at 25 and 30 °C, 

respectively. On the other hand, the crosslinked films show significantly lower values at 35 °C or 

above. This is because the PCL films became amorphous above the Tm (around 33 °C), resulting in less 

deformation resistance and in becoming more rubbery. Similar observations were obtained for other 

PCL films with different compositions (Figure S2 in the supplementary information). To investigate 

the softening transition over the Tm, the Young’s modulus was plotted against temperature (Figure 2b). 

Young’s modulus was determined from the initial slope of stress-strain curve at each temperature. The 

4b-PCL with 0/100 of 2b/4b, which did not show an endothermic peak in DSC measurement, showed 

significantly lower elastic moduli (~1.5 MPa) and those values were independent of temperature in the 

range 25–45 °C. For the 50/50, 70/30, and 100/0 samples, on the other hand, the moduli decrease 

gradually with temperature until a rapid softening transition occurs between 30 and 35 °C, 35 and  

40 °C, and 40 and 45 °C, respectively. The transition temperature ranges are well consistent with the 

endothermic peak ranges observed in Figure 1a. Importantly, the transition occurred over a narrow 

temperature range (~5 °C) and were associated with a large elastic modulus decreases from 42.2, 68.9, 

and 112.7 MPa for 50/50, 70/30, and 100/0 samples, respectively.  

Figure 2. (a) Stress-strain curves of crosslinked PCL films with 50/50 of 2b/4b ratio at 25, 

30, 35, 40 and 45 °C; (b) Elastic modulus of crosslinked PCL films with various 2b/4b 

ratios as a function of temperature. 
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2.3. Surface Morphology and Wettability 

In addition to bulk properties, surface properties such as morphology and wettability are important 

for cell adhesion and spreading process [27,28]. The morphologies of the PCL surfaces were imaged 

by AFM at 25 and 45 °C. Although temperature can limit the sensitivity and resolution of the AFM 

measurement, this is beyond the scope of this article and is not reported here. Figure 3 shows 

topographic surface images of PCL films at 25 °C and 45 °C observed by AFM over an area of  

20 × 20 µm2. In amorphous PCL (0/100), the large difference was not observed between 25 and 45 °C. 

The surface mean roughness values (Ra) were 6.2 and 6.1 nm, respectively. For the 50/50, 70/30, and 

100/0 PCL films which have the Tm between 25 and 45 °C, on the other hand, irregular rough 

structures were observed at 25 °C due to the crystallization of PCL (left images in Figure 3a). The Ra 

values for 50/50, 70/30 and 100/0 PCL films were found to be 63.4, 83.6, and 85.5 nm, respectively. It 

is well-known that morphology or patterns of crystalline structures of PCL can be influenced by the 

growth kinetics, temperature, composition, etc. [29]. In this study, films with higher Tm showed larger 

crystals at 25 °C. When the films were heated at 45 °C and imaged again, the surfaces became 

relatively smooth with the Ra values of 12.4, 13.4, and 27.6 nm for 50/50, 70/30, and 100/0, 

respectively (right images in Figure 3a). Figure 3b shows the representative 3D AFM images of 70/30 

PCL films at 25 (left) and 45 °C (right). Clear difference can be also seen in the phase contrast AFM 

images between two surfaces as shown in the supporting information (Figure S3). In general, the AFM 

signal is influenced not only by the topography but also by e.g., local elasticity variations or changes in 

the interaction potential if the surface is made up of different materials [30]. The phase shift can be 

thought of as a delay in the oscillation of the cantilever as is moves up and down in and out of contact 

with the sample. Therefore, phase contrast is one of the most commonly used techniques for 

mechanical or viscoelastic characterization of sample surfaces. The phase images of 70/30 PCL films 

measured at 25 and 45 °C are found to be darker and brighter corresponding to less and more stiff, 

respectively. These results indicate that not only bulk stiffness but also surface stiffness of PCL film 

have been dramatically changed by heating.  

