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Abstract: Nonylphenol polyethoxylates (NPnEOs), a major class of nonionic surfactants, 
can easily enter into aquatic environments through various pathways due to their wide  
applications, which leads to the extensive existence of their relative stable metabolites, 
namely nonylphenol (NP) and mono- to tri-ethoxylates. This study investigated the 
bioconcentration and degradation of NP and NPnEO oligomers (n = 1–12) by a green  
algae, Chlorella vulgaris. Experimental results showed that C. vulgaris can remove NP 
from water phase efficiently, and bioconcentration and degradation accounted for  
approximately half of its loss, respectively, with a 48 h BCF (bioconcentration factor) of 
2.42 × 103. Moreover, C. vulgaris could concentrate and degrade NPnEOs, distribution 
profiles of the series homologues of the NPnEOs in algae and water phase were quite  
different from the initial homologue profile. The 48 h BCF of the NPnEO homologues  
increased with the length of the EO chain. Degradation extent of total NPnEOs by  
C. vulgaris was 95.7%, and only 1.1% remained in water phase, and the other 3.2% 
remained in the algal cells. The algae removed the NPnEOs mainly through degradation. 
Due to rapid degradation, concentrations of the long chain NPnEO homologous in both 
water (n ≥ 2) and the algal phase (n ≥ 5) was quite low at the end of a 48 h experiment. 
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1. Introduction 

Nonylphenol polyethoxylates (NPnEOs) are one class of most widely used non-ionic surfactants. 
Internationally, NPnEOs have been used in many different industrial processes, such as laundering, 
textile processing (wetting and scouring), pulp and paper processing, paint and resin formulation, oil 
and gas recovery, steel manufacturing, pest control and power generation for over 50 years [1–3].  
The wide use of products containing NPnEOs made these compounds frequently detected in the  
environment. The environmental fate of NPnEOs has been well documented [4–6], and about 60% of 
the surfactant production enters into the aquatic environment via various pathways such as municipal 
and industrial wastewater discharges and sewage treatment plant effluents [7]. NPnEOs are partially 
converted to more persistent and toxic metabolites such as nonylphenol (NP), short chain mono- to 
triexthoxylates (i.e., NP1EO, NP2EO, NP3EO) [4,8–12], and hence, these compounds frequently  
coexist in surface waters as the result of discharges from waste water treatment plants that are  
inefficient at removing nonylphenolic compounds. 

Some of the degradation products, especially NP, are more lipophilic and consequently much more 
toxic than their parent compounds [6,13–16]. Moreover, it has been confirmed that NP and their 
polyethoxylates have antiandrogenic activity, for instance, disturbing the proper functioning of  
androgens that are essential for the normal development of males and their reproductive systems for 
both marine and fresh water species [17,18]. Other adverse effects were also reported. For examples, 
they have a significant toxic effect on hepatocytes in vivo [19], and on splenocytes and sertoli cells  
in vitro [14,20]. Hence, the widespread use of NPnEOs, coupled with the frequent detection of their 
relatively stable toxic metabolites, has led to restrictions in their production and application. The  
European Directive No. 2003/53/EC [21] prohibited the use of NP and its ethoxylates in the European 
Union. The U.S. Environmental Protection Agency (U.S. EPA) has issued a specific action plan [22] to 
support and encourage the ongoing voluntary phase-out of NPnEOs in industrial laundry detergents in 
order to manage potential risks from NPnEOs. However, the application is not prohibited globally, and 
relatively high concentrations of NPnEOs and NP were still found in rivers and lakes in China, Japan, 
USA and other countries, with concentrations varying widely from tens of nanograms per liter to  
more than one hundred micrograms per liter [23–30], particularly in areas affected by wastewater  
effluents [31–35].  

