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Abstract: The release of reactive oxygen species (ROS) during the electron transport of 

mitochondrial aerobic respiration is the major source of ROS. However, contact between 

cells and nanoparticles (NPs) can also induce release of ROS, leading to an imbalance 

towards the pro-oxidative state. At low levels of ROS production, cells initiate a protective 

response to guarantee their survival, but an excess of ROS can damage cellular compounds 

such as membranes and various organelles, or directly cause genotoxicity. Thus an elevated 

level of ROS is an important indicator of cellular stress and an accurate recording of  

this parameter would be very informative. ROS can be measured by various assays,  

but all known assays measuring and quantifying ROS possess certain weaknesses.  

The problems and challenges of quantitatively detecting ROS in vitro using the  

2',7'-dichlorodihydrofluorescein (DCF) assay is discussed as an example. In addition, we 

debate the difficulties in finding a suitable and stable chemical reaction control for the  

DCF assay (or other ROS-detecting assays). As a conclusion, we believe that using  

3-morpholinosydnonimine hydrochloride (Sin-1) as a ROS inducer in the DCF assay is 
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feasible only qualitatively. However, a quantitative measurement of the absolute  

amount of ROS produced and a quantitative comparison between experiments is  

(at the moment) impossible. 

Keywords: chemical reaction control; comparability; DCF assay; interference; 

nanoparticles; reactive oxygen species (ROS); Sin-1  

 

1. Introduction 

Nanoparticles (NPs) are materials with three external dimensions in the nanoscale range (1–100 nm). 

The characteristics of NPs are their small size, large surface area, and often completely different 

material properties compared to their micro-sized counterparts. Their large surface area confers the 

novel mechanical, electrical, thermal and optical properties of NPs [1]. Because of the widespread use 

of NPs in consumer products, technical applications, medical treatments, etc., industrial production  

has increased tremendously in the past decade and public exposure to engineered NPs may increase  

in parallel. 

A decrease in particle size can lead to an increase in the number of structural defects, as well as 

disruption of the well-structured electronic configuration of a material, which could establish specific 

surface groups that function as reactive sites [2]. Thus, the toxicity of NPs is at least partly related to 

the surface reactivity of the particle, which may also be relevant to health effects [2–5]. In addition, 

many of the NPs that are synthesized today are metallic, such as nanosilver or nanocopper, which 

under certain conditions release metal ions. The chemical properties of metal ions enable their uptake 

via the cell membrane’s ion transporters [6,7]. It has been demonstrated that metal salts and metal ions, 

such as certain NPs with reactive sites on their surfaces, can induce oxidative stress through generation 

of reactive oxygen species (ROS) [8–15]. 

ROS is a collective term for different reactive molecules and free radicals derived from molecular 

oxygen. The most common ROS include superoxide anion (O2
−
), hydrogen peroxide (H2O2), hydroxyl 

radical (HO
•
) and singlet oxygen (

1
O2), all of which are more reactive than oxygen (O2) itself. The 

molecules are produced during the electron transport of mitochondrial aerobic respiration or by 

oxidoreductase enzymes and metal catalyzed oxidation. ROS are not only involved in the induction of 

cell death, but also regulate the expression of certain genes and are able to activate cell signaling 

cascades [16]. 

Another method of ROS generation involves NPs and their interaction with cells (either simple 

contact or internalization of NPs into cells). The catalytically active surface of the NP can generate an 

increased level of ROS as a fast response (Figure 1). 

  



Int. J. Mol. Sci. 2013, 14 24322 

 

 

Figure 1. Nanoparticle–cell interactions with a central role for reactive oxygen species (ROS). 

Summary of possible cellular reactions taking place after nanoparticles (NPs) interact with 

cellular systems. 

 

At low levels of ROS production, cells initiate a protective response to promote their survival. This 

can induce transcription factors, such as Nrf2, which increase the antioxidant defense of the cells, 

leading to removal of excess ROS and thereby to detoxification. ROS generated at low frequency are 

easily neutralized by antioxidant defenses, such as glutathione (GSH) and antioxidant enzymes, which 

balance the production and destruction of ROS. An imbalance toward the pro-oxidative state is often 

referred to as oxidative stress [17]. 

Under conditions of excess ROS production, the natural antioxidant defenses may be overwhelmed 

and at higher levels of ROS the protective response is overtaken by inflammation and cytotoxicity. 

