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Abstract: The Maize Wip1 gene encodes a wound-induced Bowman-Birk inhibitor (BBI) 

protein which is a type of serine protease inhibitor, and its expression is induced by 

wounding or infection, conferring resistance against pathogens and pests. In this study, the 

maize Wip1 promoter was isolated and its function was analyzed. Different truncated  

Wip1 promoters were fused upstream of the GUS reporter gene and transformed into 

Arabidopsis, tobacco and rice plants. We found that (1) several truncated maize Wip1 

promoters led to strong GUS activities in both transgenic Arabidopsis and tobacco leaves, 

whereas low GUS activity was detected in transgenic rice leaves; (2) the Wip1 promoter 

was not wound-induced in transgenic tobacco leaves, but was induced by wounding in 

transgenic rice leaves; (3) the truncated Wip1 promoter had different activity in different 

organs of transgenic tobacco plants; (4) the transgenic plant leaves containing different 

truncated Wip1 promoters had low GUS transcripts, even though high GUS protein level 

and GUS activities were observed; (5) there was one transcription start site of Wip1 gene in 

maize and two transcription start sites of GUS in Wip1::GUS transgenic lines; (6) the 

adjacent 35S promoter which is present in the transformation vectors enhanced the activity 

of the truncated Wip1 promoters in transgenic tobacco leaves, but did not influence the 
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disability of truncated Wip1231 promoter to respond to wounding signals. We speculate that 

an ACAAAA hexamer, several CAA trimers and several elements similar to ACAATTAC 

octamer in the 5'-untranslated region might contribute to the strong GUS activity in  

Wip1231 transgenic lines, meanwhile, compared to the 5'-untranslated region from Wip1231 

transgenic lines, the additional upstream open reading frames (uORFs) in the 5'-untranslated 

region from Wip1737 transgenic lines might contribute to the lower level of GUS transcript 

and GUS activity. 

Keywords: Wip1; promoter; transcriptional start site; transgenic plant 

 

1. Introduction 

It is necessary to use different promoters when multiple genes are cloned in tandem in transgenic 

plants because multiple copies of a single promoter could lead to the silencing of the transgenes. 

Promoters may be classified as constitutive, tissue-specific, or inducible based on their expression 

patterns. The most widely used constitutive promoters include the CaMV 35S promoter [1], the maize 

ubiquitin promoter [2], and the rice actin promoter [3]. Several other strong promoters have also been 

isolated and identified from plants or viruses [4–6]. Although many promoters have been isolated and 

tested, only a few have been successfully used in agricultural biotechnology. The constitutive 

expression of certain genes might be harmful to their host plants, affecting plant growth and 

development; inducible or tissue-specific promoters would be more useful than constitutive promoters 

in these cases. 

The function of a promoter is normally determined by the combinatorial action of multiple 

regulatory elements, i.e., enhancers and cis-elements, and by the interactions between regulatory 

elements and nuclear protein factors [7]. For the CaMV 35S promoter, the region from −46 to +1 

upstream of the gene is the basal promoter and the region from −343 to −46 acts as an enhancer [1]. 

Although the CaMV 35S promoter is presumed to be constitutive, some reports have shown that it is 

developmentally regulated [8] and can be affected by abiotic stress [9]. Negative cis-regulatory regions 

determine the tissue-specific activity of a number of promoters [10]. Besides the cis elements in DNA 

sequence affect transcription, various cis elements in mRNA have the functions to control the 

translation efficiency. Many reports have shown that the 5'-untranslated region (5'-UTR) and  

3'-untranslated region (3'-UTR) can increase the translation efficiency [11]. Upstream open reading 

frames (uORFs) that are located in the 5'-UTR have been reported to generally downregulate the 

expression of the major open reading frame (mORF) through ribosomal stalling or reducing initiation 

efficiency [12]. However, a few uORFs can upregulate the expression of mORF [13]. Additionally, 

more and more reports showed that the 35S promoter interferes with the tissue specificity, strength [14] or 

inducibility (our data, unpublished) of its adjacent promoter. The onset and extent of influence depends 

on the responsive nature of the adjacent promoter and the distance between the 35S promoter and 

adjacent promoter [15]. 

The Bowman-Birk inhibitor (BBI) is a type of serine protease inhibitor, and its expression is 

induced by wounding or infection, conferring resistance against pathogens and pests [16]. It was 
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reported that the BBI confers heavy metal and multiple drug tolerance in yeast [17]. There are seven 

BBI genes in rice and overexpression of the rice BBI2-3 conferred fungal pathogen resistance in 

transgenic rice plants [18]. The maize Wip1 gene, encoding a wound-induced BBI protein, has been 

cloned, and the promoter of the gene might respond to wound signals [19,20]. In contrast to most 

BBIs, which inhibit trypsin and chymotrypsin proteases, both of the inhibitory domains of maize Wip1 

inhibit chymotrypsin [20]; however, these two domains have different evolutionary histories and 

ecological functions [21]. 