The occurrence of NP and other NPnOEs biodegradation metabolites in surface waters has been 
studied extensively and a substantial body of research has been developed about the toxicity and 
bioconcentration of these compounds [36–41]. Degradation of NP, NP1EO has been studied with  
aerobic microorganisms and anaerobic microorganisms, respectively. Under aerobic conditions,  
Yuan et al. [42] found that Pseudomonas sp. expressed the best biodegrading ability among several 
microorganism species tested. Chang et al. [43] observed degradation of NP and NP1EO under  
different anaerobic conditions and the results showed that the degradation rates follow an order of  
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sulfate-reducing condition > methanogenic conditions > nitrate-reducing conditions. Though with  
relatively high water solubility, the NPnEOs, and especially their small metabolites that have relatively 
greater lipophilicity, show substantial bioaccumulation factors. The estimated bioconcentration factors 
in fish tissues range from 13–410 for NP, 3–300 for NP1EO and 3–330 for NP2EO [44].  

Although the toxic or inhibitory levels of NP and NPnEOs on algae were successfully identified in 
previous studies [1,13,36,45–48], little is known about the bioconcentration and biodegradation of NP 
and NPnEOs by microalgae. Among aquatic organisms, microalgae play an important role in the  
monitoring of aquatic pollution because they are at the bottom of the aquatic food chain, and the  
concentration of pollutants in algae may be transferred to organisms at higher trophic levels through 
the food chain. Moreover, algae have been shown to be capable of degrading organic pollutants  
including aromatic compounds, azo dyes, phthalates and tributyltin [49–51]. Thus, proliferation of an 
algal component may enhance the degradation process of a chemical in an aquatic environment. Only a 
few studies have reported the bioconcentration of NP and NPnEO in algae. Ahel et al. [44] reported 
that rather high concentrations of NP, NP1EO, and NP2EO occur in macrophytic algae, particularly in 
Cladophora glomerata, with bioconcentration factors of NP of up to 10,000. Correa-Reyes et al. [15] 
studied NP algal bioconcentration using microalgae Isochrysis galbana, and found that the algae was 
able to bioconcentrate NP by 6940 times. However, the biodegradation of NPnEO and NP by  
microalgae has never been studied. Therefore, the present work undertakes an investigation on the 
concentration and degradation of NP and NPnEOs (n = 1–12) by a green algae, Chlorella vulgaris. The 
bioconcentration tendency of NPnEO homologues with different chain lengths was discussed.  
Moreover, the contributions of bioconcentration and biodegradation to the dissipation of NPnEO in an 
aquatic environment were analyzed.  

2. Results and Discussion 

2.1. Bioconcentration and Biodegradation of NP by C. vulgaris 

Considerable NP was concentrated in the algal cells (Figure 1), which increased quickly with time 
first and stabilized or even diminished a little after a maximum was arrived. The concentrations of NP 
in the algae were 98.3 µg/g at 24 h (peak) and 86.9 µg/g at 48 h, respectively. Accordingly, the  
concentration of NP in water declined rapidly in the first 2 h to 53.7% of the initial concentration of 
200 µg/L, after that, the changes of concentration of NP was not so dramatic, and NP decreased to 
74.7% at 14 h and 82.1% at 48 h, respectively. Correa-Reyes et al. [15] also found that bioconcentration 
of NP in algae is a rapid process, and after I. galbana was incubated with 100 µg/L NP for only 1 h, 
most of the NP was accumulated in the algal cells and almost no free NP remained in the medium.  

Bioconcentration factor (BCF) was calculated by the ratio of the concentrations in the algae and in 
the aqueous phase (Figure 1) [52]. BCF was 2422 at 48 h, and 2001 at 24 h. A little bigger BCF was 
achieved at 48 h due to the fact that both the concentrations in the algae and water phase had decreased 
since those at 24 h. This indicated that NP was degraded in the algae culture. Besides, the algal density  
increased a little during the experiment, which may also lead to the reduction of NP concentration in 
the algae due to the growth dilution effect. 
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Figure 1. Nonylphenol (NP) concentrations in algal cells and water phase, and 
bioconcentration factors (BCFs) of NP in algal cells with time during incubating  
C. vulgaris in 200 µg/L NP solution. 

