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Abstract: Claudins are a family of tight junction proteins regulating paracellular 

permeability and cell polarity with different patterns of expression in benign and malignant 

human tissues. There are approximately 27 members of the claudin family identified to 

date with varying cell and tissue-specific expression. Claudins-3, -4 and -7 represent the 

most highly differentially expressed claudins in ovarian cancer. While their exact role in 

ovarian tumors is still being elucidated, these proteins are thought to be critical for ovarian 

cancer cell invasion/dissemination and resistance to chemotherapy. Claudin-3 and  

claudin-4 are the natural receptors for the Clostridium perfringens enterotoxin (CPE), a 

potent cytolytic toxin. These surface proteins may therefore represent attractive targets for 

the detection and treatment of chemotherapy-resistant ovarian cancer and other aggressive 

solid tumors overexpressing claudin-3 and -4 using CPE-based theranostic agents. 

Keywords: tight junction; claudin; clostridium perfringens enterotoxin; ovarian cancer; 

immuno-therapy 

 

1. Introduction 

Claudins are a family of tight junctional proteins which are highly expressed in both benign and 

malignant ovarian tumors [1]. Normal epithelial cells are held together by tight junctions (TJs), 

adherens junctions (AJs), and gap junctions. TJs are the apical cell-cell adhesions that are important for 
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epithelial cell polarity and regulate paracellular permeability by blocking the free diffusion of proteins 

and lipids between the apical and baso-lateral domains of the plasma membrane [2,3]. TJs are 

comprised of multiple membrane proteins such as occludin and claudin family proteins and several 

other associated peripheral proteins such as zonula occludens 1-3 (ZO-1, -2 and -3) [3,4]. These 

proteins are seen at the cell membrane interface where they contribute to the formation of the TJ and 

interact to form the diffusion barrier. Epithelial TJs are considered to be dynamic structures and the 

correlation of epithelial breakdown or dysfunction with the promotion of the neoplastic process has 

been suggested by previous studies [5]. 

Claudins have been shown to be essential and sufficient to form TJ strands and account for some of 

the selective variability of different barriers [6,7]. There is evidence that disruption of the cell to cell 

adhesion is a critical step in the process of cellular transformation and tumor cell metastasis [8]. The 

role of the claudins in this process is continuously being explored with new discoveries still occurring. 

Apart from contributing to mechanical cell adhesion at epithelial and endothelial cell interfaces, 

claudins also have the capacity to recruit cell signaling proteins and as such may regulate cell 

proliferation, differentiation and subsequent neoplastic transformation [9,10]. 

There are 27 different types of claudins identified to date with varying cell- and tissue-specific 

expression [11]. The expressions of claudins may also vary in different parts of the same organ. Most 

tissues express multiple claudins. The different claudin members may interact within a given tissue and 

this combination of the claudin proteins is thought to determine the strength and selectivity of the TJs. 

As they are cell surface proteins, most claudin positive tumor cells will show strong cell membrane 

staining with weak if any cytoplasmic reactivity noted in these cells. Of interest, the deregulation of 

the mitogen-activated protein kinase pathway can lead to the mis-localization of TJ proteins, including 

the claudins [12]. The delocalization of claudin proteins from cell membranes is common among 

transformed cells and in ovarian cancer this is associated with tumor cell migration and invasion [10,13]. 

Normal ovarian surface epithelial cells do not express either claudin-3 or claudin-4, however these 

claudins are both expressed at high levels in the majority of ovarian cancers [14–26]. 

Claudin-3 and -4 function as receptors for Clostridium perfringens enterotoxin (CPE), a potent 

cytolytic toxin. The use of this enterotoxin may be therefore exploited for therapeutic and diagnostic 

benefit for claudin-3 and -4 expressing tumors. Claudin expression has been identified in other 

gynecologic tumors as well, including cervical (preneoplastic and neoplastic lesions) and endometrial 

adenocarcinomas [27]. Some claudins also have been shown to have a prognostic role in particular 

tumor types, for example, claudin-3/-4 has a prognostic role in ovarian cancer, claudin-1 in colon 

cancer, claudin-10 in hepatocellular carcinoma and claudin-18 in gastric cancer [28–31]. 

2. Structure and Function of Claudins 

Claudins are known as tetraspan membrane proteins consisting of intracellular amino and carboxy 

terminals, 4 transmembrane domains and 2 extra-cellular loops mediating interactions between 

claudins on adjacent cells [2,32,33] (Figure 1). The amino acid sequences of the first and fourth 

transmembrane domains are highly conserved among the different claudin isoforms, however the 

sequences of the second and third domains are typically more diverse [34]. The second extracellular 

loop acts a binding site for Clostridium perfringens enterotoxin (CPE) in claudin-3 and -4 [35]. 
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Claudin-3 and -4 consists of 220 and 209 amino acids respectively. Claudin-3 and -4 are considered to 

be the low and high affinity receptors for CPE respectively. Occludin, tricellulin and marvelD3 are 

other tetraspan transmembrane TJ proteins [4,36,37]. The scaffolding proteins like ZO-1, -2 and -3 and 

also signaling proteins are associated with TJs by binding of their PDZ-domains to respective binding 

sites at the carboxy terminus of claudins [38]. These membrane associated proteins govern the 

assembly and disassembly of TJ [32,39]. The carboxy terminus of most claudins contain potential 

serine and/or threonine phosphorylation sites [33]. The barrier function of claudins may be modulated 

through phosphorylation of the serine/threonine phosphorylation sites at the carboxy tail by various 

kinases such as cyclic AMP-dependent protein kinase and WNK4 [40]. The carboxyterminal tail is the 

region that shows the most sequence and size heterogeneity among the claudin proteins [34]. 

