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Abstract: It has been confirmed that alternatively activated macrophages (M2) participate 

in tissue remodeling and fibrosis occurrence, but the effect of M2 on peritoneal fibrosis 

related to peritoneal dialysis (PD) hasn’t been elucidated. This study was therefore 

conducted to assess the association between M2 and peritoneal fibrosis related to PD.  

In this study, peritoneal fibrosis was induced by intraperitoneal (i.p.) injection of  

Lactate-4.25% dialysate (100 mL/kg) to C57BL/6J mice for 28 days, and  

liposome-encapsulated clodronate (LC, the specific scavenger of macrophages) was used 

to treat the peritoneal fibrosis mice model by i.p. injection at day 18 and day 21. All 

animals were sacrificed at day 29. Parietal peritonea were stained with Masson’s trichrome, 

and the expression of type I collagen (Col-I), fibronectin, mannose receptor (CD206), 

transforming growth factor beta (TGF-β), chemokine receptor 7 (CCR7), chitinase 3-like 3 

(Ym-1) and arginase-1 (Arg-1) was determined by Western blotting, immunofluorescence 

and quantitative real-time PCR. Our results revealed that peritoneal thickness, Col-I, 

OPEN ACCESS



Int. J. Mol. Sci. 2013, 14 10370 

 

 

fibronectin, CD206, TGF-β, Ym-1 and Arg-1 were upregulated in the peritoneal fibrosis 

mice model, and all of these indexes were downregulated in those treated with LC. 

Additionally, there was no difference in the level of CCR7 between the model and 

treatment group. Our study indicated that peritoneal M2 played an important role in the 

process of peritoneal fibrosis related to PD and might be a potential target for intervention 

therapy of peritoneal fibrosis. 

Keywords: peritoneal dialysis; peritoneal fibrosis related to PD; alternatively activated 

macrophages; liposome-encapsulated clodronate 

 

1. Introduction 

Since the invention of continuous ambulatory peritoneal dialysis (CAPD), peritoneal dialysis (PD) 

became universally used in end-stage renal disease (ESRD) patients [1,2].  

One of the most important problems is the maintenance of the peritoneal membrane in long-term  

PD [3]. It is well known that a healthy peritoneum is composed of a single layer of mesothelial cells 

(MC) resting upon a thin submesothelial compact collagenous zone comprising a few collagen 

deposition, fibroblasts, macrophages and vessels [2,4,5]. However, long-term PD leads to peritoneal 

fibrosis characterized by a higher density of blood vessels in the peritoneum, increased thickness of the 

submesothelial compact zone and vasculopathy, which is related to the loss of peritoneal function and, 

ultimately, results in treatment failure [6]. 

Macrophages are the most plastic immune cells distributed widely in organs and tissues, which 

polarize into distinct populations determined by the microenvironment [7,8]. It is generally accepted 

that classically activated macrophages (M1) are induced by lipopolysaccharide (LPS) and interferon-γ 

(IFN-γ), which perform a high expression of inducible nitric oxide synthase (iNOS) and chemokine 

receptor 7 (CCR7) and secrete lots of pro-inflammatory cytokines involved in tissue damage [7,9–11]. 

In reverse, exposure to Interleukin-4 (IL-4) and Interleukin-13 (IL-13) stimulates alternative activation 

of macrophages (M2) characterized by upregulation of the mannose receptor (CD206), transforming 

the growth factor beta (TGF-β), chitinase 3-like 3 (Ym-1) and activity of arginase-1 (Arg-1), which are 

considered to participate in tissue repair and fibrosis [8,12,13].  

Recently, several studies make a statement that M2 macrophages play an important role in different 

fibrotic diseases. In addition, the fibrosis can be mitigated along with the depletion or inhibition of  

M2 [14–19]. Nevertheless, as a major component of the abdominal cavity immune system, the 

relationship between peritoneal macrophages, especially M2, and peritoneal fibrosis remains uncertain. 

Therefore, we hypothesize that M2 may play an important role in the process of peritoneal fibrosis 

related to PD. Thus, the aim of this study is to investigate the accumulation of M2 macrophages in the 

peritoneal fibrosis mice model and the role of M2 macrophages in the process of peritoneal fibrosis 

related to PD. 



