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Abstract: Janus kinase 2 (JAK2) is an intracellular nonreceptor tyrosine kinase that 

belongs to the JAK family of kinases, which play an important role in survival, 

proliferation, and differentiation of a variety of cells. JAK2 inhibitors are potential drugs 

for the treatment of myeloproliferative neoplasms. The three dimensional quantitative 

structure-activity relationships have been studied on a series of JAK2 inhibitors by 

comparative molecular field analysis (CoMFA), and comparative molecular similarity indices 

analysis (CoMSIA). The CoMFA model had a cross-validated coefficient q2 of 0.633, and the 

relation non-cross-validated coefficient r2 of 0.976. The F value is 225.030. The 

contributions of steric and electrostatic fields to the activity are 55.2% and 44.8%, respectively. 

For the CoMSIA study, the q2, r2, and F values of the model are 0.614, 0.929, and 88.771, 

respectively. The contributions of steric, electrostatic, hydrophobic, hydrogen bond donor, 

and hydrogen bond donor fields to the activity are 27.3%, 23.9%, 16.4%, 21.7%, and 

10.7%, respectively. The CoMFA and CoMSIA models showed strong predictive ability, 

and the 3D contour plots give the basis on the structure modification of JAK2 inhibitors. 

Keywords: 3D-QSAR; CoMFA; CoMSIA; JAK2 inhibitor; 5H-pyrido[4,3-b]indol-4-

carboxamide 
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1. Introduction 

Janus kinase 2 (JAK2) is an intracellular nonreceptor tyrosine kinase that belongs to the JAK 

family kinases (JAK1, JAK2, JAK3, and TYK2), which is important in many of cellular signaling 

pathways [1–3]. JAK2 is essential for hematopoiesis, platelet formation, and other functions that are 

important in cellular survival, proliferation, and differentiation. In 2005, several groups independently 

reported the discovery of a somatic mutation of the gene encoding JAK2 in a high proportion of 

patients with myeloproliferative neoplasms (MPNs) : >95% for polycythemia vera (PV), and 50% for 

essential thrombocythemia (ET) and primary myelofibrosis (PMF) [4–8]. A single valine to phenylalanine 

mutation at position 617, located in the pseudokinase domain thought to negatively regulate the adjacent 

kinase domain, results in a constitutively active JAK2 tyrosine kinase. The Jak2V617F mutation occurs 

in over 90% of PV patients and a large subset of ET and PMF patients. Therefore, JAK2 has been 

investigated in recent years as a potential therapeutic target for the treatment of MPNs. In fact, several 

classes of JAK2 small molecule inhibitors have been developed and are being tested in clinical trials 

for the treatment of MPNs [9–12]. Recently, a library of potent 5H-pyrido[4,3-b]indol-4-carboxamide 

JAK2 Inhibitors have been reported [13]. In order to design new compounds based on the structure of 

5H-pyrido[4,3-b]indol-4-carboxamide, with excellent inhibitory activity for JAK2, quantitative 

structure-activity relationship (QSAR) techniques are useful methods. QSAR, which quantitatively 

correlates the variations in biological activity with the properties or molecular structures, is one of the 

most effective approaches for designing new chemical identities and understanding the action 

mechanisms of drugs [14,15]. In order to establish the QSAR model, suitable statistical methods are 

applied to establish correlations between chemical structures and their biological activities, such as 

Multiple Linear Regression (MLR), Principal Component Analysis (PCA), Partial Least Squares (PLS), 

artificial neural networks (ANN), Spectral-SAR Algorithm [16,17], and so on. When a model is 

established, the findings can be used to predict the properties of new compounds and see which 

structural factors influence those properties. In the present study, we performed molecular modeling studies 

on 5H-pyrido[4,3-b]indol-4-carboxamide JAK2 inhibitors using 3D-QSAR approaches, including 

comparative molecular field analysis (CoMFA), [18] and comparative molecular similarity indices 

analysis (CoMSIA) [19], to investigate the key structural features affecting the inhibitory activities. 