Figure 1. Representative structure of the claudin protein and the functional domains of 

Clostridium perfringens enterotoxin (CPE).  

 

Claudins form the backbone of the TJ and are overall a highly structurally-related family of proteins 

with claudin-16 and -23 being the most different and claudins-6 and -9 are the most similar followed 

closely by claudin -3 and -4 and claudin -1 and -7 [41]. Some claudin genes have been found to be 

closely linked in terms of their proximity in the human genome, (for example claudin-3 and -4) [34]. It 

is however uncertain whether this genome arrangement has a function in coordinate regulation of  

the TJ. Interestingly, claudin-3 and -4 have been documented to have coordinate expression in  

several normal and neoplastic tissues and the combination is commonly found elevated in a variety of 

cancers [10,41,42]. In general, the 27 claudin genes that have been identified are typically small and 
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have few introns or lack introns altogether. Claudin-3 and-4 have been localized at position 7q11, both 

of these genes have only one mRNA transcript form. Claudin-1 also has only one transcript form and 

the gene CLDN1 is located at position 3q28. CLDN5 can be found at position 22q11 and has two 

variants of mRNA that may be produced after transcription. CLDN10 has also two variants of RNA 

transcript but has a gene position of 13q31. The claudin proteins show a wide range of sequence 

similarity and the size of these proteins is approximately in the range of 205 to 305 amino acids [34]. 

The claudins can be functionally divided into barrier-forming claudins such as claudin-1,-3,-4,-5 

and pore forming claudins such as claudin-2,-7,-10 and -16 [38]. In a subtype dependent manner, the 

expression of barrier-forming claudins decreases paracellular permeability of ions, solutes and proteins 

while the expression of pore-forming claudins generally increases paracellular permeability to ions. As 

a result, the tissue specific expression of the different claudin isoforms will determine the permeability 

properties of the TJs in that tissue [43]. Most cells express multiple different claudin isoforms and 

these isoforms have the ability to co-polymerize into heteropolymers by homophilic and heterophilic 

interactions. The various types of claudin co-polymers then work together to regulate junctional 

permeability and to impart strength and selectivity to the TJ [16,44]. 

Based on the amino-acid sequence, the claudins may also be separated into two subgroups namely 

classic and non-classic claudins. Classic claudins are claudin-1 through -10, -14, -15, -17, -19 and 

share higher homology among each other compared to non-classic claudins (claudin-11, -12, -13, -16,  

-18, -20 through -24) [38]. Classic claudins are also more likely to share a common helix-turn-helix 

structure of the extracellular loop 2 which is involved in paracellular tightening [45,46]. 

While there still remains much to be uncovered about the claudin structure multiple studies have 

shown that abnormalities in claudins may result in the disruption of TJ barrier function as well as alter 

paracellular permeability. These structural abnormalities are known to be associated with a number of 

pathologic processes such as pulmonary edema, diarrhea, inflammatory bowel disease and kidney 

disorders [47–50]. Additionally, germline mutations in these genes can lead to familial diseases such 

as the autosomal recessive form of non-syndromic sensorineural deafness which results from a defect 

in the claudin-14 gene [51]. As such, it is apparent that proper cell to cell and cell to extracellular 

matrix interactions are essential for continued normal tissue and organ functioning. Similarly, the 

proteins constituting TJs, such as the claudins, are quite likely to have a central role in tumorigenesis 

and also in tumor spread. 

Claudins are found in cell adhesions and are thought to facilitate the communication of the 

extracellular environment to both intracellular signaling pathways and to the cytoskeleton. Tight 

junction disruption in premalignant tissues can increase the likelihood of progression to a frankly 

invasive tumor due to passage of large solutes across epithelial barriers allowing growth factors 

(usually in luminal fluids in epithelial tissues) to now bind to their growth factor receptors (usually on 

the baso-lateral surface facing interstitial fluid and the bloodstream) and this interaction may lead to 

continuous stimulation of premalignant cells [13]. Claudin expression may also affect the epithelial 

permeability to substances such as growth factors and also modulate the response of other tight 

junction proteins to various types of injury [52].  

The pattern of expression of claudins in normal tissue, benign and malignant tumors is not only 

complex but also organ dependent [10,41,53]. Large scale serial analysis of the genome and gene 

expression arrays have documented higher expression of claudin-3, -4, -7 and -10 in ovarian carcinoma 
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compared to normal ovarian surface epithelium [15,16,18,43,54]. These findings have been validated 

using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry 

(IHC). Generally, studies comparing the expression of claudins in benign or borderline ovarian tumors 

versus ovarian carcinoma have not been entirely conclusive [1,14,16,55,56]. However, most of the 

prevailing literature provides evidence that claudin-3 and -4 are highly differentially expressed in ovarian 

cancer and also correlate with chemo-resistance and poorer survival albeit some differing results have 

been reported depending on cell lines studied.  

Claudin-1, -3, -4, -5 and -7 are the claudins most commonly overexpressed in ovarian tumors 

(Table 1). Overall, in reviewing several studies, it is evident that claudin expression is altered in a 

variety of tumors with the most commonly identified claudins to have an altered expression being 

claudin-1, -3, -4, -5, -7, -10 and -16 [10]. This phenomenon is likely due to the role of claudins in 

tumor survival and invasion, as it is not unusual for some carcinomatous tissue to lose their TJ proteins 

as they grow and develop [10,57–59], for example, claudin-1 and -7 are typically downregulated in 

hepatocellular carcinomas [5,60].  

Table 1. Claudin-1, -3, -4, -5 and -7 expression and function in normal tissues. 