Here, we isolated the maize Wip1 promoter and characterized its function in transgenic plants, 

showing that Wip1 promoters showed different properties in dicot and monocot plants, and some 

truncated promoters under the influence of adjacent 35S promoter can drive high GUS activities even 

with a low GUS transcriptional level. 

2. Results 

2.1. Isolation and Analysis of the Maize Wip1 Promoter 

To isolate the maize Wip1 promoter, we performed a BLAST analysis with the mRNA sequence of 

maize Wip1 (X71396) in www.maizegdb.org [22]. The maize Wip1 sequence was homologous to the 

genome sequence from 12,274,189 to 12,273,525 on chromosome 8, and one intron was found in the Wip1 

coding region. Based on the maize genomic sequence, a 1737 bp fragment (chr8: 12,275,876–12,274,140) 

upstream of the translation start site of Wip1 was amplified by PCR. The cis-elements in the promoter 

sequence were analyzed using the PlantCARE [23] and PLACE [24] databases, and the transcription 

start sites were predicated on the website: http://www.fruitfly.org/seq_tools/promoter.html [25]. Two 

putative TATA boxes and two corresponding potential transcription start sites were present in the 

promoter sequence. Six W-boxes and three GCC-boxes were found in the Wip1 promoter. In addition, 

several CAAT-boxes, which are common cis-acting elements in promoter and enhancer regions, were 

also found (Figure 1). 

2.2. Truncated Wip1 Promoter Has Strong Activity in Transgenic Arabidopsis and Tobacco Leaves 

To analyze the function of the Wip1 promoter, several expression vectors (pWip1737, pWip1500, 

pWip1231, pWip1191, pWip791, pWip491) were constructed (Figure 2A, Tables 1 and 2). The constructed 

plasmids were transformed into tobacco, and at least ten independent transgenic tobacco lines for each 

construct were obtained. The transformations were confirmed by PCR analysis of genomic DNA using 

primers specific for GUS (data not shown). We performed quantitative analysis of GUS activity using 

leaf samples from 40-day-old T3 progeny of plants. The results showed that the Wip1231 promoter had 

strong activity, while no or weak activity was detected for the other truncated promoters (Figure 2B). 

To confirm the results of the GUS activity analysis, the seedlings were subjected to histochemical 

staining. Strong GUS staining was observed for the seedlings that were transgenic for the Wip1231 

promoter and 35S promoter, whereas no or light staining was observed for the seedlings that were 

transgenic for the full-length and other truncated promoters (Figure 3), consistent with the GUS 

activity analysis results. To investigate whether the truncated Wip1231 promoter also had strong activity 

in other plant species, the constructs were transformed into Arabidopsis. As expected, the Wip1231 
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promoter also drove high GUS activity in transgenic Arabidopsis plant leaves (Figure 2C), further 

confirming the high activity of the truncated Wip1231 promoter. 

Figure 1. The maize Wip1 promoter sequence. The start codon (ATG) and putative 

transcription start sites are indicated in larger letters. The putative TATA boxes are 

shadowed and italicized. The W-box and GC-box are shadowed only. The primers used for 

PCR amplification are underlined and given corresponding names. Triangle (▲) indicates 

the transcription start site of GUS in Wip1231::GUS line; rhombuses (♦) indicate the 

transcription start site of GUS in Wip1737::GUS line; asterisk ★( ) means the transcription 

start site of Wip1 in maize. 
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Figure 2. The Wip1 promoters and their activities in transgenic tobacco and Arabidopsis 

plant leaves. (A) Schematics of the full-length and truncated Wip1 promoters. The numbers 

and/or letters in front of each schematic represent the names of the corresponding 

constructs; (B) The GUS activities of 40-day-old transgenic tobacco plants containing 

different constructs. Error bars represent the S.E. of n independent transgenic lines,  

n = 9 for 1737 and 1500; n = 16 for 1231 and 35S; n = 3 for 1191, 791, 491 and WT;  

and (C) The GUS activity of 20-day-old transgenic Arabidopsis plants. Error bars represent 

the S.E. of n independent transgenic lines, n = 6 for 1737 and 1500; n = 20 for 1231 and 

35S; n = 3 for WT. ND indicates not determined. 

 

Table 1. The sequence of the primers used in the paper. 

