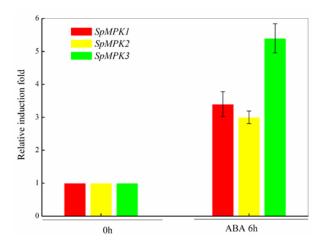

Supplementary Information

Table S1. Primers used in this study.


Primer code	Primer sequences (5'-3')	GenBank accession no.	Products lengths (bp)	Objectives
COSM121F	GGCGCGAGCTCCATGGTGGCAGGTTCATTC	AY261512	577	For cosilencing of
COSM121R	CGGCGCTCGAGGCTCAGGTGGACGATACCAT			SpMPK1/2
SM1F	GGCGCGAGCTCATAATTGCTGACAGATTGTTGC	AY261512	200	To specifically
SM1R	CGGCGCTCGAGCATTTCAGTCTAAAATAAAATCCAC			silence SpMPK1
SM2F	GGCGCGAGCTCGTACTCGCTCGTTTGCTGTT	AY261513	214	To specifically silence <i>SpMPK2</i>
SM2R	CGGCG <mark>CTCGAG</mark> CATTTCTGGAACTAAAAATACAGAT			
SM3F	GGCGCGAGCTCGCATAAGAGAAATCAGTTCTTCTCT	AK319930	409	To specifically
SM3R	CGGCG <mark>CTCGAG</mark> ACACCCAAAACTTCAAAATGAC			silence SpMPK3
COSM1231F	GGCGCGAGCTCACTGATCTCCATCAAATTATTCG	AY261512	252	For cosilencing of SpMPK1/2/3
COSM1231R	GCTCTAGAAGGTGGACGATACCATCTTG			
COSM1233F	AATTGTCACTCATGCTGGACA	AY261514	220	
COSM1233R	CGGCG <mark>CTCGAG</mark> AATTTCACGGAGCGTCCT			
SPDSF	GGCGCGAGCTCGGCACTCAACTTTATAAACC	NM_001247166	409	To silence SpPDS
SPDSR	CGGCGCTCGAGCTTCAGTTTTCTGTCAAACC			
$EF1\alpha F$	GACAGGCGTTCAGGTAAGG	X14449	127	To assess the
EE1 D	COA A TROO A COCTA TROO CO			transcription levels
EF1αR	CCAATGGAGGGTATTCAGC			of $SpEF1\alpha$
qM1F	ATCCCAGAAGGAGAATAACAG	AY261512	228	To assess the
MID	ATCA A A CCTC A A CA A TCTC			transcription levels
qM1R	ATCAAACCTGcAACAATCTG			of SpMPK1
qM2F	ATTCCACCACCTCAACGA	AY261513	196	To assess the
-M2D	TCOTA COCTTO A A CTCCC			transcription levels
qM2R	TGCTAGGCTTCAAGTCCC			of SpMPK2
qM3F	GCAACTCCCACAACATCC	AY261514	233	To assess the
qM3R	TCTCCTCTTCTCCT A TCCCT			transcription levels
qivisk	TCTGCTCTTCTCCTATCCCT			of SpMPK3
qPDSF	ATGCCACGACCAGAAGAT	NM_001247166	200	To assess the
~DDCD	TCCTCTACACAAACCACCC			transcription levels
qPDSR	TGCTGTAGACAAACCACCC			of SpPDS
qCAT1F	GTGGATTATTTGCCCTCG	NM_001247898	152	To assess the
aCATID				transcription levels
qCAT1R	GGTTCCCATGATCTGTACCTC			of SpCAT1
qCAT2F	TCTGAAGCCAAATCCTAAGTC	NM_001247257	109	To assess the
aCAT2D	CAATATCGTCGAAGAGGAAAGT			transcription levels
qCAT2R				of SpCAT2

Note: words in red are restriction sites added to Forward primers and Reverse primers.

Figure S1. Stomatal Development in control (pTRV2:00) and individual and combined gene-silenced plants. (**A**) The distribution of stomata on the leaves of experimental plants. Control plants follow the one-cell spacing rule (**a**); For gene-silenced plants, clustered stomata are formatted in leaves' lower epidermis (**b**–**f**); The order is pTRV2:MPK1, pTRV2:MPK2, pTRV2:MPK3, pTRV2:MPK1/MPK2, pTRV2:MPK1/MPK2/MPK3). Bar = 20 µm in (**a**–**f**); and (**B**) Stomatal index of the adaxial surface of experimental leaves. Stomatal index (SI) is calculated using the formula proposed by Salisbury (1927): $SI = [S/(E+S)] \times 100\%$, where S equals the number of stomata per unit of leaf area and E equals the number of epidermal cells in the same unit area. At least 3 visions from each sample of ten gene-silenced plants were measured. Data represent means \pm SD. Unexpectedly, there is no significant difference between the 5 types of gene-silenced plants and control plants.

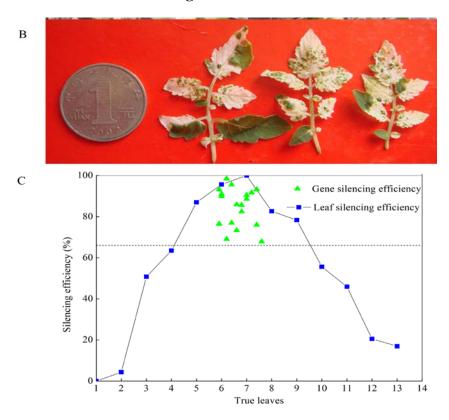

Figure S2. Real-time qRT-PCR analysis of ABA induction of *SpMPK1*, *SpMPK2* and *SpMPK3* genes. 40-day-old wild-type plants were treated with 150 μM ABA for 6 h. Total RNA was obtained from treated plants and analyzed by qRT-PCR using the gene-specific primers listed in Table S1. The graphs indicate the induction fold of the *SpMPK1*, *SpMPK2* and *SpMPK3* genes in response to ABA (150 μM) as compared with that of control (0 μM ABA). The mean value of three technical replicates was normalized to the levels of elongation factor $1-\alpha$ subunit mRNA, an internal control.

Figure S3. Silencing efficiency of *SpPDS* in wild-type tomato plants. (**A**) The photobleaching phenotype induced by pTRV:*PDS* in *Solanum pimpinellifolium*; (**B**) Leaf samples for RNA analysis come from the fifth to the ninth true leaves; and (**C**) Qualification of silencing efficiency. Leaf silencing efficiency is calculated by comparing the number of a certain true leaf that showed symptoms with the total number of plants inoculated with pTRV2:*PDS* 40 days post-inoculation. The experiments were representative of all the silenced plants ($n \ge 50$ at $OD_{600} = 2.0$). Quantitative RT-PCR was performed to evaluate the gene silencing efficiency and it was presented by the reduction of *SpPDS* transcription levels in VIGS plants compared to control plants which were defined as 100%.

Figure S3. Cont.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).