 

To confirm the degradation of NP in the algal culture, the total NP mass in the culture was  
calculated (Figure 2). It can be seen that based on the total mass of NP in algal cells and water phase, 
NP degradation was rapid during the initial period. The degradation ratio was 48.0% at 2 h, and then 
the degradation slowed down, with degradation efficiencies of 52.6% at 6 h and 56.7% at 24 h,  
respectively. It should also be noted here that an unknown peak appeared on the chromatogram after 
NP, which could not be identified as the breakdown product of NP, and it should be an oxidative  
conjugate NP [53] and need further study. 

Figure 2. Time dependent NP biodegradation efficiency by C. vulgaris based on the total 
NP mass lost in algae and water phase. 

 

The bioaccumulation of NP in aquatic organisms at different trophic levels was widely studied [36]. 
The freshwater algae, fish and invertebrates have been tested in the laboratory [5]. Snyder et al. [54] 
reported BCFs of 245–380 in fathead minnow. As for saltwater species, Ekelund et al. [55] reported a 
BCF of 12,500 in stickleback (Gasterosteus aculeatus). Correa-Reyes et al. [15] reported microalgae  
I. galbana was able to bioconcentrate NP by 6940 times, where 77% of the initial NP is accumulated 
intracellularly after 1 h of incubation, suggesting that the bioconcentration of NP in freshwater algae is 
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considerable. Apart from the studies of bioaccumulation of NP, the degradation of NP by  
microorganisms has also accumulated a lot of data. Chang et al. [42,56,57] conducted tests on the  
anaerobic degradation of NP by microorganisms in sludge, river sediment and mangrove sediment. 
They isolated pure microbial strains from sludge samples and eight bacterial strains were capable of 
degrading NP anaerobically, using it as a carbon source. Gabriel et al. [58] described the bacterial  
metabolism of several NP isomers and found that the initial reaction of NP degradation was  
anipso-hydroxylation producing 4-alkyl-4-hydroxy-cyclohexadienones. Microorganisms and rat liver 
microsomes use the same type of mechanism to detach different substituents in ortho- and  
para-substituted phenols. In this experiment, the degradation of NP by microalgae was for the first time  
reported and it is obvious that C. vulgaris can degrade NP effectively. 

2.2. Bioconcentration and Biodegradation of NPnEOs (n = 1–12) by C. vulgaris 

Figure 3 illustrates the initial concentration distribution profiles of all homologues of the tested 
NPnEOs (n = 1–12) in water, which is showing a Poisson distribution. The maximum concentration  
appears at NP9EO and NP10EO, the concentration of bilateral homologues shows a declining trend, 
and NP1EO was almost undetected.  

Figure 3. Initial concentration distribution profiles of the nonylphenol polyethoxylates 
(NPnEO) homologues (n = 1–12). 

 

Figure 4 shows the concentration of all NPnEO homologues (n = 1–12) in the algal cells of  
C. vulgaris. NP1EO had the highest concentration in algal cells, and the enrichment reduced gradually 
with the increasing number of EO groups. Comparatively speaking, the enrichment of short chain 
NPnEOs (n < 5) was bigger than the longer homologues (n ≥ 5). The two homologues with the longest 
EO chain, NP11EO and NP12EO, could not be detected in the algae though their concentrations in  
water were substantially high (Figure 3). This is mainly due to the different lipophilicity of the  
different homologues. As the number of EO groups increases, the lipophilicity of the homologues  
decreases [59–61]. Besides, when a chemical molecule is too large, it becomes difficult for the  
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chemical to penetrate the biomembrane. In addition, the homologues with long EO chains can be  
degraded more quickly than those with short chain homologues [62]. 