Inflammation is initiated through the activation of pro-inflammatory signaling cascades, such as 

mitogen-activated protein kinase (MAPK) and nuclear factor κB (NFκB) [2,18]. An excess of ROS can 

cause apoptosis. NFκB inhibits apoptosis by up-regulating several anti-apoptotic genes [19].  

Activated transcription factor NFκB stimulates the production of inflammatory cytokines  

(e.g., tumor necrosis factor alpha (TNF-α), interleukin (IL-x)). The release of cytokines has the 

potential to cause inflammation under in vivo conditions and can ultimately promote the development 

of diseases (fibrosis, cancer, apoptosis, and necrosis) [20]. The formation of free radicals at the surface 

of NPs or by metallic ions is according to Donaldson et al. responsible for damaging supercoiled  

DNA [20]. Thus an increased level of ROS can be directly genotoxic. Furthermore, it has been 

reported that higher levels of released ROS lead to cellular constituents, such as membranes, proteins, 

lipids etc., being attacked.  
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ROS are produced by all cell types and serve as important messengers for both intra- and 

intercellular communication [21]. With respect to intracellular signaling, H2O2 is the most interesting 

candidate, whereas nitric oxide (NO
•
) is involved primarily in intercellular signaling [22]. ROS 

molecules are highly reactive and interact with various molecules. This lack of specificity makes the 

search for a specific biomarker of a discrete ROS molecule nearly impossible [22]. Nowadays, ROS 

are measured by various assays, but unfortunately all known tests have their limitations. The most 

popular tests for estimating the level of ROS in in vitro systems are colorimetric, fluorescent or 

chemiluminescent dyes (e.g., 2',7'-dichlorodihydrofluorescein-diacetate (H2DCF-DA) assay or  

NO
•
 assay), as well as methods using electron spin resonance (ESR), and assays such as glutathione 

peroxidase or lipid peroxidation.  

Our aim is to provide a short overview of the most frequently used ROS assays. A further goal is 

drawing attention to the difficulty of finding an appropriate and stable chemical reaction control for 

ROS-detecting assays. We discuss as an example the use of 3-morpholinosydnonimine (Sin-1) as a 

ROS inducer in the DCF assay. The use of Sin-1 is a catch-22 situation and as a consequence it is still 

impossible to quantitatively measure the amount of released ROS. 

1.1. Brief Description of the Different Assays and Their Weakness 

1.1.1. Fluorescent and Chemiluminescent Assays 

The measuring of HO
•
 is generally performed with fluorogenic or chemiluminogenic substances, 

which serve as hydrogen donors. The commonly used substrates for these types of assays are  

H2DCF-DA [19], homovanillic acid [23], and AmplexRed [24]. Unfortunately, a number of these 

fluorogenic substrates can only efficiently detect the cellular peroxides in the presence of a peroxidase 

(e.g., horseradish peroxidase, HRP) or a transition metal [25,26]. The HRP or transition metal 

decomposes the peroxides to radicals, which are able to react with the dye. However, the use of HRP 

in the assay can lead to incorrect results, because cellular compounds, such as thiols can serve as a 

substrate for HRP and thus affect the fluorescence by either enhancing or quenching the signal [22]. 

The oxidation of H2DCF has been used quite extensively for the quantitation of different types of 

ROS [26–29]. H2DCF is applied as H2DCF-DA, which is taken up by the cell, where unspecific 

esterases cleave the lipophilic groups, resulting in a charged compound. Oxidation of H2DCF by ROS 

converts the molecule to DCF, which is fluorescent. It is important that the test is done in a medium 

free of serum (e.g., Hank’s buffered salt solution; HBSS), because serum contains endogenous 

esterases, which will cleave the ester group of H2DCF-DA. The active dye in the medium will react 

with oxidizing compounds, which will influence the measurement result [26]. Deacetylated H2DCF is 

sometimes retained intracellulary [28,30] allowing measurement of specifically intracellular ROS 

production. However, some leakage of the dye is possible [26], leading to non-ionic H2DCF molecules 

accumulating in the medium, where it is free to interact with oxidants and can undergo extracellular 

reactions. H2DCF, like many other fluorescent substrates, is not highly specific, which can be an 

advantage in assays where different types of ROS are produced or in assays where a certain 

nanocompound induces the release of unknown ROS. Furthermore, DCF has a high fluorescence 

quantum yield and hence is detectable by fluorescence spectroscopy. 
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1.1.2. Nitric Oxide Assay 

Dihydrorhodamine (DHR) is another frequently used substrate for measuring reactive molecules 

and free radicals, such as nitric oxide (NO
•
), peroxynitrate (ONOO

−
) or hydroxyl radicals (HO

−
). In 

this assay, the reduced dye, DHR, is oxidized by ROS, respectively by free radical oxidants derived 

from them, to its corresponding fluorescent product, rhodamine [31]. This test also has its limitations. 

