OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms

Article

Photophysical Property and Photocatalytic Activity of New Gd₂InSbO₇ and Gd₂FeSbO₇ Compounds under Visible Light Irradiation

Jingfei Luan * and Yong Xu

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, Jiangsu, China; E-Mail: xuscut2006@163.com

* Author to whom correspondence should be addressed; E-Mail: jfluan@nju.edu.cn; Tel.: +86-135-8520-6718; Fax: +86-25-8370-7304.

Received: 3 December 2012; in revised form: 21 December 2012 / Accepted: 24 December 2012 / Published: 7 January 2013

Abstract: Gd₂InSbO₇ and Gd₂FeSbO₇ were synthesized first, and their structural and photocatalytic properties were studied. The lattice parameters and the band gaps for Gd₂InSbO₇ and Gd₂FeSbO₇ were 10.449546 Å, 10.276026 Å, 2.897 eV and 2.151 eV. The photocatalytic degradation of rhodamine B was performed with Gd₂InSbO₇ and Gd₂FeSbO₇ under visible light irradiation. Gd₂InSbO₇ and Gd₂FeSbO₇ had higher catalytic activity compared with Bi₂InTaO₇. Gd₂FeSbO₇ exhibited higher catalytic activity than Gd₂InSbO₇. The photocatalytic degradation of rhodamine B followed with the first-order reaction kinetics, and the first-order rate constant *k* was 0.01606, 0.02220 or 0.00329 min⁻¹ with Gd₂InSbO₇, Gd₂FeSbO₇ or Bi₂InTaO₇ as photocatalyst. Complete removal of rhodamine B was observed after visible light irradiation for 225 min or 260 min with Gd₂FeSbO₇ or Gd₂InSbO₇ as photocatalyst. The evolution of CO₂ was realized, and it indicated continuous mineralization of rhodamine B during the photocatalytic process. The possible photocatalytic degradation pathway of rhodamine B was proposed.

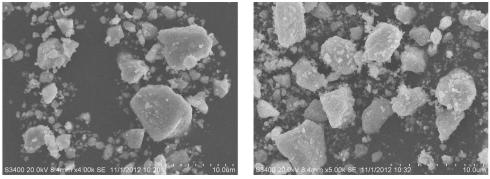
Keywords: inorganic compounds; crystal growth; X-ray diffraction; catalytic properties; optical properties

1. Introduction

Nowadays, with the development of industry, wastewater is yielded in bulk. Particularly, some industries, such as textile and dyeing manufacturing, produce a large amount of dyestuff wastewater [1]. These dyestuffs are usually synthetic aromatic compounds, which are seriously harmful to the aquatic biota. Moreover, the coloration of the wastewater in streams or lakes would absolutely influence the solar illumination, which would affect the growth of creatures and hydrophytes. Among all kinds of dyestuff, rhodamine B (RhB) is one of the most important representatives of xanthene dyes. RhB is toxic and resistant to biodegradation and direct photolysis, thus RhB would have a considerable deleterious effect upon the environmental matrix. RhB undergoes natural reductive anaerobic degradation; as a result, potentially carcinogenic aromatic amines [2,3] are yielded. Moreover, RhB is widely used as a photosensitizer, a quantum counter and an active medium in dye lasers, *etc.* [4,5]. Thus, we use RhB as a probe contaminant to evaluate the activity of new photocatalysts, both under ultraviolet light and visible light irradiation.

In terms of the enormous harm of RhB dye wastewater, it was thoroughly urgent to remove RhB dye from effluents before they were emitted to natural water bodies. At present, several treatment measurements were adopted for RhB dye removal. For example, the technology of adsorption using absorbents [3,6–8], such as activated carbon, has been found to be an efficient technology for decolorization of wastewater. Although it was quite effective for activated carbon to adsorb RhB dye in wastewater, activated carbon was restricted from use because of its high cost and difficulty in being regenerated. Therefore, a novel processing method, photocatalysis, has been developed for removing RhB dye wastewater. Photocatalysis is an advanced oxidation processes and has aroused more and more attention by investigators [9–23], and much scientific research on the photocatalytic degradation of aqueous organic contaminants has been reported [10–31]. Some investigations [2,32–38] about the photodegradation of RhB have been reported under ultraviolet light or visible light irradiation, showing that photocatalysis was an effective degradation method for degrading dye to a large extent.