2. Results and Discussion 

2.1. Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices 

Analysis (CoMSIA) Results 

The 3D-QSAR studies were carried out using 5H-pyrido[4,3-b]indol-4-carboxamide derivatives, 

which are reported to be JAK2 inhibitors. The whole dataset was partitioned into a training set of 40 

and a test set of nine compounds at random, with bias given to both chemical and biological diversity 

in both the training set and the test set molecules. The statistical results of the CoMFA and CoMSIA  

3D-QSAR models are presented in Table 1. The CoMFA model gave a cross-validated correlation 

coefficient q2 of 0.633, an optimal number of principal components (N) of 6, and a non-cross-validated 

correlation coefficient r2 of 0.976. The corresponding contributions of steric and electrostatic fields 

were 55.2% and 44.8%, respectively. The CoMSIA model gave a cross-validated correlation coefficient 
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q2 of 0.614, an optimal number of principal components of 5, and a non-cross-validated correlation 

coefficient r2 of 0.929. The corresponding contributions of steric, electrostatic, hydrophobic, hydrogen 

bond donor, and acceptor fields were 27.3%, 23.9%, 16.4%, 21.7%, and 10.7%, respectively. Both the 

CoMFA and CoMSIA models were satisfactory from the viewpoint of statistical significance. The 

activities of the 40 training compounds were predicted with the constructed CoMFA and CoMSIA 

models. The predicted pIC50 values are shown in Table 2 and Figure 1. It can be seen that the predicted 

pIC50 values were in good agreement with the experimental values, indicating that the obtained 

CoMFA and CoMSIA models had strong predictive ability. 

Table 1. The statistical results of comparative molecular similarity indices analysis (CoMSIA) 

and comparative molecular field analysis (CoMFA) models. 

Model N q2 r2 SEE F r2
pred. 

Field contribution 

S E H D A 

CoMFA 6 0.633 0.976 0.138 225.030 0.862 0.552 0.448 - - - 
CoMSIA 5 0.614 0.929 0.234 88.771 0.735 0.273 0.239 0.164 0.217 0.107 

N: the number of compounds used in the correlation; q2: Cross-validated correlation coefficient;  

r2: non-cross-validated correlation coefficient; r2
pred.: predictive correlation coefficient r2; SEE: standard error 

of estimate; F: the Fischer ratio; S: steric field; E: electrostatic field; H: hydrophobic field. D: hydrogen bond 

donor field; A: hydrogen bond acceptor field. 

Table 2. The experimental and predicted activities (pIC50 in M) of the CoMFA and 

CoMSIA models. 

No. 
Experimental  

pIC50 

Predicted pIC50(CoMFA) Predicted pIC50(CoMSIA) 

Pred. Resid. Pred. Resid. 

1 6.678 6.920 −0.243 7.098 −0.420 
2 * 6.638 7.043 −0.405 6.982 −0.344 
3 7.168 7.159 0.009 6.974 0.194 
4 7.310 7.283 0.027 7.028 0.282 

5 * 7.000 7.045 −0.045 6.944 0.056 
6 7.131 7.061 0.070 7.029 0.102 

7 * 7.284 7.219 0.065 6.609 0.675 
8 6.678 6.930 −0.252 6.769 −0.091 
9 7.081 7.122 −0.042 7.238 −0.157 

10 7.292 7.295 −0.002 7.358 −0.066 
11 * 7.770 7.443 0.326 6.986 0.784 
12 7.721 7.763 −0.042 7.599 0.122 
13 7.745 7.573 0.172 7.707 0.038 
14 6.638 6.458 0.180 6.324 0.314 
15 6.721 6.603 0.118 6.377 0.344 
16 5.569 5.475 0.094 5.884 −0.315 

17 * 7.229 7.466 −0.237 7.326 −0.097 
18 7.638 7.625 0.014 7.371 0.268 
19 6.959 6.887 0.072 7.057 −0.098 
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Table 2. Cont. 

No. 
Experimental  

pIC50 

Predicted pIC50(CoMFA) Predicted pIC50(CoMSIA) 

Pred. Resid. Pred. Resid. 

20 7.155 7.383 −0.228 7.300 −0.146 
21 6.745 6.621 0.123 6.866 −0.122 

22 * 8.301 8.568 −0.267 8.422 −0.121 
23 7.886 8.034 −0.148 8.034 −0.148 
24 7.886 7.996 −0.110 7.883 0.003 
25 7.638 7.828 −0.189 7.827 −0.189 