Primers Sequence 

F1737 5'-AACTGCAGGGCTCCGTTCTACTTGACT-3' 
R1737 5'-CGGGATCCGGTCTCGGACGAGCTGTTCTT-3' 
F1231 5'-AACTGCAGTTTGTTTTGGATTATAAT-3' 
F1191 5'-AACTGCAGCGCGTCGCCGTCTCTTACTGT-3' 
F791 5'-AACTGCAGTTCTTTTTAGTTGTCGCTGGA-3' 
F491 5'-AACTGCAGGGGAAGATTATTACTATACAC-3' 

R1231 5'-CGGGATCCTTCCTCGTGATCATTTCCG-3' 
F1231A 5'-AACTGCAGCCTTACATAGTGGTTGGT-3' 
F1231B 5'-AACTGCAGGCTTCTATTTTATCACAC-3' 
F1231C 5'-AACTGCAGGGCGTCCATTTGTATCTC-3' 
R1231a 5'-CGGGATCCATGGATGGATAGACGCTT-3' 
R1231b 5'-CGGGATCCGCCGAGATCTGAACATGC-3' 
R1231c 5'-CGGGATCCCCTCTCGTAGAAGCAAGC-3' 
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Table 2. The primers used to amplify different truncated promoters. 

The amplified fragment Forward Primer Reverse Primer 

Wip1500 F1231 R1737 
Wip1231 F1231 R1231 
Wip1191 F1191 R1737 
Wip791 F791 R1737 
Wip491 F491 R1737 

Wip1231A F1231A R1231 
Wip931 F1191 R1231 

Wip1231C F1231C R1231 
Wip1231a F1231 R1231a 
Wip1231b F1231 R1231b 
Wip1231c F1231 R1231c 
Wip1231Aa F1231A R1231a 
Wip1231Ab F1231A R1231b 
Wip1231Ac F1231A R1231c 
Wip1231Ba F1231B R1231a 
Wip1231Bb F1231B R1231b 
Wip1231Bc F1231B R1231c 
Wip1231Ca F1231C R1231a 
Wip1231Cb F1231C R1231b 
Wip1231Cc F1231C R1231c 

Figure 3. Histochemical GUS staining of 14-day-old transgenic tobacco plants.  

T2 transgenic tobacco seeds were germinated on MS medium plates with 30 mg/L 

Hygromycin B to eliminate the non-transgenic plants. The surviving 14-day-old seedlings 

were immersed in GUS staining solution and incubated overnight at 37 °C. Then, the 

samples were de-pigmented with 70% ethanol at 37 °C until the chlorophyll had 

completely disappeared. 
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To find out the potential negative cis-acting elements, detailed 5' and 3' deletions of Wip1737,  

based on Wip1231, were performed, involving the generation of an additional 15 deletion constructs 

(pWip1231A, pWip1231C, pWip931, pWip1231a, pWip1231b, pWip1231c, pWip1231Aa, pWip1231Ab, pWip1231Ac, 

pWip1231Ba, pWip1231Bb, pWip1231Bc, pWip1231Ca, pWip1231Cb, pWip1231Cc; Figure 4A, Tables 1 and 2). 

These constructs were transformed into Arabidopsis, and the GUS activity in the transgenic plant 

leaves was analyzed. The results showed that Wip1231A, Wip1231C, and Wip931, which were of the same 

3' end as Wip1231, had high activity similar to that of Wip1231, while the other Wip1 promoter fragments 

presented very low levels of activity (Figure 4C). To further confirm the functions of these three 

fragments, three constructs (pWip1231A, pWip1231C and pWip931) were also transformed into tobacco, 

respectively. High GUS activities were observed in the transgenic tobacco leaves transformed with 

each of these three promoters (Figure 4B). 

Figure 4. The finely truncated Wip1 promoters and their activity in transgenic Arabidopsis 

and tobacco plant leaves. (A) Schematics of the finely truncated Wip1 promoters. The 

numbers or/and letters in front of each schematic indicate the names of the corresponding 

constructs; (B) The GUS activities of transgenic tobacco plants. Error bars represent the 

S.E of n independent transgenic lines, n = 8 for 1737, 1231 and 35S; n = 18 for 1231A, 

1231C and 931; n = 3 for WT. ND indicates not determined; and (C) The GUS activities of 

transgenic Arabidopsis plants containing different constructs. Error bars represent the S.E. 

of n independent transgenic lines, n = 3 for WT, and n = 6 for the others. 
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2.3. Wip1 Promoters Are not Induced by Wounding and Have Different Activity in Different Organs in 

Transgenic Tobacco 

It has been shown that the expression of Wip1 gene is wound-induced in maize [19,20].  

We investigated whether the Wip1 promoter is wound-induced in transgenic tobacco plant leaves that 

were wounded with three different kinds of wounding methods, respectively. Under three different 

treatment conditions, to our surprise, wounding did not induce the increase of the activity of Wip1 

promoters (Figure 5), indicating that Wip1 promoters are not wound-induced in transgenic tobacco. 

Figure 5. GUS activity in transgenic tobacco leaves treated with wounding. The second 

leaves from apex of 40-day-old T3 tobacco plants grown in greenhouse were wounded 

using three different kinds of methods. GUS activities were assessed 24 h after wounding. 