With the development of the investigation of the photocatalysis process, investigators also paid much attention to researching and developing novel photocatalysts [39-43]. Presently, TiO2 was the most common photocatalyst; however, TiO₂ could not be used in the visible light region and could only degrade RhB under ultraviolet light irradiation. Moreover, ultraviolet light only occupied 4% of sunlight, which was a restrained factor for photocatalysis technology with TiO₂ as the catalyst. Therefore, some efficient catalysts, which could generate electron-hole pairs under visible light irradiation, should be developed, because visible light occupies 43% of sunlight. Fortunately, A₂B₂O₇ compounds were often considered to have photocatalytic properties under visible light irradiation. In our previous work [44], we have found that Bi₂InTaO₇ crystallized with the pyrochlore-type structure and acted as a photocatalyst under visible light irradiation and seemed to have a potential for improvement of the photocatalytic activity upon modification of its structure. Based on the above analysis, we could assume that substitution of Ta⁵⁺ by Sb⁵⁺, substitution of Bi³⁺ by Gd³⁺ and substitution of In³⁺ by Fe³⁺ in Bi₂InTaO₇ might increase carrier concentration; as a result, the new photocatalysts Gd₂InSbO₇ and Gd₂FeSbO₇ might have advanced photocatalytic properties. Gd₂InSbO₇ and Gd₂FeSbO₇ were never synthesized before and never used in the photocatalysis progress. The molecular composition of Gd₂InSbO₇ and Gd₂FeSbO₇ was very similar with other A₂B₂O₇ compounds.


Thus, the resemblance suggested that Gd_2InSbO_7 and Gd_2FeSbO_7 might possess photocatalytic properties under visible light irradiation, which was similar with the other members in the $A_2B_2O_7$ family. This paper reported the preparation process and property characterization of Gd_2InSbO_7 and Gd_2FeSbO_7 . Both Gd_2InSbO_7 and Gd_2FeSbO_7 were semiconductor compounds that were synthesized for the first time. In this contribution, we discussed the structural and photocatalytic properties of Gd_2InSbO_7 and Gd_2FeSbO_7 by degrading RhB under visible light irradiation and compared the photocatalytic activity among Gd_2InSbO_7 , Gd_2FeSbO_7 and Bi_2InTaO_7 in order to elucidate the structure-photocatalytic activity relationship in these newly synthesized compounds.

2. Results and Discussion

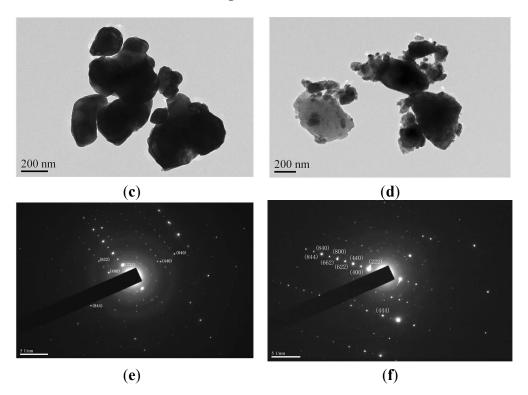

2.1. Characterization

Figure 1a,b show the SEM images of Gd₂InSbO₇ and Gd₂FeSbO₇ with low magnification. Figure 1c,d show the TEM images of Gd₂InSbO₇ and Gd₂FeSbO₇ with high magnification. The results showed that the particle diameter of Gd₂FeSbO₇ was 240 nm and the particle diameter of Gd₂InSbO₇ was 310 nm. The nanosized particles of Gd₂FeSbO₇ and Gd₂InSbO₇ were obtained, and these particles were in inhomogenous global shapes. Figure 1 revealed that the average particle size of Gd₂FeSbO₇ was smaller than that of Gd₂InSbO₇. There were two reasons to obtain nanocrystals in this experiment, while synthesizing Gd₂InSbO₇ and Gd₂FeSbO₇ powders by the solid-state method. Firstly, the powders, which were obtained after a sintering process by an electric furnace, would be ground by mortar three times and then would be ground in a ball mill three times. The total time for grinding the above photocatalyst powders was approximately 15 h. Secondly, the sizes of the photocatalyst particles were different. We utilized a centrifuge to realize separation of the photocatalyst particles, which had different sizes by adjusting the rotation speed of the centrifuge, and the small particles were obtained. SEM-EDS spectrum taken from the prepared Gd₂FeSbO₇ indicated the existence of gadolinium, iron, antimony and oxygen. As to the prepared Gd₂InSbO₇, gadolinium, indium, antimony and oxygen were detected and other elements were not identified.