26 * 8.301 8.380 −0.079 8.048 0.253 
27 7.387 7.398 −0.011 7.330 0.058 
28 7.921 7.840 0.081 7.976 −0.055 
29 7.921 7.935 −0.014 8.107 −0.186 
30 7.854 7.943 −0.090 7.710 0.144 
31 8.000 8.112 −0.112 7.980 0.020 
32 9.000 8.838 0.162 8.683 0.317 
33 7.959 8.025 −0.066 8.360 −0.402 
34 8.699 8.675 0.024 8.254 0.445 
35 8.523 8.506 0.016 8.600 −0.077 
36 8.699 8.898 −0.199 8.807 −0.108 
37 9.398 9.410 −0.012 9.042 0.356 
38 8.046 8.042 0.004 8.180 −0.134 
39 8.523 8.333 0.190 8.537 −0.015 
40 7.921 7.996 −0.075 8.354 −0.433 
41 8.523 8.348 0.175 8.275 0.248 
42 8.699 8.654 0.045 8.835 −0.136 
43 8.398 8.345 0.053 8.576 −0.178 

44 * 9.000 8.378 0.622 8.764 0.236 
45 * 9.000 8.835 0.165 8.504 0.496 
46 8.699 8.718 −0.020 8.600 0.099 
47 8.097 8.235 −0.138 8.169 −0.072 
48 8.699 8.574 0.125 8.634 0.065 
49 9.097 8.859 0.238 8.966 0.131 

* Test set. 

2.2. Y-Randomization Test 

The model was validated by applying the Y-randomization test. Several random shuffles of the Y 

vector were performed and the results are shown in Table 3. The low q2 and r2 values indicate that the 

good results in our original model are not due to a chance correlation or structural dependency of the 

training set. 
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Figure 1. Graphs of the experimental versus predicted pIC50 values of the training (■) and 

test (●) compounds from the CoMFA and CoMSIA models.  
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Table 3. q2 and r2 values after several Y-randomization tests. 

Iteration 
CoMFA CoMSIA 

q2 r2 q2 r2 

1 0.465 0.821 0.419 0.511 
2 0.458 0.546 0.393 0.506 
3 0.488 0.678 0.501 0.577 
4 0.325 0.435 0.379 0.495 
5 0.302 0.420 0.331 0.453 
6 0.216 0.347 0.247 0.386 
7 0.269 0.589 0.313 0.422 
8 0.313 0.430 0.343 0.464 
9 0.281 0.389 0.303 0.417 

10 0.338 0.435 0.295 0.412 

2.3. Predictive Ability of Quantitative Structure-Activity Relationship (QSAR) Models 

The predictive powers of the CoMFA and CoMSIA models were validated by the nine test 

compounds. The predicted pIC50 values were found to be in good agreement with the experimental 

data within an acceptable error range (Table 2 and Figure 1). The predictive correction coefficients 

of the CoMFA and CoMSIA models were 0.862 and 0.735, respectively. This result indicates that 

the CoMFA and CoMSIA models may be used to predict the inhibitory activities of novel  

5H-pyrido[4,3-b]indol-4-carboxamide derivatives as JAK2 Inhibitors. 

2.4. Contour Analysis 

To visualize the results of the CoMFA and CoMSIA models, 3D coefficient contour maps were 

generated. The CoMFA and CoMSIA results were graphically interpreted by the field contribution 

maps using the StDev*Coeff field type. The contour maps of CoMFA (steric and electrostatic) and 

CoMSIA (steric, electrostatic, hydrophobic, hydrogen bond donor, and acceptor fields) are shown in 

Figures 2 and 3, respectively. Compound 22 was displayed in the map in aid of visualization.  
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All the contours represented the default 80% and 20% level contributions for favorable and 

unfavorable regions, respectively.  

2.4.1. CoMFA Contour Maps 

The CoMFA contour maps of the steric and electrostatic fields are shown in Figure 2. In the map of 

the steric field, the green contours represent the regions in which bulky groups confer an increase in 

the activity, whereas the yellow ones represent the regions where bulky groups may lead to a decrease in 

the activity. Similarly, in the map of electrostatic field, the blue contours indicate the regions where 

electropositive substitution increases the inhibitory activity, whereas the red contours indicate the regions 

where electronegative substitution increases the activity. In the CoMFA steric contour map (Figure 2a),  

a large green contour on the top of cyclohexane group of compound 22 suggests that the introducing of 

bulky groups at this position would increase the activity. Consistent with this, compounds bearing 

bulky groups at this position, for example, compounds 10–13, showed high activities, whereas the ones 

bearing small groups at the same position, for example compounds 1 and 2, showed low activities. A 

yellow contour near the cyclohexane group suggests that introducing of bulky groups at these positions 

would decrease the activity. For example, derivative 16 (IC50 = 2700 nM) was 14-fold less active than 

derivative 15 (IC50 = 190 nM). In addition, big yellow contours near the R4 substitute suggest that 

steric bulkiness is unfavorable by the model. This is in agreement with the fact that compound 19, with 

chloro substituent, showed decreased activity. In the CoMFA electrostatic contour map, small blue 

contours near R3 or R4 of compound 22 indicates that introducing of electropositive groups around this 

position would increase the inhibitory activity. For example, compound 11 with electropositive hydrogen 

showed higher activity than the corresponding compounds 11 with electronegative chloro substituent. 