The oxidative conversion of DHR to rhodamine is mediated by an intermediate DHR radical, which  

is usually further oxidized by oxygen to yield a stable fluorescent product. The reaction of the 

intermediate DHR radical can cause an artificial enhancement of the fluorescent signal intensity [28]. 

Further, the DHR conversion is not very specific because DHR reacts with NO
•
, as well as with 

superoxide and several other oxidants. 

1.1.3. Electron Spin Resonance Assay 

ESR, also known as the electron paramagnetic resonance technique, is the only technique that 

allows the measurement of free radicals, such as HO
•
 and superoxide (O2

−
). Unfortunately, only fairly 

unreactive radicals can be detected with this technique. Reactive radicals do not accumulate to levels 

that are sufficiently high to allow detection [26]. Highly reactive radicals can be converted to relatively 

stable radicals by the spin-trapping technique [32]. A five-membered-ring nitron derivative,  

5,5-dimethyl-1-pyrroline-N-oxide (DMPO), is widely considered to be the most powerful spin-trapping 

reagent [33]. ESR can then readily detect the more stable species. DMPO is commonly used for  

in vitro studies of living cells, but DMPO is cytotoxic at high concentrations, which is limiting its  

use [33]. Another limitation of the spin-trapping method is that a free radial can react immediately with 

a molecule other than the spin-trapping agent. Thus the spin-trapping adduct will not be generated and 

hence it is not detectable by ESR. A further drawback of the ESR method is reacting of the generated 

spin adduct with a reducing agent (if present) and its potential neutralization [33]. The relatively high 

cost of the equipment is another downside of this method [34]. 

1.1.4. Glutathione Peroxidase Assay 

Glutathione (GSH) is a three-amino-acid peptide, active in a non-enzymatic oxidant defense 

mechanism, which serves to detoxify peroxides and to regenerate a number of important  

antioxidants [22]. Different colorimetric and fluorescent-based assays are available to measure the 

amount of GSH/GSSG in in vitro cultures. GSH is regenerated from its oxidized form (GSSG) by the 

action of a NADPH-dependent reductase [22], which can influence the measurement results and the 

GSSG concentration might be underestimated. 

1.1.5. Lipid Peroxidation Assay 

Lipid peroxidation is a ROS-mediated process by which polyunsaturated fatty acids undergo 

peroxidation, producing α, β-unsaturated aldehydes such as malondialdehyde (MDA) [35]. In contrast 

to other radical scavenging assays, the lipid peroxidation assay can evaluate test compounds in the 

presence of other antioxidants, iron and radicals [34]. Lipid peroxidation is one of the most widely 

used indicators of free radical formation. The previously described assays (H2DCF, NO, and ESR) 
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directly measure the free radicals, whereas the lipid peroxidation assay does not measure released 

radicals, rather it measures the amount of oxidized fatty acids, which correlates with the amount of 

released radicals. Measurement of lipid peroxidation is generally done by detecting MDA generated 

from the decomposition of lipid peroxidation products. The big problem is that this method is not 

necessarily specific to MDA [36]. Various compounds have a similar absorption maximum as MDA, 

which leads to an overestimation of the MDA values [37]. Progress in mass spectrometry (MS) has 

prompted the development of more accurate and sensitive methods for various lipid peroxidation 

products [32]. One considerable advantage of MS-based methods is the ability to identify individual 

lipid species targeted by ROS and to detect the various oxidative products formed [32,38]. 

1.2. General Weakness in the Measurement and Quantification of ROS 

All assays for measuring ROS possess a certain weakness, as discussed. In addition, all the assays 

are prone to numerous artifacts resulting from sample preparation or from the analytical method itself. 