Claudin Function Tissue specificity Involvement in disease 

Claudin-1 

TJ-specific obliteration of the intercellular 

space through Ca2+-independent  

cell-adhesion activity. Acts as a co-receptor 

for HCV entry into hepatic cells 

Strongly expressed in liver and 

kidney. Also expressed in heart, 

brain, spleen, lung and testis 

Ichthyosis [61] 

Claudin-3 

TJ-specific obliteration of the intercellular 

space through Ca2+-independent  

cell-adhesion activity  

(CPE is the natural ligand) 

Strongly expressed in ovary, 

lung, pancreas, salivary gland, 

kidney, adrenal, small intestine, 

colon and thyroid 

Williams-Beuren 

syndrome [62] 

Claudin-4 
TJ-specific obliteration of the intercellular 

space (CPE is the natural ligand) 

Strongly expressed in ovary, 

lung, pancreas, salivary gland, 

kidney, adrenal, small intestine, 

colon and thyroid 

Williams-Beuren 

syndrome [62] 

Claudin-5 Target molecule of hypoxia 

Strongly expressed in vascular 

endothelial cells. Transiently 

expressed during development 

of RPE. Expressed in lung 

Velocardiofacial 

syndrome [63] 

Claudin-7 

TJ-specific obliteration of the intercellular 

space. Co-localizes with EPCAM at the 

lateral cell membrane and TJ 

Strongly expressed in kidney, 

GI tract, thyroid, adrenal gland 

and lung. Also expressed in 

prostate tissue 

Related to ability of  

breast cancer cells to 

disseminate. 

Downregulation correlates 

with histological  

grade [57] 

TJ-tight junction, HCV- hepatitis C virus, CPE- Clostridium perfringens enterotoxin, RPE- retinal 

pigment epithelium, EPCAM- epithelial cell adhesion molecule. 

Claudin function is regulated at many sites including at the level of the tight junction as a result of 

crosstalk between tight junction components [64]. In addition several claudins are known to be 
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phosphorylated by kinases which may affect both claudin position and function. Another potential 

mechanism of regulation of claudin expression is endocytic recycling of claudin proteins [65]. At the 

transcriptional level, there is evidence that transcription factors such as GATA-4 and Snail are able to 

bind to the promoter regions of several claudin genes and affect their expression [66,67]. The claudins 

may also be downregulated not only at the point of transcription but also post-transcriptionally via a 

variety of cytokines and growth factors [64,68].  

Epidermal growth factor (EGFR) signaling has been demonstrated to modulate the expression of the 

claudins in various cell types [48,69,70]. Recently this mechanism of the TJ protein regulation in 

ovarian cancers was explored by treating both ovarian mucinous and serous cystadenocarcinoma cell 

lines with EGF [71]. EGF was found to downregulate claudin-3 in mucinous ovarian carcinoma cell 

lines and claudin-4 in ovarian serous cystadenocarcinoma by inducing the degradation of these 

proteins with also changes in the structure and function of TJ via the MEK/ERK or PI3K/AKT 

signaling pathway. The pretreatment with EGFR inhibitors, MEK/ERK inhibitors and PI3K/AKT 

inhibitors in the ovarian mucinous cystadenocarcinoma cell lines prevented the decrease of claudin-3 

by EGF. On the other hand, for serous ovarian carcinoma cell lines, pretreatment with inhibitors of 

EGFR, MEK/ERK but not PI3K/AKT prevented the decrease in claudin-4 by EGF. This suggests 

alternative mechanisms for claudin regulation by EGF among the different ovarian carcinoma subtypes 

in vitro. These results provide evidence that EGF may affect claudin and TJ function in ovarian cancer 

cells during cancer development. Additionally, in ovarian serous cystadenocarcinoma cell lines, EGF 

was found to downregulate the cytotoxic effects of CPE via claudin-4. As a result, it is also theorized 

that EGF may affect effective claudin-4 targeting therapy with CPE in serous cystadenocarcinoma [71]. 

3. Claudins in Ovarian Cancer 

3.1. Claudin-1 and Claudin-2 

Claudin-1 expression has been studied and demonstrated in ovarian serous carcinoma and ovarian 

endometrioid carcinoma [72]. Claudin-1, like claudin-3 and -4, is an epithelial specific claudin protein. 

The expression of claudin-1 is elevated in many types of cancer cells and is proposed to be potentially 

causally involved in tumor growth and progression. Claudin-1 has been shown to have anti-apoptotic 

activity and is thought to play a role in the expression and localization of β-catenin and E-cadherin. As 

such claudin-1 plays a role in the epithelial to mesenchymal transition and the c-abl-Ras-Raf-1-ERK1/2 

signaling axis is important in claudin-1 induced malignant progression [73,74]. 

Claudin-1 has been identified as one of the genes notably upregulated in ovarian cancer-initiating 

cells and claudin-1 overexpression in these cells leads to a low degree of cell differentiation and a high 

rate of invasive growth [75]. It has been discovered that microRNA-155 (miR-155) targets claudin-1 

with specificity and the increased expression of endogenous mature miR-155 may have an inhibitory 

effect on human ovarian cancer-initiating cell proliferation and invasion in vitro and in vivo through its 

effect on limiting claudin-1 expression. Claudin-2 has not been noted as a tight junction protein with high 

expression in ovarian cancer. Data regarding the expression and function of claudin-2 mainly centers 

around hepatocellular, breast and gastrointestinal carcinomas as well as Paget’s disease [27,76,77]. 
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3.2. Claudin-3 and Claudin-4 

Epithelial ovarian carcinoma remains the gynecologic malignancy with the highest mortality  

rate [78]. Two-thirds of patients have advanced disease at the time of diagnosis and unfortunately the 

majority of patients will recur after an initial response to the combination of maximal cytoreductive 

surgery and combined platinum and paclitaxel-based chemotherapy [79,80]. Thus the identification  

of novel therapeutic approaches against chemotherapy resistant/recurrent ovarian cancer remains a 

high priority.  