Figure 4. Time-dependent bioconcentration of the homologues of NPnEOs (n = 1–12)  
in C. vulgaris. 

 

The bioconcentration kinetics of the different NPnEO homologues by C. vulgaris varied a lot  
(Figure 4). The concentration of NP1EO in C. vulgaris reached 372.4 µg/g at 2 h; increased gradually 
to 706.3 µg/g at 14 h; and at the end of 48 h experiment, reached the maximum value of 772.3 µg/g. 
Compared with the other long chain homologues, it is evident that NP1EO showed the greatest  
accumulation. Different from NP1EO that the concentration showed an increasing trend along the 
whole experiment course, other homologues all showed a peak value. The peak is due to the  
simultaneous absorbance and degradation in algal cells. NP2EO also showed a substantial  
concentration, with the maximum concentration of 447.4 µg/g at 14 h. The concentrations of NP3-4EO 
were relatively lower as compared to NP1-2EO, reaching peak values of 96.1 and 59.2 µg/g,  
respectively. The concentrations of longer chain homologues were further lower, and at 6 h, the  
concentrations reached the maximum values of 41.2 µg/g for NP5EO, 29.7 µg/g for NP6EO, 26.4 µg/g 
for NP7EO, 23.3 µg/g for NP8EO, 18.9 µg/g for NP9EO and 12.9 µg/g for NP10EO, respectively. 

Figure 5. Variation of concentration of the NPnEO (n = 1–12) homologues in water phase. 
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The water phase concentration of the NPnEO homologues also followed different changing trends. 
The concentrations of short chain NPnEOs (n < 5) in water appeared an increasing trend in the initial 
period (2–6 h), and then decreased (Figure 5). Oppositely, the concentration of long chain NPnEOs  
(n ≥ 5) decreased constantly in the course of experiment, except that NP6EO showed a slight increase 
during 2–6 h. The dramatic reduction of the long chain NPnEOs could not be explained solely by the 
uptake by the algae, for NP11EO and NP12EO, was not detected in the algal cells. Degradation is the 
main reason for the reduction of long chain NPnEOs. This could be confirmed by the increase in water 
concentration of short chain NPnEO. The accumulation of short chain NPnEOs both in water phase 
and algal cells during the initial period of the experiment is due to the fact that long chain NPnEOs 
have greater degradation rates than the short ones. It has been recognized that NPnEOs initially break 
down into a series of biodegradation intermediates, including low-mole ethoxylates (retaining  
mainly one- and two-mole ethoxylate units), ether carboxylates (carboxylation of the ethoxylate  
group) [11,63]. At the end of the 48 h experiment, the concentration of all NPnEO homologues  
(n = 1–12) in water is very low, except for NP1EO and NP2EO, which demonstrates that C. vulgaris 
can remove NPnEOs (n = 1–12) effectively in water. 

Table 1. BCFs of NPnEO homologues (n = 1–10) by C. vulgaris at different times.  

Homologue BCF at different time (h) 
2 6 14 24 48 

NP1EO 564 1186 1857 2271 11,028 
NP2EO 174 345 22,350 7500 10,294 
NP3EO 103 176 3727 3571 6750 
NP4EO 75 682 2950 1821 4000 
NP5EO 343 2783 2204 3357 7065 
NP6EO 49 72 1200 1100 2416 
NP7EO 32 71 725 585 1270 
NP8EO 27 65 579 485 874 
NP9EO 19 61 204 232 459 
NP10EO 15 48 86 136 171 