Organic solvents, such as dimethyl sulfoxide (DMSO) or ethanol, which are used to dissolve the test 

compounds, are another difficulty that all tests have in common. DMSO and ethanol are powerful 

hydroxyl scavengers [34], which could lead to an underestimation of the amount of ROS produced. In 

addition, it is essential to evaluate the test compounds. Appropriate control samples are very important, 

because the results can be altered by various reactions taking place in the culture medium or by cell 

culture processes themselves that may lead to oxidative stress [21,26]. In several studies using  

H2DCF-DA to detect ROS, 3-morpholinosydnonimine hydrochloride (Sin-1) was used as the chemical 

reaction control [39–44]. Unfortunately, Sin-1 (as with any other ROS-inducing compound used as a 

chemical reaction control) is chemically unstable and so the amount of oxidized H2DCF varies 

considerably. As a consequence, any chemically unstable positive control will cause greatly varying 

intensities of the fluorescent signals in different independent experiments. It is this lack of a reliable 

fluorescent signal, obtained from a chemical reaction control, that prevents quantification of the effects 

(i.e., ROS production) of a given unknown compound (i.e., NP). 

2. Results and Discussion 

Four basic concepts [45] (i.e., validation, quality management system, as outlined in ISO 17025 

(2005) (Ref ISO17025(2005)) in detail, measurement uncertainty [46,47] and traceability [48]) all 

have to be thoroughly implemented and functioning for each assay method to achieve reliable and 

comparable results. If one of the concepts is not functioning, then comparability of results between and 

within laboratories is impossible. In the case of assays detecting ROS, it is traceability that fails, as we 

describe below for the DCF assay as an example. 

2.1. Traceability as One of the Four Factors in Achieving Comparability 

Outside the field of measurement science, the concept of traceability is often not well understood, 

despite being a precondition for comparing results within and between laboratories. We elaborate this 

concept for the DCF assay investigating the bioactivity of NPs and also highlight the serious difficulty 

of establishing it by comparing 24 individual experiments (see Section 2.1.2.). We also enumerate 
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some aspects of the different chemical reaction controls that can reliably detect potential interference 

between NPs and the assay itself. 

2.1.1. Establishing Traceability for the DCF Assay: Theoretical Considerations 

The principle of traceability demands, as a precondition, a clear and unambiguous definition of the 

measurand, which is the “quantity subjected to measurement” [47]. In the case of the DCF assay, the 

quantity of interest is the measured intensity of fluorescence from the DCF dye that has been oxidized 

by ROS in the cells. However, the system detects the total fluorescent signal of all generated DCF dye 

and because further reactions with other compounds in the assay system can also oxidize H2DCF, 

additional elaborate chemical reaction controls have to exclude any such interference. 

Figure 2. (A) Results y1 and y2 of the test sample x1 and of the test sample x2 cannot be 

compared, because no internal measurement scale establishes traceability; (B) The 

chemical reaction control sample x0 introduces an internal reference scale that enables the 

comparison of result   
  with   

 . (  ,   ,    and    are the common symbols of a 

mathematical formula. In this case, they represent the equation of the measurement that 

relates to the test sample    with   . Besides this, they relate to all other major effects in a 

mathematical form (model) with the measurand, which is the quantity to be measured). 

 

Actual traceability is established by introducing a measurement scale that allows comparison of 

results [48]. Currently, it is not feasible to directly measure the amount of NPs interacting with a cell, 

so an indirect measurement scale uses the amount of NPs applied to the assay as a practicable 

alternative. This considerably affects the minimal set of parameters characterizing the NPs. Besides 

direct physical measures, such as chemical composition, diameter, shape and morphology etc., indirect 
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physical chemical properties, such as the degree of agglomeration/aggregation under experimental 

conditions, protein coating and surface charge, have to be known before the measurement scale for  

the NPs can be described with enough validity. All these parameters define a measurement scale 

describing the amount of “available” NPs that can interact with cells. Furthermore, our current 

knowledge of the interactions between NPs and cells is limited and therefore, prediction of the size of 

a bioactive reaction is not feasible. Even a small change in one of the many parameters describing NPs 

can cause considerable effects in cells (Figure 2A). The ever present batch-to-batch variability in NP 

production prevents creation of a stockpile of homogeneous NPs. Therefore an alternative approach 

has to be found to establish a measurement scale within the assay. 