Int. J. Mol. Sci. 2013, 14 10371 

 

 

2. Results 

2.1. Alteration of Peritoneum in Peritoneal Fibrosis Mice 

Morphologic changes were assessed in tissue sections of the parietal peritoneum with Masson’s 

trichrome. In peritoneal fibrosis (PF) mice, we observed a loss of mesothelial cells and enlargement of 

the submesothelial zone with massive cellular infiltration and collagen deposition, while normal 

control (NC) mice displayed a monolayer of mesothelial cells resting upon a thin submesothelial 

compact zone (Figure 1A1,A2,B1,B2). Accordingly, mice from the PF group showed progressive 

thickening of peritoneum compared with the NC group (26.2 ± 2.03 vs. 4.6 ± 0.34 μm, p < 0.05) 

(Figure 1C). 

Figure 1. Masson’s trichrome staining of parietal peritoneum slices. (A1) Normal control 

(original magnification: ×200); (A2) Normal control (original magnification: ×400);  

(B1) Peritoneal fibrosis (PF) group (original magnification: ×200); (B2) PF group (original 

magnification: ×400); (C) The thickness of the peritoneum (mean ± SD). The thickness of 

the peritoneum in the PF group was significantly thicker than that in the NC group.  

* p < 0.05, vs. NC group. 

 

2.2. Macrophage Polarization in PF Mice 

As shown in Figure 2, F4/80 was used as a maker of macrophages, F4/80 and CD206 double 

positive cells were defined as M2, while F4/80 and CCR7 double positive cells were considered as 

M1. There was mainly no macrophage infiltration in the NC group. However, in the PF group, the 

number of macrophages markedly increased, and most of the macrophages were M2, but few were M1.  

2.3. Effect of Liposome-Encapsulated Clodronate (LC) on Peritoneal M1 and M2 

Immunofluorescence staining revealed that liposome-encapsulated clodronate (LC) injection 

markedly alleviated M2 infiltration and secretion of TGF-β induced by Lactate-4.25% dialysate 

(Figure 3B,C), but there were no variations in M1 expression among the four groups (Figure 3A). 

Furthermore, Western blotting showed that the amounts of CD206 and TGF-β were significantly 

upregulated in the PF group and the liposome-encapsulated PBS (LP) group, and their expression 
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could also be depressed by LC (Figure 4 A–C). Similarly, LC treatment definitely inhibited the 

upregulation of Arg-1 and Ym-1 mRNA (Figure 4D).  

Figure 2. Macrophage polarization in PF mice. (A) The number of M1 didn’t change 

between normal control (NC) and PF mice. Blue corresponds to nuclear staining, green 

corresponds to F4/80 and red corresponds to CCR7; co-location signals were identified as 

M1; (B) The number of M2 in PF mice markedly increased. Blue corresponds to nuclear 

staining, green corresponds to F4/80 and red corresponds to CD206; co-location signals 

were identified as M2; (C) The cell count of M1 and M2 in the peritoneum of NC and  

PF mice.  

 

 

Figure 3. Liposome-encapsulated clodronate (LC) depleted almost all the M2 in the 

peritoneum without an effect on M1. (A) The number of M1 didn’t change among the four 

groups. Blue corresponds to nuclear staining, green corresponds to F4/80 and red 

corresponds to CCR7; co-location signals were identified as M1; (B) The number of M2 

significantly increased after injecting Lactate-4.25% dialysate; liposome-encapsulated PBS 

(LP) didn’t affect M2 infiltration, but LC depleted peritoneal M2 efficiently. Blue 

corresponds to nuclear staining, green corresponds to F4/80 and red corresponds to CD206; 

co-location signals were identified as M2; (C) TGF-β was expressed by M2, and LC 

inhibited the expression of TGF-β by depletion of M2. Blue corresponds to nuclear 

staining, green corresponds to F4/80, red corresponds to CD206 and yellow corresponds to 

TGF-β staining. 
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Figure 3. Cont. 