Ovarian cancers of varying subtypes including mucinous, serous, undifferentiated, clear cell, and 

endometrioid carcinomas have been found to highly express claudin-3 and claudin-4 but normal 

ovarian surface epithelium does not [14,59,81–83] (Table 2). This data suggests that the low-level 

expression of these claudins is associated with a benign condition and that high expression is more 

likely to be a signal of a malignant transformation. Consistent with this view the expression of  

claudin-3 and -4 in ovarian epithelial cells is thought to enhance neoplastic cell invasion and has been 

found to be associated with increased matrix metalloproteinase-2-activity and angiogenic effects [82]. 

Some research has also suggested that up-regulation of claudin-3 may be an early event in the 

development of epithelial ovarian cancer and have potential application in detection of early stage 

disease [56]. 

Table 2. Claudin expression in gynecologic cancer.  

Tumor type Claudin gene Expression compared to normal tissues References 

Ovarian CLDN3 High [16,18,54,56] 
 CLDN4 High [16,18,43] 
 CLDN7 High [18,84–86] 
 CLDN16 High [17] 

Endometrial CLDN2 High [87] 
 CLDN3 High [87–89] 
 CLDN4 High [53,88] 

Cervical CLDN1 High [90,91] 
 CLDN2 High [91] 
 CLDN4 High [91,92] 
 CLDN7 High [90,92] 

Using gene expression profiling, the differential patterns of expression between ovarian tumors and 

normal ovarian cells has been explored. Several groups including our own have recently used high 

throughput gene array technologies to compare the expression profiles of ovarian cancer to those of 

normal ovaries with the aim of identifying potential diagnostic and therapeutic markers for this 

aggressive malignancy. Claudin-3 and -4 genes have been reported to be highly differentially 

expressed in biologically aggressive malignancies including ovarian serous carcinoma (OSC) and the 

identification of claudin protein expression has proven to be of clinical relevance in this tumor and a 

variety of others [10,53]. The mechanism of the increased claudin-3 and-4 expression in ovarian 

carcinoma is thought to be the result of epigenetic modifications of the claudin promoter regions in the 

cancer cells resulting in increased cell survival, invasion and motility [59,93,94].  
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Our research group also examined the genetic fingerprints of ovarian serous cancer in flash-frozen 

tumor biopsies as well as primary and/or established ovarian cancer cell lines and compared the gene 

expression signature with that of normal cells including ovarian surface epithelium exposed to short-term 

culture or immortalized normal ovarian cell lines (HOSE). The gene expression in flash-frozen OSC 

was found to have a high correlation with those of purified primary ovarian serous carcinoma in  

short-term in vitro cultures. Claudin-3 and -4 were found among the most highly overexpressed genes 

in OSC compared to HOSE [15].  

As the comprehensive study of the molecular signature of ovarian cancer has identified claudin-3 

and -4 as top differentially expressed genes, next to be investigated was the gene expression profile in 

chemotherapy-naïve versus chemotherapy-resistant ovarian cancer. Chemotherapy-resistant ovarian 

cancer was found to express the claudin-3 and -4 genes at significantly higher levels when compared 

with chemotherapy-naïve ovarian tumors [95,96]. These ovarian cancer cell lines continued to display 

considerable sensitivity to CPE in vitro and in vivo regardless of their documented resistance to 

multiple chemotherapeutic agents [97].  

There is also great interest in the mechanisms and markers of platinum-resistance secondary to the 

importance of this drug as first-line treatment of ovarian cancer whether in the neoadjuvant or adjuvant 

setting. However limited information is currently available about the exact mechanisms of cisplatin 

resistance in ovarian cancer including whether or not claudin-3 or -4 may play roles as influx or efflux 

transporters of cisplatin. It is postulated that claudin-3 or -4 overexpression may inhibit the penetration 

of chemotherapeutic agents into ovarian cancer tissue and as a result generate chemo-resistance [98]. 

Quantitative proteomic technology integrated with mRNA expression levels has been recently utilized 

in an effort to identify protein markers capable of prospectively determining chemo-resistant ovarian 

tumors [96]. In this study a total of 1117 proteins were identified and quantified in cisplatin-sensitive 

and -resistant ovarian cancer cells. The relative expression of 121 of these proteins varied between the 

cell lines with 58 of them found to be overexpressed in cisplatin-resistant cells. Claudin-4 was 

identified as one of the top proteins associated with cisplatin resistance in ovarian cells with a 7.2 fold 

overexpression level.  

A Japanese research group reported similar results showing that claudin-4 expression was higher in 

ovarian cancer tissue from platinum-based chemo-resistant patients versus chemo-sensitive patients. In 

this study suppression of claudin-4 resulted in a significant increase of cisplatin sensitivity and cellular 

accumulation of fluorescence-labeled cisplatin. Claudin-4 expression was significantly greater in 

ovarian cancer tissue from chemo-resistant patients compared to chemo-sensitive patients. Thirty-three 

out of the 43 cases (76.7%) of patients with ovarian cancer examined had positive claudin-4 expression 

with a significant shorter survival noted in the claudin-4 positive versus claudin-4 negative group [98].  