A-NW and A-W mean non-wounded or wounded samples using the method described in 

Walker-Simmons, et al. [26]. B-NW and B-W mean non-wounded or wounded samples 

using the method described in An, et al. [27]. C-NW and C-W mean non-wounded or 

wounded samples using the method described in Xu, et al. [28]. Data was shown as 

average ± S.E. of 6 independent transgenic lines. 
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The GUS activities in different organs of the transgenic tobacco lines transformed with different 

truncated Wip1 promoters or the control 35S promoter were analyzed. The results showed that the 

Wip1231 promoter has high activity in the leaf and stem but low activity in the root and seed (Figure 6). 
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Figure 6. GUS activity of different tissues of transgenic tobacco plants. Data was shown  

as average ± S.E. of n independent transgenic lines, n = 3 for 1737, 1500 and WT; n = 6 for 

1231 and 35S. 
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2.4. Wip1231 Promoter Drives Low GUS Transcriptional Level 

Generally, the level of protein is consistent with the level of mRNA, but sometimes they are 

discordant. To confirm Wip1231 is a strong promoter, we investigated the transcriptional levels of GUS 

in the transgenic tobacco plants. To our surprise, lower transcriptional levels of GUS were detected in 

transgenic plants containing Wip1 promoters than in transgenic plants containing CaMV 35S promoter. 

There were higher GUS transcriptional level in Wip1231::GUS transgenic lines than in Wip1737::GUS 

and Wip1500::GUS lines (Figure 7). The results of Western blot analysis showed that there were high 

GUS protein levels in both Wip1231::GUS and 35S::GUS transgenic lines, whereas GUS protein was 

undetectable in Wip1737::GUS, Wip1500::GUS and WT plants (Figure S1). These results indicate that the 

strong GUS activity in Wip1231::GUS transgenic lines can be attributed to high efficient translation of 

GUS protein. We speculate that there might be some translation enhancer in the 5'-UTR of GUS 

transcripts in Wip1231::GUS transgenic plants. 
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Figure 7. Transcriptional level of GUS in transgenic tobacco leaves. Data was shown as 

average ± S.E. of 6 independent transgenic lines. Letters above the columns indicate 

statistically significant differences at p < 0.05 level. Relative transcript levels were 

calculated using the 2−ΔΔCt method [29] with Actin as a housekeeping gene. 

 

2.5. Wip1 Promoters Have Multiple GUS Transcription Start Sites in Transgenic Tobacco 

To find out the exact 5'-UTRs, we further determined the accurate transcription start sites in maize 

and transgenic tobacco plants by the 5'-RACE method. The native transcription start site of Wip1 in 

maize was identified as the nucleotide G which is located at 61 bp upstream of the Wip1 translation 

initiation site and 3 bp downstream of the predicated one (Figures 1 and 8). For Wip1737::GUS 

transgenic tobacco line, a strong band and one weak band were amplified, and sequencing results 

revealed that two transcription start sites are present (Figures 1 and 8). The latter is the same as the 

transcription start site of Wip1 gene in maize. The former was identified as nucleotide C which is 

located at 532 bp upstream of the ATG translation initiation site and identical to the predicated one, 

and this transcription start site was also identified in Wip1231::GUS transgenic tobacco line. So there is 

a 272 bp-length untranslated region in GUS transcripts in Wip1231::GUS lines. In the 272 bp 5'-UTR 

there is an ACAAAA element, several CAA trimers and several elements similar to ACAATTAC 

octamer (Figure S2). The elements might contribute to the high translation efficiency of GUS 

transcripts in Wip1231 transgenic lines. The sequences of 5'-UTR from Wip1231 and Wip1737 transgenic 

lines were comparatively analyzed to find that there were more uORFs in the latter (Figures S3–S5). 

Maybe the additional uORFs lead to the lower level of GUS transcript and GUS activity in Wip1737 

transgenic lines. 
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Figure 8. 5'-RACE analysis of the transcription start sites. M, DNA molecular marker;  

(1) Wip1 in maize; (2) Wip1231::GUS line; and (3) Wip1737::GUS line. 

 

2.6. Wip1231 Promoters Were Influenced by the Adjacent 35S Promoter Sequence 

In this study, the transformation vectors were constructed from a derivative of the pCAMBIA1300 

binary vector that includes a CaMV 35S promoter controlling a hptII selectable marker gene. It has 

been reported that the CaMV 35S enhancer can influence the expression of a transgene within the 

same transformation construct [14,30,31]. To investigate whether the 35S enhancer influences the 

truncated Wip1231, we constructed transformation vectors p1300-1231-NOS and p1300-35S-NOS, 

where the 35S promoter was replaced with a NOS promoter to control the hptII selectable marker 

gene, and the reporter gene GUS was controlled by the Wip1231 promoter and 35S promoter, 

respectively. Then they were transformed into tobacco, and transgenic tobacco plants were obtained. 