 

 

Figure 4. Effect of LC on Lactate-4.25% dialysate-induced overexpression of CD206, 

TGF-β, Arg-1 and Ym-1. Values were expressed as the mean ± SD. (A) The 

overexpression of CD206 and TGF-β induced by Lactate-4.25% dialysate was evidently 

downregulated by LC treatment measured by Western blotting; (B) The relative protein 

level of CD206 normalized by GAPDH; (C) The relative protein level of TGF-β 

normalized by GAPDH; (D) The mRNA level of Arg-1 and Ym-1 were depressed by LC 

treatment. # p < 0.05, vs. NC and LC group. 
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Figure 4. Cont. 

 

2.4. LC mitigated Peritoneal Fibrosis Related to PD by Depletion of M2 in Peritoneum 

Accompanied by the complete depletion of M2 in the peritoneum, the structure of the peritoneum 

and the extent of fibrosis were improved compared to that in the PF and LP group. As shown in Figure 5, 

mesothelial cells were arranged compactly and orderly, with fewer deposition of type I collagen  

(Col-I) after injection of LC, and the thickness of the peritoneum in the LC group was much thinner 

than that in the PF and LP group (10.0 ± 2.36 vs. 26.2 ± 2.03, 10.0 ± 2.36 vs. 27.7 ± 4.38, p < 0.05) 

(Table 1). What’s more, both the protein and mRNA level of Col-I and fibronectin were upregulated in 

PF mice and downregulated, obviously followed by M2 depletion in the LC group examined by 

Western blotting, immunofluorescence and quantitative real-time PCR (Figures 6 and 7). 

Figure 5. Representative photomicrographs (original magnification: ×200) of Masson’s 

trichrome staining in the (A1) NC group, (B1) PF group, (C1) LP group and (D1) LC group. 

Representative photomicrographs (original magnification: ×400) of Masson’s trichrome 

staining in the (A2) NC group, (B2) PF group, (C2) LP group and (D2) LC group. 

 

Table 1. The thickness of peritoneum in four groups. # p < 0.05, vs. NC and LC group. 

Group Max (μm) Min (μm) Mean ± SD 

NC 4.90 4.22 4.6 ± 0.34 
PF 28.66 23.48 26.2 ± 2.03 # 
LP 33.73 20.96 27.7 ± 4.38 # 
LC 13.99 7.51 10.0 ± 2.36 
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Figure 6. LC depressed Col-I deposition via depletion of peritoneal M2. Values were 

expressed as the mean ± SD. (A) The overexpression of Col-I induced by Lactate-4.25% 

dialysate was evidently downregulated by LC treatment measured by Western blotting;  

(B) The relative protein level of Col-I normalized by GAPDH; (C) The mRNA level of 

Col-I was depressed by LC treatment; (D) Immunofluorescence staining of Col-I in the 

four groups. Blue corresponds to nuclear staining; green corresponds to Col-I staining.  
# p < 0.05, vs. NC and LC group. 

 

Figure 7. LC depressed both the protein and mRNA level of fibronectin via depletion of 

peritoneal M2. Values were expressed as the mean ± SD. (A) The overexpression of 

fibronectin induced by Lactate-4.25% dialysate was evidently downregulated by LC 

treatment measured by Western blotting; (B) The relative protein level of fibronectin 

normalized by GAPDH; (C) The mRNA level of fibronectin was depressed by LC 

treatment; (D) Immunofluorescence staining of fibronectin in the four groups. Blue 

corresponds to nuclear staining, and red corresponds to fibronectin staining. # p < 0.05 vs. 

NC and LC group. 

 

3. Discussion 

In the present study, our data showed that the number of M2 macrophages was significantly 

increased in the PF group, accompanied with peritoneal fibrosis. And the peritoneal fibrosis was 

mitigated after depleting M2 by LC. Additionally, there was no difference of the expression of M1 

between the PF and LC group. 
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As the most plastic innate immune cells, the concept of M1 and M2 has obtained considerable 

ground over the past years, and several studies have demonstrated that M2 macrophages played an 

important role in fibrotic diseases. In patients with systemic sclerosis, the expression of M2 

macrophages was significantly increased and associated with the extent of fibrosis [15]. In patients 

with idiopathic pulmonary fibrosis (IPF), the human marker of M2, which wasn’t expressed on 

pulmonary macrophages from healthy volunteers, was shown to be expressed on more than 90% of 

pulmonary macrophages [19]. In peritoneal dialysis patients, Ahmad et al. [20] showed that both the 