Figure 2B shows an alternative solution. The chemical reaction control is used not just as a 100% 

effect control, but also as a calibrator in a concentration series. This allows rigorous assessment of the 

assay’s performance by determining the EC50 in each measurement round. With that, we establish 

traceability between different measurements over time and space, because EC50 results can be 

compared for the chemical reaction controls (x0 in Figure 2B) of each experiment. If the EC50 results 

are in agreement, then we know that the assay is fully functional and so comparison of the results for 

NPs is feasible. Otherwise, if there are significant differences in the EC50 results of the chemical 

reaction controls, we know that there are some sources of errors or even blunders in the different 

experiments, which have to be investigated and detected before any further comparison of results can 

take place. 

When a concentration series is prepared from the positive control, its chemical properties need to 

satisfy more stringent requirements. The chemical compound used should be of known purity and 

composition, chemically stable, easily weighable and readily available. Such a chemical compound is 

cadmium sulfate (CdSO4), which is often used for acute toxicity assays such as 3-(4,5-dimethylthiazol-

2yl)-2,5-diphenyltetrazolium bromide (MTT) or 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy 

phenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt (MTS). CdSO4 is a white and easy weighable 

powder of known high purity, and can be dried if necessary. As the cadmium ion causes the acute toxic 

reaction, it is also inherently chemically stable. 

Finding a suitable and chemically stable positive control for the DCF assay (or other ROS-detecting 

assays) has proven very difficult. ROS-inducing compounds are very short-lived species because of 

their radical nature. As such, their chemical precursors that are used practically as chemical reaction 

controls (e.g., H2O2 or Sin-1) must also exhibit considerable reactivity to produce the desired radical 

species (NO
•
, NO3

−
 etc.). As an example, Sin-1 releases NO to spontaneously form peroxynitrite 

(ONOO
_

) when it is in solution [27]. Because the preparation of a dilution series takes time, a certain 

amount of Sin-1 will spontaneously decompose and will no longer be available for the induction of 

ROS in the cellular system. Accordingly, the actual concentration of the chemical reaction control is 

unknown after it has been added to the in vitro assay. Even for freshly prepared stock solution,  

the concentration will vary with the time taken to prepare the solution and then dilute it to the  

required concentrations. 

This aspect causes great uncertainty about the concentration series of the chemical reaction control 

and hence a reliable and reproducible EC50 value cannot be determined. Lacking traceability, no direct 

quantitative comparison of any result is feasible. The extent of the concentration uncertainty also 

determines the usability of the DCF assay even as a qualitative measure of ROS activity as “severe”, 
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“medium” or “light”. The lack of any chemically stable compound that can be used to generate any 

functional concentration series demands an alternative solution. On a qualitative level, at least, several 

readily available and suitable NPs that induce a range of ROS reactions in the DCF assay could be 

used to create a semi-quantitative ladder from “light” to “medium” to “severe” effects. Thus, the level 

of ROS production by an unknown NP could be gauged as lying between the “light” and “medium” 

reactions caused by two well-characterized NPs. Such NPs need to fulfill the criteria of a reference 

material and need to be available on a larger scale, because with each DCF assay part of this stock will 

be used up. 

Beside this, any interference by the investigated NP with the DCF chromophore will further hinder 

the traceability chain by quenching the fluorescent signal. This demands a correction for the loss of 

signal in the equation of the measurand. Moreover such a quenching behavior does often not display a 

linear relation with the concentration of the NPs. Hence the overall uncertainty of the assay measurement 

is increased additionally disabling any quantitative statement. Also the proposed semi quantitative 

ladder needs to be tested for the effect of the interference, as soon as this ladder becomes available. 

2.1.2. Establishing Traceability for the DCF Assay: Practical Experiments Using Sin-1 as a Potential 

Chemical Reaction Control 

Our initial experiments were carried out using a shortened dilution series of Sin-1 (10 µM, 100 µM, 

1000 µM) (Figures 3A and 4A). Figure 3A shows 15 independent experiments performed over a time 

frame of almost two years. At a concentration of 10 µM Sin-1, a considerable amount of ROS can 

already be detected in every single experiment. However, relative fluorescence values varied between 

approximately 360 arbitrary units (a.u.) (Experiment 10) and 2200 a.u. (Experiment 1). Besides that, 

dose dependency is only obvious from 10 to 100 µM Sin-1 and only in some experiments  

(e.g., Experiment 10), while in other cases (e.g., Experiment 4) the maximum values are already 

reached at 10 µM of Sin-1. We investigated Sin-1 cytotoxicity using the MTS (3-(4,5-dimethyl-2-yl)-