Figure 2. CoMFA StDev*Coeff contour maps. (a) Favorable (green) and unfavorable 

(yellow) steric fields; (b) Electropositive (blue) and electronegative (red) fields. Compound 

22 was overlaid in each map. 

(a) (b) 
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2.4.2. CoMSIA Contour Maps 

The CoMSIA contour maps of the CoMSIA model are shown in Figure 3. The steric and electrostatic 

contour maps (Figure 3a,b) are quite similar to those of CoMFA model discussed above. Therefore, 

our following discussion will focus on the hydrophobic, hydrogen bond donor, and acceptor fields. 

Figure 3. StDev*Coeff contour maps. (a) Favorable (green) and unfavorable (yellow) 

steric fields; (b) Electropositive (blue) and electronegative (red) fields; (c) Favorable (yellow) 

and unfavorable (gray) hydrophobic fields; (d) Favorable (cyan) and unfavorable (purple) 

hydrogen bond donor fields; (e) Favorable (magenta) and unfavorable (red) hydrogen bond 

acceptor fields. Compound 22 was overlaid in each plot. 

(a) (b) 

(c) (d) 

 

(e)  
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Figure 3c shows the hydrophobic contour maps in which yellow and gray contours indicate the 

regions where hydrophobic and hydrophilic groups are favored by the model, respectively. A large yellow 

contour around the cyclohexane group of compound 22 indicates that hydrophobic substituent at this 

position would increase the activity. This hydrophobic interaction may play a crucial role in improving 

of the binding affinity, since it is also observed that the cyclohexane occupied the hydrophobic pocket 

surrounded by the side chains Val863 and Leu983 [13]. In addition, two yellow contours around R2 

substituent indicate that hydrophobic substituent at this position would increase the activity. 

The CoMSIA hydrogen bond donor and acceptor contour plots are shown in Figure 3d,e, 

respectively. The cyan contours represent the regions where hydrogen bond-donating groups increase the 

activity, whereas the purple contours represent the regions where hydrogen bond-donating groups 

decrease the activity. Similarly, the magenta contours indicate the regions where hydrogen bond-accepting 

groups increase the inhibitory activity, whereas the red contours indicate the regions where hydrogen 

bond-accepting groups decrease the activity. The cyan contour near the R1 substituent indicates that 

hydrogen bond-donating groups are favored. This is well consistent with the observations that derivative 16 

having a CH2CH3 to replace the hydrogen of compound 15 led to 14-fold decreases in the activities.  

A purple contour located on the methylpyrazole of R2 substituent suggests that hydrogen bond-donating 

groups are disfavored in this region. For example, compounds 24, 41, and 45 showed higher activity 

than the corresponding compounds 22, 36, and 37, respectively. A magenta contour located on the R2 

substitute suggests that hydrogen bond-accepting groups are favored in this region. This is evident from the 

fact that compound 24 was more active than compound 25. A red contour located on the R4 substituent 

suggests that hydrogen bond-accepting groups are disfavored in this region. For example, compound 38 

was less active than the optical isomer 37, because the CF3 of 38 falls into the red contour. 

2.5. Design of New Inhibitors 

As shown above, the CoMFA and CoMSIA have provided detailed insight into the key structural 

requirements for potent activities of the inhibitors of this class. To demonstrate the practical values of 

these structure-activity relationships, a series of new inhibitors were designed, and their pIC50 values 

were predicted with the established CoMFA and CoMSIA models (Table 4). The designed molecules 

exhibited good predicted pIC50 values in CoMFA or CoMSIA models. This result strongly suggested 

that our models can be used to guide the design of new inhibitors of this class. The detailed synthesis 

and evaluation of the representative molecule are shown in supplementary information. 

Table 4. Structures and predicted pIC50 values of newly designed derivatives. 
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Table 4. Cont. 