Total NPnEOs 155 448 6563 5406 13,831 

BCF values of all the NPnEO homologues in C. vulgaris were calculated for all the sampling times 
(Table 1). The time dependent trend of BCF was not the same with those of algal concentrations. This 
is because both algal phase concentration and water phase concentration varied intricately due to the 
simultaneous biodegradation and uptake of NPnEO by the algae. Generally, BCF reached a peak value 
at the end of experiment due to the low water phase concentration. The maximum BCF of single 
NPnEO homologue occurred at 14 h for NP2EO, indicating the successive degradation from long 
chain homologues to short chain ones inside the algal cells. The 48 h BCFs of NPnEO homologues in 
C. vulgaris ranged from 171–11,028, declining with increasing EO chain, with an exception of 
NP4EO. This demonstrates the remarkable discrepancy in eco-risk of different NPnEO homologues. 
The exception of NP4EO could be explained by the relative biodegradation rates and relative 
bioconcentration tendencies of different NPnEO homologues. 
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To clarify the dissipation pathways of NPnEOs, the loss due to degradation were calculated based 
on mass balance (Figure 6). It can be found that the removal rate of NPnEOs (n = 1–12) in water was 
very fast in the first 2 h, which became relatively slower after 2 h. The concentration of the total 
NPnEOs (n = 1–12) reduced to 0.21 µg/L at 14 h, which is 3.01% of the initial concentration, which 
means 97.0% of the initial 16.94 mg/L NPnEO was removed from water. After 14 h, the concentration 
of NPnEOs (n = 1–12) remained relatively constant, and the removal ratio reached 98.9% at the end of 
the experiment.  

Figure 6. Dissipation of the total NPnEOs (n = 12) in the algal (C. vulgaris) culture water. 

 

Degradation followed similar kinetic trend with the total dissipation. The degradation rate of 
NPnEOs (n = 1–12) by C. vulgaris was fast in the first 14 h, reaching a maximum rate of 3.84 mg/h at 
2 h and falling to 1.04 mg/h in the period of 2–14 h (Figure 6). The degradation efficiency was 92.9% 
at 14 h, and the concentration of NPnEOs (n = 1–12) in water reduced to 0.49 mg/L from the initial 
concentration (16.94 mg/L). The degradation continued after 14 h, but the degradation rate was so 
slow that the degradation efficiency just increased 2.8%–95.7%. It is evident that NPnEOs  
(n = 1–12) degradation is rapid and almost complete within the first 14 h, which has a similar tendency 
with NPnEOs (n = 1–12) degradation using acclimated sludge [64]. The removal rates of all NPnEO 
homologues (n = 1–12) by C. vulgaris are listed in Table 2. Apart from NP1EO and NP2EO, the other 
homologues were degraded by C. vulgaris almost by 100% after 48 h experiment. Jonkers et al. [62] 
investigated the kinetics of aerobic biodegradation of NPnEOs (n = 4–15) in a laboratory scale  
bioreactor filled with river water, the concentration of NPnEOs (n = 4–15) reduced to 50% after 10 h 
and over 99% of the initial NPnEOs was degraded after 4 days. The long chain NPnEOs degraded to 
short chain NPnEOs in aerobic conditions with a relative fast rate in both studies. In this study, 
NP1EO and NP2EO were accumulated in water phase due to their slow degradation rates (Table 2). 

In the experiment, NP was detected as one of the metabolites both in water and algal cells.  
As shown in Figure 7, the concentration of NP in water and algal cells reached the maximum at 6 h, 
and then declined to a minimum at 14 h in water and 24 h in the algal cells, followed by a slight 
elevation. During the first 6 h, the increasing concentration of NP could be due to the degradation of 
NPnEOs. It has been reported that besides to the consecutive shortening of EO chain (Figure 8), short 
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chain NPnEOs can be oxidized to the corresponding nonylphenoxyethoxy acetic acids (NPnEC) [62], 
then breakdown to NP. We did detect NPnEC (not quantified) in the experimental system, both 
breakdown pathways might have been involved in the degradation of NPnEOs. It is the involvement of 
NPnEC that leads to the similar complicated change tendency of NP, NP1EO and NP2EO, especially 
in algae cells, which first increased and then decreased and increased again. The second elevation is 
thought to be the result of degradation of NPnEC. 