5-(3-carboxymethoxyphenyl)-2-(3-sulfophenyl)-2H-tetrazolium) cell viability assay (Figure 3C). Even 

though microscopic inspection revealed morphological changes of cultures treated with 1000 µM Sin-1 

no cytotoxicity could be detected at this concentration; not even after 24 h of incubation (Figure 3C). To 

match Sin-1 concentrations of cell-free (see Figure 4B and Experimental Section) and cellular 

experiments we reduced the Sin-1 concentrations in subsequent experiments to 5 µM, 50 µM and  

500 µM. This reduction also allowed us to elucidate whether or not the observed morphological 

changes account for the reduced fluorescence values in 1000 µM Sin-1 treated samples. However, 

there was still no further increase in fluorescence intensity measureable between 50 and 500 µM. 

Values measured after treatment with 5 µM Sin-1 varied between 40 and 550 a.u. Thus, reducing the 

Sin-1 concentration offered no improvement in terms of quantitative traceability. 
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Figure 3. Absolute values for detecting reactive oxygen species (ROS): After one hour of 

H2DCF-DA loading, A549 cells were treated for three hours with different concentrations 

of Sin-1. Arbitrary fluorescence values after blank subtraction are shown. Each bar 

represents the mean of three technical replicates of an independent experiment and 

corresponding standard deviations. (A) 15 independent experiments using 10, 100 and 

1000 µM Sin-1; (B) Nine additional independent experiments using reduced Sin-1 

concentrations (5, 50, 500 µM); (C) Sin-1 concentrations used show no sign of toxicity in 

A549 cells. Cells were treated for three and 24 hours with the indicated Sin-1 

concentrations. CdSO4 served as the chemical reaction control at both time points and 

induced dose- and time-dependent cytotoxicity. 

 

Nevertheless, because in each and every experiment Sin-1 treatment resulted in detectable induction 

of ROS we conclude that its usage as a ROS inducer in the DCF assay per se is possible. However, a 

quantitative estimation of the amount of ROS produced and its relation to an absolute scale is not 

possible. Hence quantitative comparison of one experiment to another is impossible and with it the 

establishment of traceability is not feasible. 

2.1.3. Experimental Data Adding Quality Control Measures in terms of NP Interference:  

Multiwalled Carbon Nanotubes as an Example 

In parallel to the Sin-1 samples shown in Figure 3, we also performed NP treatments. Figure 4A 

shows induction of ROS by multiwalled carbon nanotubes (MWCNT) as an illustrative example. Sin-1 

controls were performed as described and the results showed a highly similar profile to that shown in 

Figure 3. Multiwalled carbon nanotubes (MWCNTs) induced ROS in a dose-dependent manner up to 

20 µg/mL. However, fluorescence decreased at higher concentrations. Microscopic observation as well 

as additional acute toxicity assays revealed no obvious signs of cell death (data not shown). Cell-free 
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control experiments were performed to investigate two possibilities: (i) the NPs’ intrinsic ability to 

induce ROS (i.e., to process the deacetylated H2DCF molecule without any involvement of cellular 

reactions); and (ii) a quenching effect caused by MWCNT agglomerates that reduced the existing 

fluorescent signal from the processed DCF dye. 

Figure 4. Cell-based 2',7'-dichlorodihydrofluorescein (DCF) assay and corresponding  

cell-free nanoparticles (NP) interference controls: For each graph, three independent 

experiments and their standard deviations are shown. In each case, fluorescence was 

measured after three hours of incubation. (A) A549 cells treated with increasing 

concentrations of Sin-1 and multiwalled carbon nanotubes (MWCNTs), respectively;  

(B) The deacetylated form of H2DCF, incubated with increasing concentrations of Sin-1 

and MWCNTs, in a cell-free environment to estimate the intrinsic oxidative potential of 

MWCNTs; (C) The already fluorescent molecule, DCF, incubated with increasing 

concentrations of MWCNTs to assess possible quenching effects. 
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Sin-1 was also able to process H2DCF in a cell-free environment and, as such, proved to be useful 

as a chemical reaction control in this setting. Nevertheless, and according to the cellular setup, this is 

only true in a qualitative manner because the absolute fluorescence values varied similarly (data not shown). 

As no cells were involved and hence cell death could not limit Sin-1 activity, we observe a dose-response 

relationship. MWCNTs themselves only marginally process the H2DCF molecule (Figure 4B). 