The GUS activity in transgenic plants transformed with p1300-1231-NOS was very low, compared to 

transgenic lines transformed with pWip1231. However, transgenic plants transformed with p1300-35S-NOS 

still had high GUS activity, which were similar to the transgenic lines transformed with p1300-221 

(Figure 9). The Wip1231 promoter was still not induced by wounding in transgenic tobacco plants which 

was transformed with p1300-1231-NOS (Figure 9). The above results showed that adjacent 35S 

promoter did enhance the expression of GUS reporter gene that was controlled by truncated Wip1231, 

and the truncated Wip1231 does not respond to wound signals in transgenic tobacco plants. 



Int. J. Mol. Sci. 2013, 14 23883 

 

 

Figure 9. GUS activity in tobacco plant leaves transformed with constructs p1300-35S-NOS 

or p1300-1231-NOS. The second leaves from apex of 40-day-old T3 tobacco plants grown 

in greenhouse were used. NW and W mean non-wounded or wounded samples using the 

method described in Walker-Simmons, et al. [26]. Data was shown as average ± S.E of  

n independent transgenic lines, n = 15 for p1300-1231-NOS; n = 13 for p1300-35S-NOS. 

 

2.7. Wip1 Promoter Is Wound Inducible in Transgenic Rice Plants 

Expression of the Wip1 gene is induced through wounding in maize. However, the GUS gene, 

driven by Wip1 promoters, was not induced by wounding in transgenic tobacco which is a dicot. This 

encouraged us to analyze whether Wip1 promoters have the same function in monocot species. 

Constructs pWip1737, pWip1500 and pWip1231 were transformed into rice, respectively, and the 

transgenic rice events were confirmed by PCR analysis of the genomic DNA (data not shown).  

Low GUS activities were detected in transgenic rice plant leaves containing different Wip1 promoters, 

compared with that in transgenic rice transformed with the CaMV 35S promoter. When transgenic rice 

leaves were wounded, significant increase of GUS activity were observed in all the transgenic  

lines containing different Wip1 promoters, whereas the GUS activity in transgenic plants containing 

the 35S promoter did not change (Figure 10). This indicates that the Wip1 promoter is induced by 

wounding in rice. 
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Figure 10. GUS activity in transgenic rice leaves treated with wounding. The second 

leaves from apex of 40-day-old rice plants grown in a greenhouse were wounded using the 

method described in Xu, et al. [28]. NW and W mean non-wounded or wounded samples. 

Data was shown as average ± S.E. of 6 independent transgenic lines. Asterisks (**) means 

the significant difference at p < 0.01 level. 

 

3. Discussion 

Arabidopsis and tobacco have long been used as simple and high-efficiency transformation systems 

in which to analyze gene function. In addition to protein-coding genes, the promoters from rice or 

maize have been studied in one of these two systems [32–34]. In this study, we used both systems to 

study the function of maize Wip1 promoter. To our surprise, expression of GUS driven by truncated 

maize Wip1 fragments was not induced by wound in transgenic tobacco plants (Figure 5). This may be 

due to the fact that the maize Wip1 promoter comes from a monocot, and its function may be different 

in monocot and dicot species. Although it has been reported that the wound-inducible PinII promoter 

from potato was able to drive gene expression in response to wound signals in rice [28], many plant 

promoters exhibit different functionality in dicots and monocots. For example, the widely used maize 

ubiquitin promoter conferred lower expression of a reporter gene in the tobacco (dicot) protoplasts 

than in maize (monocot) protoplasts [2]. Several dicot promoters also have been shown to have lower 

activities than monocot promoters when transformed into monocot species [35]. 

Few strong promoters have been identified to date, and it remains important for researchers in plant 

biotechnology to identify promoters that are as strong as or stronger than the CaMV 35S promoter.  

In transgenic plants, high GUS activities were observed in transgenic lines containing truncated Wip1 

promoters even though low GUS transcriptional levels were detected. The above results indicate that 

truncated Wip1 promoters are not strong, and the reason for the high GUS activity driven by the 

truncated Wip1 promoters might be due to the increased translation of the GUS gene. It has been 

shown that the 35S-GUS and 35S-ABI4-GUS lines had at least 50 fold differences in transcript level, 
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however more than 300 fold difference in GUS activity was observed [36], indicating that 

transcriptional level is not correlated with the protein level in some cases. Many factors, i.e., promoter 

activity, mRNA stability, protein translation efficiency, can affect the expression level of foreign genes 

in transgenic plants. The high GUS activity driven by truncated Wip1 promoters indicate that  

Wip1 promoters are also useful in plant biotechnology, even though these promoters led to low 

transcriptional level. 