Table 2. Removal rates of all NPnEO homologues (n = 1–12) by C. vulgaris in 48 h. 

Homologue 
Removal rate of NPnEO  

homologue in water phase (%) 
Degradation rate of NPnEO 

homologue in algal culture (%) 
NP1EO −1356 * - 
NP2EO −1.59 * - 
NP3EO 89.6 88.0 
NP4EO 96.9 97.7 
NP5EO 99.9 88.7 
NP6EO 99.1 98.6 
NP7EO 99.4 99.0 
NP8EO 99.3 98.8 
NP9EO 99.3 98.8 

NP10EO 99.1 98.6 
NP11EO 98.8 98.7 
NP12EO 100 100 

* The negative sign means increase in mass. 

Figure 7. Concentration variation of NP in water and algal cells during the 
bioconcentration and biodegradation of 16.94 mg/L NPnEO (n = 1–12) by C. vulgaris. 

 

Figure 8. Aerobic biodegradation pathway of NPnEOs [62]. 

 

BCF of NP was about 50,000 at 6 h and 252,000 at 48 h. These values are much higher than the  
data above when NP was spiked alone and in the literature, which suggests that degradation of 
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NPnEOs occurred inside the algal cells. Hence, as a metabolite of degradation, NP accumulated in the 
algae, and steady state of bioconcentration between the algae and water had not been achieved. 

3. Experimental Section  

3.1. Chemicals and Algae 

The standard of NP and NPnEOs (n = 1–15) were purchased from Tokyo Chemical Industry  
(Tokyo, Japan) and Hayashi Pure Chemical (Osaka, Japan), respectively, with the purity of 99.9%.  
An industrial product was purified by collecting HPLC elute of NPnEOs (n = 1–12) and used in 
bioconcentration and degradation test, and its concentration and homologue distribution was  
determined. The freshwater green algae, Chlorella vulgaris, were bought from the Institute of  
Hydrobiology, Chinese Academy of Science, Wuhan, China. They were cultured sterilely in  
Bold Basal medium at 25 ± 1 °C [65]. The light intensity was 50 mmol photons/m2/s with a  
12:12 light-dark cycle. 

3.2. Bioaccumulation and Biodegradation of NP and NPnEOs by C. vulgaris 

The tests were carried out in 3-L Erlenmeyer flasks with concentration fixed at 200 µg/L for NP and 
16.94 mg/L for NPnEOs (n = 1–12), respectively. The Bold Basal medium was the base solution when 
the tests were conducted and the algal cells were acclimated in the medium under the same conditions 
as mentioned above. After arriving at the middle exponential growth phase, the cells were collected, 
rinsed with the fresh medium and then resuspended into the different test media under sterilization 
condition, the initial cell density was in the range of 1–2 × 105 cells/mL. The algal culture was shaken 
every three hours to ensure the exchange of gases. A 500 mL aliquot was taken out at 2, 6, 14, 24 and 
48 h, respectively, and divided into two samples for duplicate analysis. After separating algal cells 
from water by filtration using the 0.45 µm fiber filter, the concentrations of NP and NPnEOs were  
determined both in algal cells and in culture solution. Control was conducted as the same condition 
without the introduction of algae. 

3.3. Sample Pre-Treatment 

Water samples were subjected to a concentration and clean-up step by solid-phase extraction (SPE) 
using Waters Oasis TM HLB cartridges (Milford, MA, USA) [66]. The SPE cartridges were  
preconditioned with 2.0 mL of DCM/methanol (50/50, v/v), followed by 1.0 mL of methanol, and then 
equilibrated with 1.0 mL of super-pure water. The samples were passed through the cartridge at a flow 
rate of 1 mL/min, and the cartridge was cleaned with 1.0 mL of methanol/water (95/5, v/v) and eluted 
with 2.0 mL of DCM/methanol (50/50, v/v). The eluent was evaporated to almost dryness at  
0.008 MPa, 50–52 °C in a water bath, and 1.0 mL of n-hexane was then added to redissolve the residue 
before HPLC analysis. 