Since the surface wettability plays important role for protein adsorption and following the cell 

adhesion process, we also carried out the contact angle measurements of crosslinked PCL films at  

25 and 45 °C (Figure 4). Interestingly, all samples showed the similar surface wettability (around 

95.8°–102.5°) regardless of the temperature tested. This is one of the greatest advantages of PCL over 

other temperature-responsive polymers, surface wettability of which are dramatically influenced by 

temperature. Table 1 summarizes the characteristics of PCL films at 25 and 45 °C. The Tm of the 

crosslinked PCL films proportionally decreased with increasing 4b content because an increase in 

crosslinking density hinders crystallization of PCL. In particular, the film with 50/50 wt % mixing 

ratio of 2b/4b had a Tm around 33 °C. The crystal-amorphous transition occurred over a few degrees 

and was associated with large decreases in both elastic modulus and surface roughness from 52.9–1.1 MPa 

and from 63.4–12.4 nm, respectively. The surface contact angle around 100° was independent of 

temperature. Therefore, we used 50/50 PCL films for the subsequent cell culture experiments. 
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Figure 3. (a) Topographic surface images of PCL films observed by AFM at 25 °C (left) 

and 45 °C (right); (b) 3D AFM images of 70/30 PCL film observed at 25 °C (left) and  

45 °C (right). All images were obtained in the 20 µm × 20 µm scan range.  

 

Figure 4. Contact angles on PCL films at 25 and 45 °C. Error bars represent standard 

deviation for n ≥ 6 measurements of independent experiments. 
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Table 1. Summary of the characterizations of PCL films at different temperatures. 

2b/4bPCL Tm (°C) 
Elasticity (MPa) Roughness (nm) Contact angle (°) 

25 °C 45 °C 25 °C 45 °C 25 °C 45 °C 

0/100 - 1.4 (±0.4) 1.5 (±0.1) 6.2 6.1 96.5 (±1.6) 97.4 (±2.4) 
50/50 33.0 (±0.1) 52.9 (±3.0) 1.1 (±0.1) 63.4 12.4 96.3 (±3.7) 100.9 (±3.3) 
70/30 37.8 (±0.1) 97.6 (±3.6) 0.9 (±0.1) 83.6 13.4 95.8 (±2.1) 96.6 (±2.8) 
100/0 43.7 (±0.3) 153.4 (±8.0) 9.3 (±2.7) 85.5 27.6 100.5 (±3.1) 102.5 (±1.5) 

2.4. Cell Behavior 

As described above, the crosslinked PCL with 50/50 of 2b/4b ratio can induce dramatic changes in 

both elasticity and surface roughness over 33 °C without changing their surface wettability (Figure S4 

and Table S1). To investigate the role of dynamic changes in surface elasticity and roughness on cell 

adhesion and spreading, cell morphology on the PCL films was observed during the crystal-amorphous 

transition. Since the response of cells to substrate elasticity and surface roughness has been demonstrated 

to be highly cell specific, we cultured several types of cells on the PCL films. First, NIH 3T3 

fibroblasts and rat skeletal (MYB01) myoblasts were seeded on the 50/50 PCL films and tissue culture 

polystyrene (TCPS) dishes and cultured for 24 h at static temperature of 32 or 37 °C. Both fibroblasts 

and myoblasts adhered and spread well irrespective of the substrate. Interestingly, significant 

differences in the cell morphology were not observed between 32 and 37 °C as seen in Figure 5. 

Although more myoblasts exhibited a typical myoblast-like morphology when cultured at 37 °C than at 

32 °C, this is not due to either surface elasticity or roughness because similar trend can be also 

observed for TCPS. These results indicate that significant effects of surface elasticity and roughness on 

cell behavior were not observed when cells were cultured at static condition. Next, cells were subjected 

to a heat treatment to investigate the effects of dynamic changes in surface elasticity and roughness on 

cell behavior. Cells were seeded on the films and cultured at 32 °C (below the Tm) for 24 h. Then, the 

cells were placed on a 37 °C heater (above the Tm) and the cell morphology was continuously 

monitored. Figure 6 shows time-dependent changes of spreading cell percentages for (a) fibroblasts 

and (b) myoblasts. Neither cell morphological changes nor cell detachment occurred on TCPS surfaces 

over the 60 min imaging time. This indicates that temperature change from 32 and 37 °C does not 

affect cell morphology in this study. The myoblasts spread on the 50/50 PCL films, however, 

dramatically changed their shape upon heating. Immediately after heating, myoblasts lost their 

flattened morphology and became rounded. More than 70% of cells changed their morphology to 

rounded shapes within 30 min (Figure 6c). The rounded cells finally come off the surface when mildly 

agitated. Fibroblasts also responded in a similar manner, but only 20% of cells became rounded within 

the same period. 
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Figure 5. Fluorescence microscopy images of fibroblasts and myoblasts seeded on TCPS 

(left) and 50/50 PCL (right). Cells were cultured at 32 or 37 °C for 24 h. The cells were 

fixed with paraformaldehyde and treated with Rhodamine phalloidin for F-actin staining 

(red) and DAPI for nucleus staining (blue). 