Normally, a promoter shows different properties in monocot and dicot plants. It has been shown 

that the CaMV 35S promoter can drive high levels of transgene expression in dicot plants, whereas its 

activity is relatively lower in monocot plants [37]. In transgenic rice, lower activity of the Wip1231 

promoter compared to the 35S promoter was observed, and wound treatment significantly increased 

GUS activities in transgenic rice containing different Wip1 promoters. These results are contrary to the 

results in transgenic tobacco, indicating that the Wip1 promoter also showed different properties in 

monocot and dicot plants; this will limit the usage of the Wip1 promoter as a general (cross-species) 

promoter in transgenic crops. 

5'-RACE results revealed that only one native transcription start site was present in the maize  

Wip1 gene, and a new one was identified in both Wip1737::GUS and Wip1231::GUS transgenic tobacco 

lines. We analyzed the 272 bp 5'-UTR of GUS mRNA from Wip1231::GUS transgenic tobacco lines to 

find that there is an ACAAAA hexamer, several separate CAA trimers and several elements similar to 

ACAATTAC octamer (Figure S2). The ACAAAA hexamer exists in many 5'-UTRs of plant genes and 

has been speculated to enhance translation [38]. The poly(CAA) region and ACAATTAC octamer 

have been confirmed to enhance translation [39–41]. The features of the sequence may contribute to 

the property of the 5'-UTR for high efficient translation. It has been reported that uORF plays an 

important role in the regulation of gene expression by different mechanisms, for example, by 

ribosomal stalling, reducing initiation efficiency [12]. uORF can downregulate gene expression by 

accelerating mRNA degradation or upregulating gene expression by reforming the 5'-UTR through the 

product of the uORF [42]. Six upstream ATGs (uATGs) were found in the 272 bp UTR. Among the 

six uATGs, the first three are in two very short uORFs, the fourth and fifth are in the reading frame of 

the GUS gene and will produce GUS fusion protein, and the sixth uATG should not have the 

opportunity to initiate translation (Figure S3). We suggest that the two uORFs may have little 

possibility to influence the mORF translation. Strong GUS activity in transgenic plants transformed 

with pWip1231 construct and related pWip1231A, pWip1231C and pWip931 might be due to that they all 

have the same 3' end and produce the same 5'-UTR containing two uATGs which produce GUS fusion 

proteins, and strong translation may initiate from the two uATGs. 

14 uATGs were found in the 532 bp UTR of GUS mRNA from Wip1737::GUS transgenic tobacco 

lines. These uATGs form more uORFs than the six uATGs in 272 bp UTR of GUS mRNA from 

Wip1231::GUS transgenic lines. The fourth and fifth uATGs in the 272 bp UTR which can produce 

GUS fusion protein, are in frame with a termination code in the 532 bp UTR and form a uORF. 

Interestingly, the uORF also exists in the 361 bp UTR of GUS mRNA from Wip1231a::GUS transgenic 

tobacco lines if the lines have the same transcription start site as Wip1231::GUS lines. We suggest that 

the uORF may lead to the low GUS activity of transgenic plants transformed by pWip1737 and 

pWip1231a. We also suggest that the uORF might accelerate the degradation of mRNA from 

Wip1731::GUS and Wip1500::GUS transgenic tobacco lines, because the levels of mRNA in these lines 
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were lower than that in Wip1231::GUS transgenic tobacco lines. We cannot exclude other factors that 

contribute to the attained results. 

A few reports have shown that the CaMV 35S enhancer has the ability to alter the expression of 

nearby genes by affecting nearby promoters [14,30,31]. In the T-DNA region of transformation 

plasmids used for the promoter analysis, the selectable marker gene hptII was controlled with double 

enhanced CaMV 35S promoter. We confirmed that the 35S promoter influenced the GUS expression in 

Wip1231::GUS transgenic plants, because low GUS activity was observed when the 35S promoter was 

replaced with the NOS promoter. A problem may appear if the 35S promoter exists nearby an 

inducible or tissue-specific promoter that drives target transgene expression, but the problem might be 

negligible when the adjacent promoter is a strong constitutive one. The disadvantage of the  

35S promoter can be overcome by using enhancer-blocking insulators to disturb the interaction 

between the 35S promoter and adjacent promoters [43]. Every coin has two sides; maybe the property 

of the 35S promoter can be used to develop a “strong constitutive” promoter controlling transgene 

expression in plants, such as the Wip1231 and several other truncated Wip1 promoters studied in the 

paper, although these truncated Wip1 promoters drive low transcriptional level of transgene. 