No. R1 R2 R3 R4 
Predicted pIC50 

CoMFA CoMSIA 

D1 
 

F H 9.340 8.750 

D2 
 

H F 9.485 8.852 

D3 
 

F F 9.414 8.561 

D4 
 

Me H 8.978 9.380 

D5 
 

H H 8.965 9.416 

D6 
 

H H 8.972 9.272 

D7 
 

H H 8.622 8.796 

D8 
 

F H 9.346 8.676 

D9 
 

Me H 9.169 8.617 

D10 Me H 8.905 8.816 

D11 H H 8.865 8.890 

D12 H H 8.585 9.092 

D13 Me H 8.547 9.032 

D14 Me H 8.554 8.956 

D15 H H 8.509 8.711 
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3. Experimental Section 

3.1. General 

The crystallographic coordinates of JAK2 in complex with small-molecule inhibitor were obtained 

from the Brookheaven Protein Databank as entries 3RVG [13]. All the molecular modeling and 

calculations were performed using the Sybyl version 7.3 molecular modeling package (Tripos 

International, St. Louis, MO, USA) [20]. 

3.2. Data Set 

Compounds 1–49 selected for the present study were taken from the literature [13], and served as 

the database in the molecular modeling. Their structures and inhibitory activities are listed in  

Tables 2 and 5. Among them, the 9 compounds that are asterisk labeled served as the test set, and the 

rest as the training set. The IC50 values (M) were converted to the corresponding pIC50 (=−logIC50) and 

used as dependent variables in the CoMFA and CoMSIA analyses. 

Table 5. The molecules of 5H-pyrido[4,3-b]indol-4-carboxamide derivatives. 

No. R1 R2 R3 R4

1 
 

H F H 

2 * 
 

H F H 

3 
 

H F H 

4 
 

H F H 

5 * 
 

H F H 

6 
 

H F H 

7 * 

 

H F H 

8 

 

H F H 

9 
 

H F H 

10 
 

H F H 

11 * 

 

H F H 
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Table 5. Cont. 

No. R1 R2 R3 R4

12 

 

H F H 

13 

 

H F H 

14 
 

H F H 

15 
 

H F H 

16 N

Me  

H F H 

17 * 

 

H H H 

18 

 

Cl H H 

19 

 

H H Cl 

20 

 

Phenyl H H 

21 

 

H Phenyl H 

22 * 

  
H H 

23 

 

H 
 

H 

24 

  
H H 

25 

 
N

H
N

 
H H 



Int. J. Mol. Sci. 2013, 14 12048 

 

 

Table 5. Cont. 

No. R1 R2 R3 R4

26 * 

  
H H 

27 

  
H H 

28 

  
H H 

29 

  
H H 

30 

  
H H 

31 

  
H H 

32 
  

H H 

33 
  

H H 

34 

  
H H 

35 

  
H H 

36 
N
H  

 
H H 

37 
  

H H 

38 
  

H H 

39 

  
H H 
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Table 5. Cont. 

No. R1 R2 R3 R4

40 
  

H H 

41 
N
H  

 
H H 

42 
N
H  

 
H H 

43 

  
H H 

44 * 

  
H H 

45 * 
  

H H 

46 
 

H H 

47 
 

H H 

48 
 

H H 

49 
 

H H 

* Test set. 

3.3. Molecular Modeling 

In the 3D-QSAR study, the selection of active conformations is a key step for CoMFA and 

CoMSIA studies. The X-ray crystallographic structure of small ligand 22 complexed with the JAK2 

was selected as the bioactive conformation, which was used as the template to construct the 3D 

structures of the rest of the compounds in the data set. Structural energy minimization process was 

performed using the Tripos force field with a distance-dependent dielectric and Powell gradient algorithm 

with a convergence criterion of 0.001 kcal/mol. Partial atomic charges were calculated using the 

Gasteiger-Hückel method. 
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3.4. Molecular Alignment 

In the 3D-QSAR study, the alignment rule is also a key step. The predictive accuracy of the 

CoMFA and CoMSIA models and the reliability of the contour maps are directly dependent on the 

structural alignment rule. In the present study, the co-crystallized molecule 22 was chosen as a 

template to fit the remaining compounds in the training and test sets. Thus, all compounds in the data 

set were aligned to template molecule using the “align database” command in Sybyl, with the  

5H-pyrido[4,3-b]indol-4-carboxamide as the common substructure (Figure 4). The aligned compounds 

are shown in Figure 5. 

Figure 4. Structure of 5H-pyrido[4,3-b]indol-4-carboxamide derivatives, the asterisk 

indicate the atoms selected as the common substructure. 