 

The exact mechanism of the observed morphological change of myoblasts is of course highly 

complex and not entirely understood at present. However, we can speculate on the possible 

mechanisms that give rise to this behavior. Myoblasts are known to undergo reorientation, alignment 

and remodeling of the cytoskeleton when they experience mechanical stretch and compression in 

muscle tissue. It has been reported that myoblasts are able to maintain a significant amount of adhesion 

and contract with the microenvironment during large scale cytoskeletal depolymerization [31]. This 

result suggests that myoblasts generate a significant amount of traction. Figure 7 shows the possible 

mechanisms of cell detachment in response to dynamic changes in surface elasticity and roughness. 

Adhesive cells generate centripetal traction forces mediated by stress fibers on culture surfaces. There 

is equilibrium between the pulling forces developed by the cytoskeletal dynamics and tensile stress of 

the substrate [32,33]. Sudden transition of the crystalline surface abolishes tight anchorage of  

cell-substrate. As a result, the force equilibrium is lost and the remaining tensile forces developed by 

the cytoskeleton cause cell rounding. Although many studies have demonstrated that myoblasts are 

sensitive to differences in substrate elastic modulus, those studies used much softer hydrogels than our 

PCL, which were similar to the elasticity of muscle tissue [19,34,35]. Indeed, the elastic moduli of our 

PCL are supra-physiological compared to native tissue. But, another report also suggested that 

myoblasts were insensitive to nanomechanical stimulation on softer substrates while they responded 

rapidly to a nanomechanical force in a stiffer microenvironment [36]. Taken together, sudden loss of 

an equilibrium balance between the cell-substrate interfaces would account for the observations in this 

study. However, future studies are clearly required in order to provide a full and complete mechanism. 
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Figure 6. Time-dependent changes in the cell morphologies on PCL films after the  

crystal-amorphous transition. Cells were cultured on the films at 32 °C for 24 h. The cells 

were then subjected to a 37 °C heat treatment. The percentage of spread cell numbers on 

the surface was plotted against time. (a) Fibroblast; (b) Myoblast; (c) Phase contrast 

images of myoblasts on 50/50 PCL film after heat treatment. 

 

Figure 7. The possible mechanisms of cell detachment in response to dynamic changes in 

surface crystallinity. There is equilibrium between the pulling forces developed by the 

cytoskeletal dynamics and tensile stress of the substrate. Sudden transition of the surface 

from crystal to amorphous abolishes tight anchorage of cell-substrate. As a result, the force 

equilibrium is lost and the remaining tensile forces developed by the cytoskeleton cause 

cell rounding. 

 

3. Experimental Section  

3.1. Fabrication of Crosslinked PCL Films  

The poly(ε-caprolactone) (PCL) films were prepared by crosslinking tetra-branched PCL with 

acrylate end-groups in the presence of linear PCL telechelic diacrylates according to a previously 

reported protocol [20,37,38]. Briefly, linear and tetra-branched PCL were synthesized by  

ring-opening polymerization of ε-caprolactone (CL; Tokyo Chemical Industry (TCI) Co., Ltd, Tokyo, 

Japan) that was initiated with tetramethylene glycol (Wako Pure Chemical Industries, Ltd, Osaka, 

Japan) and pentaerythritol (TCI Co., Ltd.) as initiators, respectively. Then, acryloyl chloride  

(TCI Co., Ltd.) was reacted to the hydroxyl end group of the branched chains. The structures and the 

molecular weights were estimated by 1H NMR spectroscopy (JEOL, Tokyo, Japan) and gel permeation 
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chromatography (JASCO International, Tokyo, Japan), respectively. The average degrees of 

polymerization of each branch for linear and tetra-branch PCL were 18 and 10, respectively. The 

equimolar amounts of PCL macromonomers were then dissolved at 45 wt % in xylene containing  

2-fold molar excess benzoyl peroxide (BPO; Sigma-Aldrich, St. Louis, MO, USA) to the end-group of 

macromonomers. The solution was injected between glass slides with a 0.2 mm thick Teflon spacer. 

Then, thermal polymerization was carried out at 80 °C for 180 min to obtain the cross-linked PCL 

films. The thermal properties of the branched PCLs were measured by differential scanning 

calorimetry (DSC, 6100, SEIKO Instruments, Chiba, Japan) at 5 °C/min of programming rate.  