In contrast, a recent study by Shang et al. using two established cell lines provided some support to 

the notion that claudins-3 and -4 may serve to constrain the growth of human ovarian cancer xenograft 

and limit metastatic potential [42]. In this study knockdown of claudin-3 and -4 increased the in vivo 

growth rate and metastatic potential of the xenografted tumors and reduced expression of these claudin 

proteins enhanced cell migration and invasion in in vitro assays [42]. In the Shang et al. study, the loss 

of either claudin-3 or -4 resulted in the down-regulation of E-cadherin mRNA and protein as well as 

activation of β-catenin pathway signaling and as such claudin-3 and -4 may mediate interactions with 

other cells in vivo that result in reduced growth and metastatic potential through the maintenance of  
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E-cadherin expression and by limiting β-catenin signaling [42]. E-cadherin is the major structural 

protein of the adherens junctions and loss of E-cadherin is declared as a hallmark of the  

epithelial-to-mesenchymal transition through which it is speculated that cells must pass before 

becoming metastatic [99,100]. It is known that E-cadherin acts as a negative regulator of the β-catenin 

signaling pathway, which is a pathway that guides cell destiny through the regulation of cell growth, 

motility and survival [42,101]. As such, down-regulation of E-cadherin as well as activation of  

β-catenin pathway signaling could account for the increased metastatic potential of the ovarian cancer 

cell lines studied. Of interest, low-level expression of claudin-3 and claudin-4 in other human solid 

tumors has also been linked to a mesenchymal pattern and, as such, correlates to an overall poor 

survival in breast, esophageal, colon and pancreatic carcinoma [102–105]. 

Importantly, the Shang et al. study also lends support to the body of evidence indicating that most 

ovarian cancers arise from the distal fallopian tube epithelium even though these cancers are largely 

accepted to arise from multiple locations including ovarian surface epithelium [106–108]. In this study, 

immunohistochemical analysis was performed for claudin-3 and -4 expression in both the distal 

fallopian tube and tumor in six cases of serous ovarian cancer. All six cases had high claudin-3 and -4 

expression in both sites. As the majority of ovarian cancers show a high expression of these claudins, it 

has been postulated that ovarian cancer develops from an epithelium which at its baseline or 

preneoplastic state normally expresses these two proteins. This same group has recently demonstrated 

in a single cell line that knockdown of claudin-3 and -4 resulted in marked changes in the phenotype of 

ovarian cells including an increased resistance to cisplatin by regulating the expression of the copper 

influx transporter CTR1 [109]. 

Taken together the results of these latter studies are consistent with the conclusion that the effect of 

claudin-3/-4 knockdown on cisplatin resistance may be the consequence of promoting an epithelial to 

mesenchymal transition after the downregulation of the claudin proteins. This interpretation is 

supported by previous studies in gynecologic carcinosarcoma showing that high expression of  

claudin-3/-4 is present in the epithelial but not in the sarcomatous component of multiple 

carcinosarcomas studied by immunohistochemistry [89]. 

The differences in claudin-3/-4 expression by ovarian cancer subtype and the correlation with 

outcome in ovarian cancer patients has also been researched by several groups [1,14,55,110]. In one 

study, low claudin-3 protein expression was associated with a trend towards a poor survival in 115 

primary ovarian carcinomas with 68.6% being of serous histology [56]. 

One large study found that claudin-4 was expressed in nearly 70% of the ovarian cancer tissues 

examined and was differentially expressed across ovarian cancer subtypes, with the lowest expression 

noted in clear cell ovarian carcinomas. The highest percentage of expression was detected in 

endometrioid and mucinous subtypes (both 77.4% positive) compared to serous (72.17%) and clear 

cell (57.58%) subtypes. Also no association was found between claudin-4 expression and  

disease-specific survival in any subtype [81]. In yet another study, claudin-3 and -4 were significantly  

up-regulated by 5-fold or more in most subtypes of ovarian epithelial carcinoma. By 

immunohistochemistry (IHC) claudin-3 was expressed in 81% and claudin-4 expressed in 85.7% of 84 

serous adenocarcinomas respectively. Borderline serous tumors and adenomas had significantly lower 

expression of these proteins than the adenocarcinomas. The survival analysis in this study revealed that 

serous adenocarcinoma patients with high claudin-3 expression had a substantially shorter survival and 
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multivariate analysis showed claudin-3 overexpression to be an independent negative prognostic  

factor [111]. Consistent with these results claudin-3 gene silencing with small interfering RNA has 

been shown in mouse models to suppress ovarian tumor growth and metastasis [112]. 

In contrast to these results Litkouhi et al. found the highest percentage of claudin-4 expression in 

clear cell and endometrioid subtypes of ovarian cancer however this study had a much smaller sample 

size which may at least partially explain the differing results. Also in this study, there was no 

statistically significant difference in survival found between the claudin-4 positive and claudin-4 

negative groups [110].  

Support for the role of claudins in promoting tumor progression has also come from studies 

evaluating the anatomic-site related expression and the prognostic role of claudins in ovarian cancer. In 

one particular study, the data of immuno-stains for claudin-1, -3, -4 and -7 on pleural effusions, 

corresponding primary tumors and solid metastasis of ovarian cancer were all gathered in order to 

identify associations between anatomic site, clinic-pathologic parameters and survival. It was found 

that all 4 claudins were expressed in >85% of tumors at all anatomic sites [1]. Moreover, with the 

exception of claudin-4, all the other claudins were upregulated in ovarian cancer effusions compared 

with solid tumors and that the expression of claudins-3 and -7 in pleural effusions independently 

predicts poor survival in ovarian cancer [28]. 

Facchetti et al. investigated the usefulness of claudin-4 in the diagnosis of mesothelioma and other 

malignancies that may mimic mesothelioma. In this study, analysis was performed on 454 tumors, 

including 82 mesotheliomas, 336 carcinomas of different origins, 36 non-epithelial spindle cell 

neoplasms as well as 97 cytological samples from a combination of reactive effusions, mesothelioma 

and metastatic carcinomas. Claudin-4 was consistently negative in normal and reactive mesothelium as 

well as in all 82 mesotheliomas but strong reactivity (using anti-claudin-4 primary antibody) was 

found in the significant majority of serosal metastasis from primary carcinomas particularly lung, 

breast, gastrointestinal tract, pancreas, ovary and primary peritoneal carcinoma. In effusions, 

metastatic tumor cells stained positive in 96.8% of cases. Facchetti’s study therefore suggested that 

claudin-4 may be a pan-carcinoma marker with high sensitivity and specificity and that this claudin 

protein may be considered a primary immunohistochemical marker to rule out the diagnosis of 

mesothelioma in patients with pleural and peritoneal biopsies and effusions [113].  