Figure 1. (a) Scanning electron microscope (SEM) image of Gd_2InSbO_7 with low magnification; (b) SEM image of Gd_2FeSbO_7 with low magnification; (c) Transmission electron microscopy (TEM) image of Gd_2InSbO_7 with high magnification; (d) TEM image of Gd_2FeSbO_7 with high magnification; (e) The selected area electron diffraction (SAED) pattern of Gd_2InSbO_7 ; (f) The SAED pattern of Gd_2FeSbO_7 .

Figure 1. Cont.

X-ray powder diffraction patterns of Gd₂FeSbO₇ and Gd₂InSbO₇ are shown in Figure 2. Figure 3 displays the powder X-ray diffraction patterns of Gd₂InSbO₇ together with full-profile structure refinements of the collected data as obtained by the RIETAN[™] [45] program, which is based on Rietveld analysis. The results of the final refinement for Gd₂FeSbO₇ and Gd₂InSbO₇ manifested an excellent consistency between the observed and calculated intensities for the pyrochlore-type structure, a cubic crystal system and a space group Fd3m (O atoms were included in the model). The lattice parameters of Gd₂InSbO₇ and Gd₂FeSbO₇ were 10.449546 Å and 10.276026 Å, respectively. All the diffraction peaks for Gd₂FeSbO₇ and Gd₂InSbO₇ could be successfully indexed based on the lattice constant and above space group. The atomic coordinates and structural parameters of Gd₂FeSbO₇ and Gd₂InSbO₇ are listed in Tables 1 and 2, respectively. In addition, Our XRD results showed that Gd₂FeSbO₇ and Gd₂InSbO₇ crystallized with the same structure, and 2 theta angles of each reflection of Gd₂InSbO₇ changed with the substitution of In³⁺ by Fe³⁺. The lattice parameter decreased from $\alpha = 10.449546$ Å for Gd₂InSbO₇ to $\alpha = 10.276026$ Å for Gd₂FeSbO₇, indicating a decrease in the lattice parameter of the photocatalyst with the decrease of M ionic radii, Fe^{3+} (0.78 Å) < In³⁺ (0.92 Å). Figure 1e,f show the selected area electron diffraction patterns of Gd₂InSbO₇ and Gd₂FeSbO₇. respectively. It could be seen that Gd₂InSbO₇ and Gd₂FeSbO₇ crystallized with a cubic crystal system, and the lattice parameters α of Gd₂InSbO₇ and Gd₂FeSbO₇ were proved to be 10.449546 Å and 10.276026 Å, respectively. According to the calculation results from Figure 1e,f the main diffraction peaks (222), (440), (400) and (622) for Gd₂InSbO₇ and Gd₂FeSbO₇ could be found and indexed within Figure 1e,f.

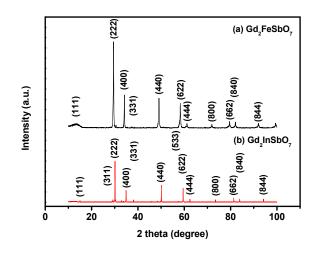


Figure 2. X-ray powder diffraction patterns of (a) Gd₂FeSbO₇ and (b) Gd₂InSbO₇.

Figure 3. X-ray powder diffraction patterns and Rietveld refinements of Gd_2InSbO_7 prepared by a solid-state reaction method at 1320 °C. A difference (observed-calculated) profile is shown beneath. The tic marks represent reflection positions.

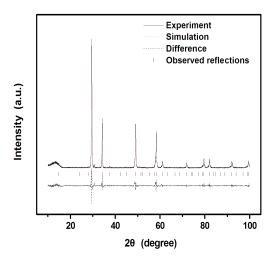


Table 1. Structural parameters of Gd₂FeSbO₇ prepared by the solid state reaction method.

Atom	x	у	Z	Occupation factor
Gd	0.00000	0.00000	0.00000	1.0
Fe	0.50000	0.50000	0.50000	0.5
Sb	0.50000	0.50000	0.50000	0.5
O(1)	-0.20249	0.12500	0.12500	1.0
O(2)	0.12500	0.12500	0.12500	1.0

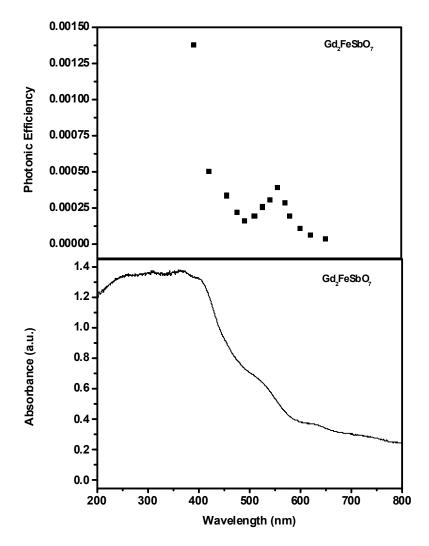
Table 2. Structural parameters of Gd₂InSbO₇ prepared by the solid state reaction method.