3.2. Thermo-Mechanical Properties 

The mechanical property of crosslinked PCL under the controlled temperature was carried out by 

thermomechanical experiments [22]. A tensile tester (EZ-S 500N, Shimadzu, Kyoto, Japan) equipped 

with a thermo chamber (Chromato chamber M-600FN, TAITEC, Saitama, Japan) was used to allow 

simultaneous tensile test and thermal programs. First, the crosslinked PCL films were heated and 

equilibrated at measurement temperature ranging from 25 to 45 °C for 1 h. The tensile test was then 

performed at elongation speed of 5 mm/min to obtain the strain-stress curve at each temperature.  

The elastic modulus of crosslinked PCLs was calculated from the initial slope of the obtained  

stress-strain curves. 

3.3. Topographical Observation by Atomic Force Microscope (AFM) 

The surfaces morphology of crosslinked PCL films were observed by atomic force microscopy 

(AFM) (SPM-9500J3, Shimadzu Co., Kyoto, Japan) with non-contact mode using Si3N4 cantilever 

(spring constant; 42 N/m, Nano World, Neuchâtel, Switzerland), and the sample temperature was 

controlled using a thermo controller. The crosslinked PCL films were heated and equilibrated at 25 °C 

and 45 °C for 1 h, and AFM measurement was performed to obtain the height and phase images.  

The surface roughness (Ra) at 25 and 45 °C were estimated from AFM scans on 20 × 20 µm2 area. 

3.4. Contact Angles 

The surface wettability of crosslinked PCL at 25 and 45 °C was measured by contact angle 

measurements (DSA100; KRUSS, Hamburg, Germany). First, the crosslinked PCL films were heated 

and equilibrated for 1 h, and the contact angle measurement was then conducted in humidity of 70%. 

Data are averaged from at least three separate experiments for each film and shown with their  

standard deviation. 

3.5. Cell Culture 

Before cell culture, PCL films were sterilized by low pressure hydrogen peroxide gas plasma 

system CH-160C (Toho Seisakusho, Tokyo, Japan). The films were pre-incubated in Dulbecco’s 

modified Eagle’s medium (DMEM; Sigma-Aldrich, St. Louis, MO, USA) in the presence of 10% fetal 

bovine serum (FBS; Equitech-Bio Inc., Kerrville, TX, USA) and 1% antibiotic-antimycotic  

(anti-anti; Gibco, Grand Island, NY, USA) and equilibrated in a 32 °C incubator for 1 h. NIH 3T3 
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fibroblasts and primary myoblasts extracted from rat skeletal muscle (MYB01; F-12, Primary Cell 

CO., Ltd, Hokkaido University, Sapporo, Japan) were then seeded at a density of 2.0 × 104 cells cm−2 

on the crosslinked PCL and cultured in DMEM containing 10% FBS and 1% anti-anti at 32 °C. For 

dynamic cell culture experiments, the cells were transferred to a 37 °C incubator after 24 h of 

incubation at 32 °C. The cells were subjected to a 37 °C heat treatment for 1 h. The cell morphology 

before and after heating was continuously monitored and imaged using a phase contrast microscope 

(Olympus IX71, Tokyo, Japan).  

4. Conclusions 

Temperature-responsive crosslinked PCL with dynamically tunable nano-roughness and elasticity 

were successfully prepared by crosslinking 2b- and 4b-PCL macromonomers. The crystal-amorphous 

transition temperature (Tm) of the crosslinked PCL films proportionally decreased with decreasing 4b 

content. By optimizing the mixing ratios, the Tm was successfully adjusted to the biological relevant 

temperature (around 33 °C). The crystal-amorphous transition over the Tm was associated with large 

decreases in both elastic modulus and surface roughness, while surface wettability was independent of 

temperature. Significant effects of the crystal-amorphous transition of PCL films on cell behavior were 

not observed when cells were cultured at static temperature at both below and above the Tm. However, 

spread myoblasts on the film became rounded when temperature was suddenly increased to 37 °C. 

These results indicate that cells are more sensitive to dynamic changes in the surrounding environment 

than in static condition, but the sensitivity depends on cell types. We believe that the versatility and 

biologically-friendly nature of PCL materials could potentially enable the realization of novel and 

diverse applications, especially biomaterial development and basic cell biology. 
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