3.3. Claudin-5 

Claudin-5 is mainly present in vascular endothelial cells but is also seen in ovarian epithelial tumors 

but at a much lower frequency than claudins-1, -4 and -7 [1]. In a study of 60 different types of ovarian 

lesions, sex-cord stromal tumors and cysts were mainly negative for claudins-1, -4, -5, and -7. In 

immature teratomas, mostly the epithelial component was usually positive and the other components 

were negative. Dysgerminomas did not express any of the claudins-1, -4, -5, and -7. The authors 

findings in this study were that claudins-1, -4, and -7 were mainly expressed in epithelial ovarian 

tumors [14].  

The role of claudin-5 and vascular endothelial growth factor (VEGF) in the development of 

malignant ascites was explored recently. Claudin-5 has been shown in an in vitro corpus luteum model 

to be important for the regulation of vascular permeability [114]. VEGF is produced by malignant cells 
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including ovarian cancer cells and induces angiogenesis to promote tumor growth and survival. VEGF 

has also has been shown to enhance vascular permeability and influence endothelial TJs [115–117]. Up 

to 24-fold higher VEGF levels may be induced in malignant tumors compared to benign ovarian  

cysts [118]. These high VEGF levels are theorized to increase local permeability and result in fluid 

extravasation (third spacing) and thus ascites formation. The role of VEGF-dependent production of 

claudin-5 as a regulator of vascular permeability in ovarian cancer patients was thus investigated by 

studying the amount claudin-5 in peritoneal tissue as well as VEGF in serum and ascites. The 

researchers also established a co-culture system of both ovarian cancer cells and endothelial cells to 

examine whether a functional association exists between claudin-5 and increased peritoneal permeability. 

The results showed that the serum and ascites of preoperative ovarian cancer patients had increased 

levels of VEGF and that there was a VEGF-dependent decrease of claudin-5 in endothelial cells  

co-cultured with ovarian cancer cells. The ovarian cancer patients had a lower amount of claudin-5 

detected in the peritoneal vessels compared to healthy controls. The results suggest that one 

mechanism by which VEGF may induce ascites formation in ovarian cancer patients is by increasing 

peritoneal permeability secondary to the downregulation of the TJ protein claudin-5 in the peritoneal 

endothelium [119].  

Interest in the expression of claudin-5 and its correlation with ovarian cancer behavior also arose. 

This was investigated in a Finnish study of 85 serous ovarian cancer tissue samples. There was an 

association between claudin-5 expression and cancer grade and stage. The highest claudin-5 expression 

was seen in patients with high grade and advanced staged disease. Cancer-specific and overall  

survival was also associated with claudin-5 expression. Only 25%–30% of claudin-5 positive patients 

were alive at 5 years follow-up compared to 60% of claudin-5 negative patients. This study therefore 

suggests that increased claudin-5 expression is associated with aggressive behavior in serous ovarian 

adenocarcinoma [120]. 

3.4. Claudin-6 

Unlike claudin-3 and -4, which are expressed in multiple epithelial tissues, the expression of 

claudin-6 is more restricted and believed to be predominately found in embryonic tissues and in 

undifferentiated pluripotent stem cells [41,121]. In this regard, previous studies have reported that 

claudin-6 has an important role in the development of the mouse embryonic epithelium and 

endodermal tissues [122,123]. However, claudin-6 expression has been reported in multiple human 

cancers such as rhabdoid tumors, breast cancers and gastric cancers [124–126]. Importantly, our group 

has recently found that claudin-6 can be expressed in ovarian cancer and may represent a novel 

functional receptor for CPE [127]. Consistent with this view, UCI-101, an ovarian cancer cell line 

highly sensitive to CPE, does not express claudin-3/4 and knockdown of claudin-6 in these cells 

decreases CPE sensitivity. Moreover, different ovarian cell lines that are resistant to the effects of CPE 

can be made sensitive through claudin-6 overexpression. Finally, binding assays show that CPE can 

indeed bind claudin-6 in cells and that this binding is associated with CPE cytotoxicity. These results 

establish claudin-6 as a novel receptor for CPE and introduce the possibility of a novel therapeutic 

target for ovarian and other cancers that express claudin-6. 
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3.5. Claudin-7 

Previous studies have shown that claudin-7 is up-regulated in endometriosis associated 

endometrioid ovarian cancer [84] and also frequently upregulated in other epithelial ovarian cancers 

along with claudins-3 and -4 [18,85,128]. High claudin-7 expression has been associated with a  

poor response to platinum-based chemotherapy in epithelial ovarian cancer [129]. However,  

claudin-7 is downregulated in several other cancers including head and neck, esophageal and prostate 

cancer [130–132]. In breast cancer, claudin-7 expression was not only found to be decreased but also 

to be inversely correlated with tumor grade and metastatic disease [57,133]. The exact reason for the 

differing pattern of expression in various cancers is largely unknown but is likely related to the specific 

role of this claudin in these malignancies. Dahiya et al. evaluated claudin-7 expression levels in 95 

ovarian tissue samples and cell lines using western blotting, qRT-PCR analysis and IHC. The gene for 

claudin-7 was found to be upregulated in all tumor samples studied and small-interfering RNA-mediated 