4. Experimental Section 

4.1. Isolation and Analysis of the Maize Wip1 Promoter 

Maize genomic DNA was isolated from leaves according to a previously described  

method [44]. A 1737 bp fragment designated as the full-length promoter sequence was  

amplified using the primers F1737 (5'-AACTGCAGGGCTCCGTTCTACTTGACT-3') and  

R1737 (5'-CGGGATCCGGTCTCGGACGAGCTGTTCTT-3'). The underlined letters  

indicate PstI and BamHI restriction sites. Regulatory motifs were identified using PlantCARE [23]  

and PLACE [24], the transcription start sites were predicated on the website: 

http://www.fruitfly.org/seq_tools/promoter.html [25]. 

4.2. Plasmid Construction 

The plasmid pBI221 was digested with HindIII and EcoRI. The CaMV 35S promoter-GUS-NOS 

fragment was purified and ligated into plasmid pCAMBIA1300 that had been digested with the same 

enzymes to construct the plasmid pCAMBIA1300-221. The amplified 1737 bp full-length promoter 

sequence was digested with restriction enzymes PstI and BamHI and inserted upstream of the  

GUS gene in plasmid pCAMBIA1300-221, replacing the CaMV 35S promoter to construct a new 

plasmid, pWip1737 (Figure S6). The full-length Wip1 promoter was replaced with other truncated  

Wip1 promoters to construct the other vectors. The details for the primers used to amplify the truncated 

promoters are shown in Figure 1 and Tables 1 and 2. 

To construct vectors where 35S promoter was replaced with NOS promoter to control hptII 

selectable gene, NOS promoter was amplified using Gateway binary vector pGWB454 (AB294466.1) 

as template with primer F-NOS (5'-CCAACATGGTGGCATCATGAGCGGAGAATTAAG-3') and 

primer R-NOS (5'-CTCGAGAGATCCGGTGCAGATTATTTG-3'). The underlined letters indicate 

BstXI and XhoI restriction sites, respectively. The vector pWip1231 was digested with BstXI and XhoI 
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to produce three fragments, a 10 kb fragments containing vector bone, a 1.1 kb fragment containing 

hptII gene and a 0.8 kb fragment containing 35S promoter. The 10 and 1.1 kb fragments were gel 

purified separately and the 0.8 kb one was discarded. The 10 kb purified fragment ligated with the 

amplified NOS promoter fragment was digested by the same endonucleases to form the medium vector 

that was digested by XhoI. Then the purified product ligated with the 1.1 kb purified fragment in 

correct orientation to form the vector p1300-1231-NOS. The new control vector p1300-35S-NOS 

derived from pCAMBIA1300-221 was constructed similarly. The restriction endonuclease sites were 

in marked in detail in supplementary Figure S1. 

4.3. Plant Transformation 

For the tobacco plant transformations, the plant expression plasmids were transferred into 

competent Agrobacterium tumefaciens (strain LBA4404) cells by freeze-thaw treatment. The 

transformed Agrobacterium were selected on YEB-agar plates containing 100 mg/L kanamycin and 

100 mg/L streptomycin. Recombinant Agrobacterium were infiltrated into the young tobacco 

(Nicotiana tobacum) leaves according to the described method [45]. For the Arabidopsis 

transformations, vector constructs were transformed into Agrobacterium tumefaciens strain GV3101. 

Arabidopsis ecotype Columbia Col-0 was transformed using the floral dip method [46]. The obtained 

tobacco and Arabidopsis T0 seeds were selected on MS medium plates containing 30 mg/L 

Hygromycin B to eliminate the non-transgenic plants. 

For the rice transformation, vector constructs were transformed into Agrobacterium tumefaciens 

strain EHA105. Three-week-old calli derived from mature seed (Rryza sativa L. cv. Kita-ake) were 

used for the transformation. The transformation was performed according to the described method [47]. 

4.4. Wounding of Transgenic Plant Leaves 

The second leaves from apex of 40-day-old T3 tobacco plants grown in greenhouse were wounded 

using three different kinds of methods. The first wound treatment was performed according to  

Walker-Simmons, et al. [26] wherein the leaves were crushed across the midvein by a hemostat, with a 

second wounding 20 h later, and the leave samples were harvested 24 h after the first wounding. The 

second wound treatment was performed according to An, et al. [27] wherein the leaves were cut into 

about 1 cm2 sections and the leaf slices were put in Murashige and Skoog (MS) liquid medium 

containing 3% sucrose (pH 5.8). The leaf slices were wounded by making several small holes in each 

section with forceps, and then were placed in tissue culture incubator at 28 °C for 24 h under light 

(3000 Lux), then the samples were harvested for the experiment. The third wound treatment was 

performed according to the method described by Xu, et al. [28] wherein the leaves were cut three times 

perpendicularly to the midvein by a scissor along both edges of the leaf blade without damaging the 

midvein. The first leaf under the wounding one was cut off before wounding as unwounded sample, 

frozen in liquid nitrogen and stored at −80 °C before extracting crude protein. 