dialysate chemokine (C-C motif) ligand 18(CCL18) and the serum CCL18 were significantly higher in 

patients who developed encapsulating peritoneal sclerosis (EPS); subsequently, Bellón et al. [21] 

proved that the capacity of M2 macrophages to stimulate fibroblast proliferation was proportional to 

the mRNA level of CCL18, and they believed that M2 macrophages may participate in human 

peritoneal fibrosis through the CCL18 production. Especially, it was proven that alternative Kupffer 

cell activation promoted liver fibrosis without classical activation [22]. In our study, we found that 

dialysate with a high concentration of glucose stimulated large aggregation of macrophages; most of 

them displayed an M2 phenotype without classical activation. Besides, as the surface marker and the 

effector molecule of M2, the upregulation of CD206 and TGF-β was regard as the activation of  

M2 macrophages. 

In order to further investigate the role of M2 in peritoneal fibrosis related to PD, we depleted M2 by 

LC to observe the improvement of peritoneal fibrosis. LC was developed to deplete macrophages from 

organs and tissues in vivo in the early 1980s [23,24]. In bleomycin-induced lung fibrosis, LC showed 

an efficient depletion of pulmonary M2 macrophages and mitigated the lung fibrosis, evidenced by the 

depression of Ym-1 and arginase activity and the related mitigation of lung fibrosis measured by the 

pulmonary collagen and fibrosis score [19]. Besides, serum amyloid P (SAP) prevented  

bleomycin-induced lung fibrosis through the inhibition of pro-fibrotic alternative macrophage 

accumulation, similar to the effect of LC [25]. Although LC targets on all macrophages, Jeike 

Biewenga et al. proved that LC can deplete peritoneal macrophages efficiently for a long time; 

especially, the effect on M2 was more pronounced and long-lasting, and it might because of the more 

mature phagocytosis potentiality, which was the most critical factor for LC depletion [26]. What’s 

more, our previous results showed that i.p. injection of Lactate-4.25% dialysate stimulated massive M2 

infiltration without activation of M1; considering all of these, we made the depletion of macrophages 

to be the equal of depletion of M2 in this study only. In our study, LC injection displayed complete 

depletion of peritoneal M2 without activation of M1; both the expression of CD206 and TGF-β were 

depressed after LC treatment. Accompanied with the depletion of peritoneal M2, there was a notable 

improvement of peritoneal fibrosis. The thickness of the peritoneum was much thinner, the layer of 

mesothelial cells was protected and the expression of Col-I and fibronectin was reduced. All of these 

data were in accordance with the studies mentioned previously and indicated that M2 regulated the 

process of peritoneal fibrosis. 

The most intriguing aspect of our study was the data suggesting that during the process of 

peritoneal fibrosis, peritoneal M2 macrophages depletion suppressed the fibrosis. It highlighted the 

potential importance of peritoneal M2 macrophages in the process of peritoneal fibrosis related to PD. 

Besides, unlike other peritoneal fibrosis models induced by chlorhexidine-gluconate (CG), which was 

neither in accordance with characteristics, such as acidic pH, a high concentration of glucose and 
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glucose degradation products nor used clinically in PD [27,28], we established an animal model by 

daily i.p. injection of Lactate-4.25% dialysate in order to better simulate the natural history in  

long-term PD. Furthermore, our data showed a successful PF model characterized by the loss of 

mesothelial cells in the peritoneum and the significant increase of peritoneal thickness and, also, the 

overexpression of Col-I and fibronectin.  

The mechanism that M2 macrophages promote peritoneal fibrosis hasn’t been discussed in this 

study. However, it is believed that excessive TGF-β not only increases synthesis of extracellular matrix 

protein, but also decreases its degradation [29]. Moreover, several studies confirmed that the  

TGF-β/Smad signaling pathway played an important role in fibrogenesis [30,31]. A previous study in 

our laboratory showed an inhibition of Smad7 and a markedly upregulated phosphorylation of 

Smad2/3 in PF mice [32]. Taken together, dialysate containing high glucose induced massive 

aggregation of peritoneal M2, which, in turn, produced an amount of effector molecules leading to 

peritoneal fibrosis, which could be suppressed by LC via depletion of M2, and the influence of M2 on 

peritoneal fibrosis might associate with its effector molecule via TGF-β/Smad signaling pathway. The 

latter needs to be further confirmed. Since we focused on the relationship between M2 and peritoneal 

fibrosis, the mechanism by which dialysate with high glucose stimulates infiltration of peritoneal M2 

hasn’t been mentioned. Furthermore, the safety and toxic effect of LC haven’t been well studied; thus, 

there is still a long way to go for clinical use of LC. More studies should be performed in the future. 