knockdown of claudin-7 in ovarian cancer cells led to significant changes in the expression of other 

genes as determined by microarrays. Analyses of the genes differentially expressed revealed that the 

genes altered in response to claudin-7 knockdown were associated with pathways implicated in various 

molecular and cellular functions including cell cycle growth and proliferation, cell death and 

development. Claudin-7 expression was associated with a net increase in invasion but also a decrease 

in cellular migration. Claudin-7 was found to be universal upregulated in the most common epithelial 

ovarian cancer subtypes (serous, clear-cell, endometrioid and mucinous) at both the mRNA and protein 

levels. With the use of immunobloting and qRT-PCR, the authors demonstrated that mRNA levels and 

protein levels were not always correlated, suggesting post-translational regulation of claudin-7 in 

epithelial ovarian cancer. Overall this work shows that claudin-7 is significantly upregulated in 

epithelial ovarian cancer and may be functionally involved in ovarian carcinoma invasion, as such 

claudin-7 may also represent a potential marker for ovarian cancer detection and also a target for 

therapy [86]. 

The prognostic significance of claudin-7 overexpression in epithelial ovarian cancer patients 

including sensitivity to platinum-based chemotherapy was investigated in another study. In this study 

claudin-7 was found to be expressed in 69/71 (97.1%) epithelial ovarian cancers but not in normal 

ovaries (p < 0.001) and high claudin-7 expression in primary tumors correlated with shorter 

progression-free survival (PFS) of patients and poor sensitivity to platinum based chemotherapy. As 

such claudin-7 expression may also represent an independent prognostic factor for PFS and be 

important in regulating epithelial ovarian cancer response to platinum-based chemotherapy [129]. 

4. Claudin-3 and -4 are Potential Targets for CPE-Based Theranostics  

The identification of tumor origin, the prediction of chemotherapy response and the determination 

of prognosis is not without merit but of even greater importance is the potential for the use of  

claudin-isoform specific targeting agents in malignancies with increased claudin protein expression. 

Clostridium Perfringens enterotoxin (CPE) has already been demonstrated to induce necrosis in 

xenograft models of claudin-4 expressing tumors [50,52,97]. There is however concern that the 

expression of claudin-4 on normal epithelia will limit the usefulness of this anti-tumor strategy. As 
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ovarian carcinoma is largely a disease of the peritoneal cavity, the utilization of intra-peritoneal (i.p) 

treatment with full length CPE holds promise for this claudin-4 expressing tumor. Further strategies  

in vivo to limit CPE toxicity to normal tissues also expressing these proteins may include local delivery 

of the blocking CPE peptide fragment to gut and lung via enteral and inhalation routes respectively. 

As surface proteins highly expressed in chemotherapy-resistant ovarian cancer, the claudins 

represent attractive therapeutic targets. Claudins-3 and -4 have been shown to represent the natural 

receptors for CPE and as such to be the main family members of the trans-membrane tissue-specific 

claudin proteins capable of mediating CPE binding and cytolysis [134]. Several strategies involving 

the use of CPE as a novel therapeutic and possibly even diagnostic compound have been investigated 

with more work underway in this area. In fact, multiple research groups have reported using claudin-4 

as not only a therapeutic target for toxin delivery but also as a target for fluorescent molecules to assist 

with the localization of ovarian and breast cancer cells [98,135–138]. The binding of the CPE toxin to 

cells results in the formation of membrane pore complexes and rapid cell death. The clinical role of 

CPE-targeted therapy therefore holds promise in claudin-3 and -4 expressing malignancy and more  

so has potential for the treatment of chemotherapy resistant disease [57,134,139–141]. Supporting  

this view, the functional cytotoxicity of CPE in metastatic androgen-independent prostate cancer 

overexpressing claudin-3 has been reported previously [140].  

CPE is produced by the anaerobic gram-positive bacterium, Clostridium perfringens type A strain. 

This strain is known to cause food poisoning and is the second most commonly reported food-borne 

illness in the United States. CPE is a single polypeptide of 35 kDa composed of 319 amino acids [142]. 

The carboxy (C)-terminus of CPE allows for the binding, while the N-terminus of CPE is associated 

with cytotoxicity [128,143,144] (Figure 1). CPE triggers lysis of epithelial cells through interaction 

with the claudin-3 and claudin-4 receptors with resultant collapse of the cellular colloid-osmotic 

equilibrium and initiation of massive permeability changes leading to osmotic cell ballooning and  

lysis [134,142]. Not surprisingly, mammalian cells that do not express either claudin-3 or claudin-4 fail 

to bind CPE and are not susceptible to CPE cytotoxicity [143,145].  

Although CPE is a recognized as a potential therapeutic agent, several new and promising agents 

cannot be utilized clinically due to undesirable pharmacokinetics and/or systemic toxicity. For a drug 

to be effective it must be able to cross the necessary tissue barriers in order to reach to its target 

without significant effect on normal tissues. As most TJ modulators previously were rendered less 

effective as a result of general low tissue specificity and side effects such as cell exfoliation due to 

epithelial cell barrier dysfunction, the C-terminal region of CPE emerged as a promising tool to 

modulate TJs in a tissue-specific and direct manner [146,147]. The side effects are expected to be less 

due to a more specific modulation of an important component of the TJ [147] and the activity is 

restricted to tissues that express the CPE- sensitive claudin-3 and -4. The C-terminal fragment of CPE 

(C-CPE peptide) has been shown to act to increase drug absorption through mucosal surfaces in a 

reversible and concentration-dependent manner. The C-CPE is also able to sensitize epithelial ovarian 

cancer cells to the cytotoxic effects of Taxol and Carboplatin at relatively low doses in a claudin-4 

dependent manner. Also compared with single agent Taxol or Carboplatin, the addition of C-CPE to 

Taxol is able to significantly suppress large tumor burdens in animals via inhibiting tumor cell 

proliferation and accelerating apoptosis [148]. The C-terminal fragment of CPE (C-CPE) has also been 

shown to effectively target TNFα to ovarian cancer cells [138]. In ovarian cancer, pharmacologic 
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studies have shown a therapeutic advantage to i.p drug therapy and the combination of C-CPE and 

cytotoxic chemotherapy both i.p may result in enhanced therapeutic effect with reduced systemic 

toxicity. The fact that ovarian cancer remains confined to the peritoneal cavity for much of its natural 

history suggests that i.p administration of CPE may provide improved therapeutic responses compared 

to similar intra-venous doses for those patients with recurrent ovarian cancer [149]. 