For the wounding of rice leaves, the second leaves from apex of 40-day-old T2 rice plants grown in 

greenhouse were wound according to the method described by Xu, et al. [28] wherein the leaves were 

cut at intervals of 1 cm perpendicularly to veins by a scissor along both edges of the leaf blade without 

damaging the midvein, and the leave samples were harvested 24 h after wounding. The first leaf under 
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the wounding one was cut off before wounding as unwounded sample, frozen in liquid nitrogen and 

stored at −80 °C before extracting crude protein. 

4.5. Analysis of RNA Level by qRT-PCR 

The second leaf from the apex of 40-day-old T3 transgenic tobacco was sampled. Total RNA was 

extracted using EasyPure™ Plant RNA Kit (TransGen, Beijing, China). The RNA was reverse 

transcribed to cDNA using TransScript® II First-Strand cDNA Synthesis SuperMix Kit (TransGen, 

Beijing, China), and qRT-PCR was performed using the TransStart® Green qPCR SuperMix Kit from 

Beijing TransGen Biotech Co. Ltd. (Beijing, China). The primers used for qRT-PCR were designed 

according to the sequences of the GUS gene from vector pBI221 (AF502128.1) and tobacco Actin gene 

(U60495.1). The sense primer for GUS gene is S-GUS: 5'-CCAACTCCTACCGTACCTC-3',  

and the antisense primer is A-GUS: 5'-TCGAAACCAATGCCTAAA-3'. The sense primer for  

Actin gene is S-ACTIN: 5'-AAGGGATGCGAGGATGGA-3', and the antisense primer is A-ACTIN:  

5'-CAAGGAAATCACCGCTTTGG-3'. The instrument of ABI 7300 was used. The reaction volume is 

20 µL. The amplification program was: 95 °C 2 min for pre-denature, then 40 cycles of 95 °C 10 s for 

denature, 55 °C 30 s for annealing, 72 °C 31 s for elongation were followed. The fluorescence data 

was collected at the end of elongation and analyzed by the 2−∆∆Ct method [29]. 

4.6. Analysis of the Transcription Start Sites by 5' Rapid Amplification of cDNA Ends (5'-RACE) 

According to the sequences of maize Wip1 gene (X71396.1) and GUS gene from vector pBI221 

(AF502128.1), two specific primers, wip1-R: 5'-CAAAAAGGACTGCGACCCCGTCTG-3' and  

GUS-R: 5'-GTTCTGCGACGCTCACACCGATACC-3', were designed. wip1-R was used to amplify 

the 5' end of Wip1 mRNA in maize. GUS-R was used to amplify the 5' end of GUS mRNA in 

transgenic tobacco. Total RNA was extracted from leaves of 10-day-old maize inbred line Z31 and  

30-day-old transgenic tobacco plants using EasyPure™ Plant RNA Kit (TransGen, Beijing, China). 

The generation of RACE-ready cDNA and rapid amplification of cDNA end were performed strictly 

according to the user manual of SMARTer™ RACE cDNA Amplification Kit (Clontech,  

Mountain View, CA, USA). 

4.7. GUS Activity Assay and Histochemical Staining 

T2 transgenic tobacco seeds were germinated on MS medium plates with 30 mg/L Hygromycin B to 

eliminate the non-transgenic plants. The surviving 14-day-old seedlings were immersed in GUS 

staining solution [48] and incubated overnight at 37 °C. Then, the samples were de-pigmented with 

70% ethanol at 37 °C until the chlorophyll had completely disappeared. 

For quantitative analysis, young leaves of 40-day-old T3 tobacco seedlings and 20-day-old T3 

Arabidopsis seedlings were homogenized in 500 µL extraction buffer (50 mM sodium phosphate 

buffer, pH 7.0, 10 mM EDTA, 0.1% Triton X-100, 10 mM β-mercaptoethanol) and clarified by 

centrifugation at 13,000 rpm for 10 min at 4 °C. 10 µL supernatant was used to assay the GUS activity 

in 100 µL extraction buffer containing 2 mM 4-methylumbelliferyl-β-D-glucuronide. Fluorescence 

was measured using Skanlt 2.4.3 RE for Varioskan Flash (Thermo, Waltham, MA, USA). Protein 
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concentration was determined using the Model 680 spectrophotometer (Bio-Rad, Philadelphia, PA, 

USA) using the Coomassie Brilliant Blue method [49]. 

5. Conclusions 

We used standard methods to study the function of the maize Wip1 promoter and found that several 

truncated Wip1 promoters led to high GUS activity in transgenic plants, even though the GUS 

transcriptional level was relatively low. The high GUS activity may be ascribed to high translation 

efficiency. The activity of the truncated Wip1 promoter fragments were influenced by the adjacent  

35S promoter, however they may also be used as strong constitutive promoters to drive transgenes in 

plant biotechnology when a 35S promoter exists nearby. This may be a way to develop new  

“strong constitutive” promoters. 
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