Liquid-liquid extraction was used to extract the NP and NPnEOs (n = 1–12) in algal cells. The algal 
cells were suspended in 8 mL of water, and crushed by ultrasonic cell-crushed-apparatus for 2 min  
after being freezed-thawed for 4 cycles in the darkness. The crushed algal cells were extracted twice 
using 4-mL dichloromethane, and the organic phase was combined and evaporated to almost dryness 
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by rotary evaporation. The residue was redissolved in 1.0 mL of n-hexane, and the solution was filtrated 
using 0.45 µm organic film prior to HPLC (High Performance Liquid Chromatography) analysis. 

3.4. HPLC Analysis 

The HPLC analysis was performed using a Waters 1552 high performance liquid chromatograph 
equipped with a fluorescence detector and a Millennium software package [66]. A µBondapak Amino 
(NH2) Column (Waters-125Å, Milford, MA, USA, 10 µm, 3.9 mm × 300 mm, 1/pkg) was employed 
under ambient temperature. Mobile phase flew at a flow rate of 1.0 mL/min and the injection volume was  
20 µL. Separation was performed with a linear gradient elution of solvent A (n-hexane/isopropanol  
(98/2, v/v)) and solvent B (isopropanol/water, (98/2, v/v)) (Table 3). The fluorescence detection was 
achieved at an excitation wavelength of 233 nm and an emission wavelength of 302 nm. The analytical 
method can simultaneously quantify NPnEOs (n = 1–12) and their small inter-metabolites in samples. 
The detection limits of the method are 0.01 µg/L for NP and NP1EO, 0.02 µg/L for NP2EO and 
NP3EO, 0.05 µg/L for NP4EO and the following long chain homologues, respectively. Recoveries for 
different NPnEOs and NP were larger than 90% in water phase and 88% in algae. 

Table 3. The linear elution gradient for HPLC analysis of NPnEOs and their  
small metabolites. 

Time (min) n-hexane/isopropanol (98/2, v/v) isopropanol/water (98/2, v/v) 
0 5 95 
30 50 50 
35 70 30 
40 65 35 
45 50 50 
55 5 95 

4. Conclusions 

Bioconcentration and degradation of NP and NPnEOs (n = 1–12) by a pure culture of C. vulgaris 
were studied for the first time. NP and NPnEOs (n = 1–12) can be concentrated by C. vulgaris, and the 
48 h BCFs were 2422 and 13,831, respectively. BCF increased as the EO chain became shorter.  
Biodegradation of both NP and NPnEOs did occur, which accounted for 56.7% of NP loss and 98.7% 
of NPnEOs loss in water, respectively. The high BCF value of NPnEOs compared to NP is thought to 
be due to the biodegradation, which is thought to occur in algal cells and generate NP and short chain 
NPnEOs, such as NP1EO and NP2EO. The degradation products of NPnEOs were mainly NP, NP1EO 
and NP2EO, and the content of NP1EO was the largest at the end of the 48 h experiment. Though not 
quantified, NPnEC was detected, and the degradation pathway through NPnEC is thought to account 
for the complicate change in concentration of NP1EO, NP2EO and NP, especially in algal cells.  

As primary producers of aquatic ecosystem, microalgae can concentrate a mass of NP and NPnEOs 
(n = 1–12) which can be transferred to organisms at higher trophic levels through the food chain, such 
as invertebrate Daphnia magna. In addition, the degradation products—for instance, short chain 
NPnEO homologues and NP—exhibit greater toxicity than the parent compounds. Thus, this work 
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shows that the environmental fate of NP and NPnEOs concentrated by microalgae should be  
considered as a risk for the organisms living in the same ecosystem. 
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