As there is a continued need for innovative and effective strategies to treat recurrent/chemo-resistant 

ovarian cancer, our research group has provided in vivo models demonstrating that multiple i.p 

injections of sublethal doses of CPE every three days significantly inhibited tumor growth in 100% of 

mice harboring claudin-3 and -4 positive chemotherapy resistant ovarian tumor xenografts [97]. One of 

our most recent research endeavors in this area was to describe the in vitro and in vivo bio-activity of 

the C-terminal fragment of CPE as a potential carrier for tumor imaging agents as well as a means of 

intracellular drug delivery for claudin-3 and -4 positive ovarian neoplasms after i.p injection  

(Figure 2) [135]. In this study, claudin-3 and -4 expression was determined by qRT-PCR and flow 

cytometry in several primary ovarian carcinoma cell lines. Both claudin-3 and/or claudin-4 genes were 

found to be highly expressed in all primary ovarian carcinomas when compared to normal ovarian 

epithelial cells. The accuracy and specificity of the CPE peptide in vitro against primary  

chemo-resistant ovarian carcinoma cell lines was assessed with cell binding assays, while confocal 

microscopy and biodistribution assays were performed to evaluate the localization and uptake of  

FITC-conjugated CPE peptide in the established tumor tissue. Ultimately, this research demonstrated that 

using FITC-conjugated CPE peptide, there was specific in vitro and in vivo binding to multiple primary 

chemo-resistant ovarian carcinoma cell lines. The biodistribution studies in the mice revealed higher 

uptake of the peptide in tumor cells versus normal tissue. A time-dependent internalization of the 

FITC-conjugated CPE peptide was consistently seen by confocal microscopy in chemotherapy-resistant 

ovarian carcinoma cells. These findings suggest that CPE peptide is a good candidate as a lead peptide 

for tumor therapy or for the development of new diagnostic tracers with the possibility of demonstrating 

disease extent preoperatively or even intra-operatively using near-infrared fluorescent imaging [135]. 

Further work in the area of chemo-resistant ovarian cancer has demonstrated that CD44+ ovarian 

cancer stem cells represent a small proportion of cancer cells capable of sustaining tumor growth and 

chemo-resistance and these cancer stem cells highly express genes encoding claudin-4.  

Casagrande et al. showed that small interfering RNA -mediated knockdown of claudin-3/-4 expression 

in CD44+ cancer stem cells significantly protected cancer stem cells from CPE-induced cytotoxicity. 

Here again multiple sublethal doses of i.p CPE proved to be an effective strategy for the eradication of 

claudin-4 expressing chemo-resistant ovarian cancer stem cells in mice harboring these xenografts 

with a 100% reduction in tumor burden in 50% of treated mice; p < 0.0001 [95]. These studies and 

others lend support to the efficacy of using recombinant CPE protein in a dose-dependent manner for 

treating claudin-3 and -4 tumor cells in vitro and in vivo [97,135]. In general, the in vivo application of 

recombinant CPE did not induce toxin-associated side effects, however repeated administration 

regionally or loco-regionally was required in order to attain a therapeutic effect [89,150,151]. As 

progress continues in the molecular understanding of the CPE-claudin interactions, this may 

potentially lead to the development of enhanced recombinant CPE proteins. 

Another novel approach of targeting claudin-3 and -4 expressing ovarian tumor cells is through 

gene therapy. Intra-tumoral gene transfer of CPE-expressing vectors can be employed for selective 
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suicide gene therapy of claudin-3 and -4 positive tumors and was found to effect a more rapid and 

effective tumor cell killing in vitro and in vivo [152]. Cytotoxicity of up to 100% was observed 72 h 

after gene transfer and was restricted to claudin-3 and -4 expressing tumor lines. Additionally the in vivo 

data from this study revealed significant inhibition of ovarian cancer xenograft growth in SCID mice [152].  

Figure 2. Schematic diagram showing several C-CPE based diagnostic and therapeutic 

approaches including tumor imaging and targeted drug delivery for claudin-3/-4  

expressing cells.  

 

5. Conclusions 

Claudin-3, -4 and -7 are highly expressed in ovarian cancer. While the understanding of the exact 

role of these proteins in ovarian as well as other human tumors remains poorly defined, substantial 

experimental evidence has demonstrated an important role for claudin-3 and -4 in ovarian cancer cell 

invasion and dissemination, resistance to chemotherapy and as target of CPE treatment. In multiple 

preclinical in vitro and in vivo models recombinant CPE has been shown to induce a dose-dependent 

eradication of claudin-3 and -4 tumor cells while the carboxy-terminal fragment of CPE (i.e., CPE290–319 

binding peptide) has demonstrated promise as a carrier for tumor imaging agents and intracellular 

delivery of therapeutic drugs [41,151]. The future design and implementation of phase 1 clinical trials 

in chemo-resistant and recurrent solid tumors will ultimately determine the feasibility and validity of 

these novel CPE-based theranostic approaches. 
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