Our described importance of peritoneal M2 macrophages during peritoneal fibrosis may provide a 

scientific rationale for peritoneal fibrosis intervention therapy and has wider appeal therapeutically for 

the treatment of other tissue fibrosis. By enhancing our knowledge of peritoneal fibrosis and peritoneal 

macrophages, new molecular and pharmaceutical therapeutic approaches may be developed. 

4. Materials and Methods 

4.1. Preparation of Liposome-Encapsulated Clodronate and Liposome-Encapsulated Phosphate Buffer 

Clodronate was purchased from Shanghai Weijin Biology Company, and LC was prepared 

according to the standard procedure described previously [26,33]. In general, 86 mg 

phosphatidylcholine and 8 mg cholesterol were dissolved in a 500 mL round-bottom flask and rotated 

in low vacuum at room temperature (RT) to form a lacteous film on the inside wall of the flask. For 

liposome-encapsulated clodronate, 10 mL clodronate solution was added (2.5 g clodronate in 10 mL 

PBS) into the flask to diffuse the film. After a short sonication for 3 min, the liposome suspension was 

kept at RT for 1 hour. Then, the LC formed a white band floating on the solution. In order to remove 

the unencapsulated clodronate, the suspension was centrifuged at 100,000× g for 30 min, then washed 

with sterile phosphate buffer (PBS) three times and finally resuspended with 4 mL sterile PBS. 

Liposome-encapsulated PBS (LP) preparation was similar to that of LC. 

4.2. Animal Model and Tissue Preparation 

Eight-week-old female C57BL/6J mice were purchased and raised in the Experimental Animal 

Center of Sun Yat-Sen University. Twenty-four mice were randomly divided into four groups: the PF 

group (n = 6) received daily intraperitoneal (i.p.) injection of Lactate-4.25% dialysate (Baxter, 
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Guangzhou, China) at a dose of 100 mL/kg; the LC group (n = 6) was given i.p. injection of  

Lactate-4.25% dialysate (100 mL/kg) every day and also received i.p. injection of LC (10 mL/kg) at day 

18 and day 21; meanwhile, the LP group (n = 6) was treated similarly to the LC group, except for the 

LP injection (10 mL/kg) at day 18 and day 21 instead of LC; and the rest were used as normal control 

(NC) without any intervention. All animals were sacrificed at day 29. The parietal and visceral layer of 

peritonea were collected and cut into small pieces, fixed with periodate-lysine-paraform-aldehyde 

fixative (PLP) at 4 °C overnight and embedded in paraffin; the rest of the visceral peritonea was frozen 

in liquid nitrogen immediately and stored at −80 °C for future study.  

This study has been approved by the ethics committee of the First Affiliated Hospital of  

Sun Yat-sen University on animal experiments. 

4.3. Histology 

Two micrometers-thick sections of paraffin-embedded parietal peritoneum were cut and stained 

with Masson’s trichrome. The sections staining with Masson’s trichrome were used to measure the 

thickness. Firstly, five independent low power (×200) fields in each section were randomly picked 

under a light microscope (ZEISS Axioplan 2 Imaging, Jena, Germany). Then, five independent sites of 

each field were randomly picked under a high power (×400) to measure the thickness of the 

submesothelial compact zone using Axio Vision Rel. 4.5 software (Zeiss, Jena, Germany). Finally, an 

average thickness of each sample was taken for analysis by SPSS16.0 software (SPSS Inc.,  

Chicago, IL, USA). 