Adding MWCNTs to the fluorescent DCF dye revealed a dose-dependent quenching effect of these 

NPs (Figure 4C). At a concentration of 3.9 µg/mL, a 40% reduction in fluorescence intensity was 

already observed. We conclude that the reduction in signal intensity detected in the cellular assay 

(Figure 4A) was due to this quenching effect. However, the quenching starts already at very low 

concentrations. It is thus most likely that the MWCNT preparation used here [46] induced even more 

ROS production in cells than can be detected with the DCF assay performed as described. It is 

impossible to re-calculate, extrapolate or even estimate the real level of ROS production in cells from 

our cell-free controls. Rather, the control results served as qualitative evidence for whether or not 

interference by a particular type of NP occurred. 

3. Experimental Section  

3.1. Nanoparticles 

We used MWCNTs from Bayer Technologies Service (Baytubes
®

, Leverkusen, Germany) and a 

thorough characterization has already been published [46]. For our experiments, MWCNTs were 

dispersed at a stock concentration of 250 µg/mL by sonication (10 min ultrasonic bath) in ultrapure 

water containing 160 ppm Pluronic F127 (Sigma, Buchs, Switzerland). Because MWCNTs  

are hydrophobic, the non-ionic biocompatible detergent Pluronic F127 was used to obtain  

homogeneous suspensions. 

3.2. Cell Culture 

The human alveolar epithelial cell line A549 (ATCC: CCL-185) [48] was obtained from American 

Type Culture Collection and grown in RPMI-1640 cell culture medium (Sigma, Buchs, Switzerland) 

supplemented with 10% fetal calf serum (FCS, Lonza, Visp, Switzerland), 0.2 mg/mL L-glutamine 

(Gibco, Life Technologies, Zug, Switzerland), 50 µg/mL penicillin (Gibco, Life Technologies, Zug, 

Switzerland), 50 µg/mL streptomycin (Gibco, Life Technologies, Zug, Switzerland) and 100 µg/mL 

neomycin (Gibco, Life Technologies, Zug, Switzerland) in humified air at 37 °C and 5% CO2. Cells 

were subcultured at approximately 80%–90% confluency using 0.5% Trypsin-EDTA (Sigma,  

Buchs, Switzerland). 

3.3. Determination of ROS by DCF Assay  

3.3.1. Preparation and Handling of Sin-1 

A 1 mM stock solution of Sin-1 (Sigma, Buchs, Switzerland; #M5793) is prepared in HBSS and 

either immediately further diluted in HBSS or frozen in single-use aliquots. This step has to be 

performed as fast as possible. Dilutions are prepared as close to the time of usage as possible. Any 
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delay between preparation of stock (or thawing of the stock aliquot), dilution and cell treatment has to 

be avoided. Because of the reactive and thus unstable nature of Sin-1, any delays and handling issues 

at this stage are the most likely cause of variations in results. 

3.3.2. Cell-Based DCF Assay 

To determine the formation of ROS in A549 cells, the DCF assay was performed [30]. Briefly, 

A549 cells were seeded into 96-well plates at a density of 2 × 10
4
 cells per well in a volume of 200 µL 

complete cell culture medium on the day prior to treatment. Cells were incubated for 60 min in 50 µM 

H2DCF-DA (Molecular Probes, Invitrogen, Basel, Switzerland) in HBSS at 37 °C and 5% CO2. After 

two washing steps with prewarmed HBSS the cells were treated with increasing concentrations of 100 µL 

Sin-1 and MWCNT, respectively, at 37 °C and 5% CO2. Fluorescence intensity was measured after  

1, 2, 3 and 4 h from the same plate using a FLX800 fluorescence microplate reader (BioTEK 

Instruments, Winooski, VT, USA) at an excitation wavelength of 485 nm and an emission wavelength 

of 528 nm. Only values from the 3-hour reading point are shown in the Results Section. 

3.3.3. Cell-Free Interference Controls 

3.3.3.1. Intrinsic ROS Activity of NPs 

To assess the intrinsic activity of MWCNTs to process the H2DCF molecule to its fluorescent form 

(DCF), the H2DCF-DA has to be deacetylated prior to incubation with increasing MWCNT 

concentrations. Therefore, 1 volume (e.g., 1 mL) of a 1 mM stock solution of H2DCF-DA in methanol 

was mixed with 20 volumes (e.g., 20 mL) of 0.01 M NaOH in a beaker protected from light and stirred 

for 30 min at room temperature. Adding 75 volumes (75 mL) of 33 mM NaH2PO4 stopped the 

reaction. The resulting solution contains 50 µM H2DCF. 