 

 

Figure 5. Superimposition of compounds for CoMFA and CoMSIA studies. 

 

3.5. Generation of CoMFA and CoMSIA Models 

Standard CoMFA and CoMSIA procedures were performed. A 3D cubic lattice was created 

automatically by extending at least 4 Å beyond all the investigated molecules in all the three axes  

(X, Y, and Z directions) with 2.0 Å grid spacing. The CoMFA steric (Lennard-Jones potential) and 

electrostatic (Coulomb potential) fields at each lattice were calculated using the standard Tripos force 

field method. A distance dependent dielectric constant of 1.0 was used, and an sp3 hybridized carbon 

atom with one positive charge and a radius of 1.52 Å served as a probe atom to calculate the steric and 

electrostatic fields. The default cutoff value of 30.0 kcal/mol was adopted.  

Compared with CoMFA, CoMSIA methodology has the advantage of exploring the impacts of 

more fields. The CoMSIA method defines hydrophobic (H), hydrogen bond donor (D), and hydrogen 

bond acceptor (A) descriptors, in addition to the steric (S) and electrostatic (E) fields used in CoMFA. 
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The CoMSIA fields were derived, according to Klebe et al. [19], from the same lattice box that was 

used in the CoMFA calculations, with a grid spacing of 2 Å, and a probe carbon atom with one 

positive charge and a radius of 1.0 Å as implemented in Sybyl. Arbitrary definition of cutoff limits 

were not required in CoMSIA method, wherein the abrupt changes of potential energy near the 

molecular surface were taken into account in the distance dependent Gaussian type functional form. 

The default value of 0.3 was used as the attenuation factor. 

3.6. Partial Least Squares (PLS) Regression Analysis and Validation of QSAR Models 

Partial least squares (PLS) approach was used to derive the 3D QSAR models. The CoMFA and 

CoMSIA descriptors were used as independent variables and the pIC50 values were used as dependent 

variables. CoMFA and CoMSIA column filtering was set to 2.0 kcal/mol to improve the signal-to-noise 

ratio. The leave-one-out (LOO) cross-validation was carried out to obtain the optimal number of 

components (N) and the correlation coefficient q2. The obtained N was then used to derive the final 

QSAR model and to obtain the non-cross-validation correlation coefficient r2, standard error of 

estimate (SEE), and F-value. 

3.7. Y-Randomization Test of QSAR Models 

The model was further validated by applying the Y-randomization test. “Y-randomization” is also 

known as the “Y-scrambling test”. This technique ensures the robustness of a QSAR model [21]. The 

dependent variable vector (pIC50) is randomly shuffled and a new QSAR model is developed using the 

original independent variable matrix. The new QSAR models (after several repetitions) are expected to 

have lower r2 and q2 values than the true value of original models. This method is usually performed  

to eliminate the possibility of chance correlation. If higher values are obtained, an acceptable  

3D-QSAR model cannot be generated for a particular data set because of chance correlation and 

structural redundancy. 

3.8. Predictive Correlation Coefficient of QSAR Models 

To assess the predictive power of the derived 3D-models, a set of test compounds that had known 

biological activities was used to validate the obtained models. The predictive correlation r2
pred. value 

was calculated using:  

r2
pred. = (SD−PRESS)/SD (1)

wherein SD is the sum of the squared deviations between the biological activities of the test 

compounds and the mean activities of the training compounds, and PRESS is the sum of the squared 

deviations between the experimental and the predicted activities of the test compounds. 

4. Conclusions 

In this study, 3D-QSAR analyses, CoMFA and CoMSIA, have been applied to a set of recently 

synthesized 5H-pyrido[4,3-b]indol-4-carboxamide derivatives as JAK2 Inhibitors. The CoMFA and 

CoMSIA models showed statistically significant results in terms of cross-validated coefficients and 
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conventional coefficients. Their predictive capabilities were verified by the test compounds.  

The derived CoMFA and CoMSIA models showed predictive cross-validated coefficients of 0.976 and 

0.929, respectively, and the activities of the training and test compounds were predicted with good 

accuracy. Based on the obtained structure-activity relationships, a series of new inhibitors were 

designed to have excellent activities, which were predicted with the developed CoMFA and 

CoMSIA models. Thus, these models may be expected to serve as a tool to guide the future rational 

design of 5H-pyrido[4,3-b]indol-4-carboxamide-based novel JAK2 Inhibitors with potent activities. 
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