4.4. Immunofluorescence 

Paraffin-embedded visceral peritoneum sections (6 μm) were used to examine expression of TGF-β 

(CST, Boston, MA, USA) secreted by M2, surface markers of macrophages, such as F4/80 (Abcam, 

Cambridge, UK), CD206 (Abcam, Cambridge, UK) and CCR7 (Abcam, Cambridge, UK), and the 

degree of fibrosis with type I collagen (Col-I, Southern Biotech, Birmingham, AL, USA) and 

fibronectin (NOVUS, Littleton, CO, USA). After antigen retrieval, sections were blocked with 1% 

bovine serum albumin (BSA) at RT for 1 h and then incubated with the primary antibody at 4 °C 

overnight, followed by specific fluorescent secondary antibody at RT for 1 h. All the sections were 

measured using a laser scanning confocal microscope (ZeissLSM510 Laser Module, Jena, Germany). 

4.5. Cell Count 

Sections stained with immunofluorescence were used for cell count. F4/80 and CCR7 double 

positive cells were identified as M1; F4/80 and CD206 double positive cells were designed as M2. The 

cells were counted in 5 independent visual fields from each sample under a high power (×400) 

randomly, and an average number was taken for analysis by SPSS16.0. 

4.6. Western Blotting 

The expression of Col-I, fibronectin, CD206 and TGF-β was examined by Western blotting. 

Visceral peritoneum tissue was lysed in 200 μL cell lysis buffer containing protease inhibitors for  
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10 min on ice. Then, the lysates were centrifuged at 12,500 rpm at 4 °C for 10 min, and the 

concentrations of the tissue protein were examined by a Microplate spectrophotometer (Molecular 

Devices, Silicon Valley, CA, USA). Samples with equal concentrations of tissue protein (20μg) were 

mixed with 2× sample buffer and heated at 95 °C for 10 min, then separated on 10%  

SDS-polyacrylamide gels. After electrophoresis for 2 h, the proteins were transferred onto a 

polyvinylidene fluoride (PVDF) membrane. The membranes were blocked with 5% non-fat milk at RT 

for 1 h and then incubated with the primary antibodies at 4 °C overnight, followed by specific 

peroxidase-conjugated secondary antibodies for 1 h at RT. After washing, the membranes were 

incubated with an enhanced chemiluminescence system (ECL) detection kit. Positive immunoreactive 

bands were normalized by glyceraldehyde phosphate dehydrogenase (GAPDH, CST, Boston, MA, USA). 

4.7. Quantitative Real-Time PCR 

Total RNA from peritonea was extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) 

and converted into cDNA using the Transcriptor First Strand cDNA Synthesis Kit (Roche, Basel, 

Switzerland), according to the manufacturer’s instructions. Amplification of specific PCR products 

was detected using the FastStart Universal SYBR Green Master (ROX) (Roche, Basel, Switzerland). 

Subsequently, the polymerase reactions were performed using the ABI Prism 7900HT (ABI,  

New York, NY, USA). Fold differences in gene expression were calculated as 2−ΔΔCt using β-actin as 

the housekeeping gene [34]. Primer sequences used in this study are shown in Table 2. 

Table 2. Primer sequences for quantitative real-time PCR. 

Gene Primer sequence 

β-actin Forward: 5'-AGCCATGTACGTAGCCATCC-3' 

Reverse: 5'-CTCTCAGCTGTGGTGGTG-3' 

Col-I Forward: 5'-TTTGGAGAGAGCATGACCGA-3' 

Reverse: 5'-TGCTGTAGGTGAAGCGACTGTT-3' 

Fibronectin Forward: 5'- AATCACAGTAGTTGCGGCAGGAGA-3' 

Reverse: 5'-TGTCATAGTCAATGCCAGGCTCCA-3' 

Arg-1 Forward: 5'-AGAGCTGACAGCAACCCTGT-3' 

Reverse: 5'-GGATCCAGAAGGTGATGGAA-3' 

Ym-1 Forward: 5'-AATGATTCCTGCTCCTGT-3' 

Reverse: 5'-ACTTTGATGGCCTCAACC-3' 

4.8. Statistical Analysis 

All numeric data were shown as the mean ± SD. Statistical analyses were performed by one-way 

ANOVA, with a LSD multiple comparison test using SPSS16.0 software (SPSS Inc., Chicago, IL, 

USA). p < 0.05 was considered statistically significant. 
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5. Conclusions 

In conclusion, our study indicated that peritoneal M2 played an important role in the process of 

peritoneal fibrosis related to PD and might be a potential target for the intervention therapy of 

peritoneal fibrosis. 
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