In a 96-well plate, 50 µL of the 50 µM H2DCF were mixed with increasing concentrations of Sin-1 

and MWCNTs, respectively, resulting in 100 µL total volume that was comparable to the cell-based 

assay. However, the concentrations are halved. Following the cell-based assay, fluorescence intensities 

were measured after 1, 2, 3 and 4 h of incubation. Only the 3-hour reading points are shown. 

3.3.3.2. Quenching Effect of NPs 

The fluorescent dye DCF (Sigma, Buchs, Switzerland) is commercially available. In a 96-well 

plate, 50 µL of a 2.5 µM solution of DCF were mixed with 50 µL of increasing MWCNT 

concentrations and fluorescence intensities were measured as described above. 

3.4. Assessment of Cytotoxicity Using the MTS Cell Viability Assay 

CellTiter 96
®

 AQueous One Solution (Promega, Duebendorf, Switzerland) was used according to the 

manufacturer’s protocol. Briefly, A549 cells were seeded into 96-well plates at a density of 8000 cells 

per well in 200 µL complete cell culture medium on the day prior to treatment. For each time point  

(3 h, 24 h) a separate plate is necessary. Cells were then incubated with increasing concentrations of 

Sin-1 or CdSO4 in 100 µL complete cell culture medium, respectively, at 37 °C and 5% CO2. After  
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3 and 24 h medium was replaced by 120 µL MTS working solution (composed of 100 µL phenol red 

free RPMI plus 20 µL MTS). After one hour of incubation at 37 °C and 5% CO2 absorbance was 

measured at 490 nm. Data are presented in % of the untreated control sample and represent the mean 

of 3 independent experiments and its standard deviation.  

3.5. Data Processing (MTS & DCF) 

Blank samples containing no cells (or in case of cell-free interference assessment no H2DCF)  

but treated exactly the same way (with NP or chemical control stimuli, all washing steps  

(if necessary), etc.) were always run in parallel on the same 96-well plate. Values given in the graphs 

are blank-corrected arbitrary units (a.u.). 

4. Conclusions 

The production of ROS plays a central role in cellular reactions involving NPs. To take this into 

account, any ROS-detecting assay needs to measure ROS production as reliably and reproducibly as 

possible. Furthermore, an internal measuring scale has to be established to enable traceability and 

finally comparability. Such an internal measuring stick is in most cases a chemical compound that 

functions as a positive control. A concentration series of the chemical reaction control allows the 

determination of its EC50 value, thereby proving correct functioning of the assay within very narrow 

quality limits. 

Our results show that Sin-1 can be used as a qualitative control to induce H2DCF processing in a 

cellular, as well as a cell-free environment, only answering the one question: Did the assay work: Yes 

or No? However, because of the large variations in the observed fluorescence values between 

independent experiments, it is not possible to use Sin-1 as a quantitative internal measuring scale for 

the DCF assay. Furthermore, we think it is generally very hard to find a suitable chemical reaction 

control that functions as a reliable quantitative measuring scale for any in vitro ROS-detecting assay. 

Theoretically, the compound of interest has to fulfill the following requirements: 

 be non-toxic at a radical generating concentration; 

 be chemically stable without solvent; 

 be dilutable in water (biological fluids); 

 generate a stable rate of radical formation in solution/suspension over time (months/years). 

Because of their high surface to volume ratio and reactive surface in general, certain NPs might 

fulfill (at least some of) these requirements. In addition, they have to fulfill the criteria of a reference 

material and should (at best), be generated in large amounts by a national measurement institute. 

However, certain aspects still have to be kept in mind; for example, agglomeration of NPs in cell 

culture media and the associated different sedimentation/diffusion behaviors and, as a consequence, 

unknown dosage on the cells (effective dose). NP interference (quenching) constitutes an additional 

factor to be considered. Despite the obvious NP-related issues, we suggest searching for suitable NPs 

meeting these criteria that induce dose-dependent levels of ROS. These particles should then be 

introduced as a semiquantitative internal measuring scale. Calibration of this scale would then allow 
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categorization of unknown chemicals, particles, any type of compound, as a “light”, “medium” or 

“severe” ROS-inducing agent. 
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