Atom	x	у	z	Occupation factor
Gd	0.00000	0.00000	0.00000	1.0
In	0.50000	0.50000	0.50000	0.5
Sb	0.50000	0.50000	0.50000	0.5
O(1)	-0.15469	0.12500	0.12500	1.0
O(2)	0.12500	0.12500	0.12500	1.0

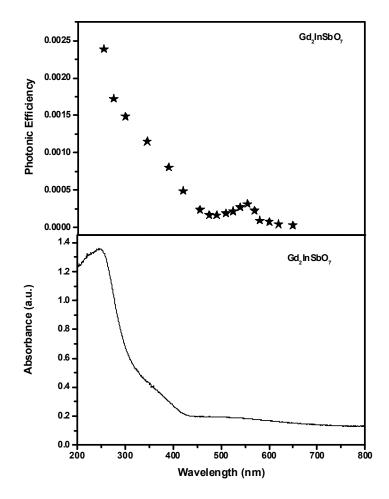
Our X-ray diffraction outcomes showed that Gd₂FeSbO₇, Gd₂InSbO₇ and Bi₂InTaO₇ crystallized with the same pyrochlore-type structure. The cubic system structure with space group Fd3m for Bi₂InTaO₇ remained unchanged, with Ta⁵⁺ being substituted by Sb⁵⁺ and with Bi³⁺ being substituted by Gd^{3+} . The cubic system structure with space group Fd3m for Bi₂InTaO₇ also remained unchanged with Ta^{5+} being substituted by Sb^{5+} with In^{3+} being substituted by Fe^{3+} and with Bi^{3+} being substituted by Gd^{3+} . The result of refinements for Gd_2FeSbO_7 generated the unweighted R factors, $R_P = 16.20\%$ with space group Fd3m. Similarly, the result of refinements for Gd₂InSbO₇ generated the unweighted R factors, $R_{\rm P} = 12.13\%$ with space group *Fd3m*. Zou *et al.* [46] refined the crystal structure of Bi₂InNbO₇ and obtained a large R factor, which was owing to a slightly modified structure model for Bi₂InNbO₇. Based on the high purity of the precursors that were used in this study and the EDS results that did not trace any other elements, it was unlikely that the observed space groups originated from the presence of impurities. Therefore, it was suggested that the slightly high R factor for Gd₂FeSbO₇ or Gd₂InSbO₇ was due to a slightly modified structure model of Gd₂FeSbO₇ or Gd₂InSbO₇. It should be emphasized that the defects or the disorder/order of a fraction of the atoms could result in the change of structures, including different bond-distance distributions, thermal displacement parameters and/or occupation factors for some of the atoms.

The XPS spectra of Gd₂FeSbO₇ and Gd₂InSbO₇ were obtained. The various elemental peaks, which are corresponding to specific binding energies, are given in Table 3. The results further suggested that the oxidative valence state of Gd, Fe, Sb and O ions from Gd₂FeSbO₇ were +3, +3, +5 and -2, respectively. For Gd₂FeSbO₇, the mean atomic ratios of Gd: Fe: Sb: O were 2.00: 1.02: 0.99: 6.96 based on averaging our XPS, SEM-EDS and XFS results. Similarly, the oxidation state of Gd, In, Sb and O ions from Gd₂InSbO₇ were +3, +3, +5 and -2, respectively. For Gd₂InSbO₇ were +3, +3, +5 and -2, respectively. For Gd₂InSbO₇ were +3, +3, +5 and -2, respectively. For Gd₂InSbO₇, the mean atomic ratios of Gd: In: Sb: O were 2.00: 1.03: 0.97: 6.98 based on averaging our XPS, SEM-EDS and XFS results. Consequently, it could be deduced that the final materials were of high purity under our preparation conditions. It was noteworthy that neither shoulders nor widening of any XPS peaks of Gd₂FeSbO₇ or Gd₂InSbO₇ were observed, suggesting the absence of any other phases.

In _{3d5/2} BE (eV)	Sb _{3d5/2} BE (eV)	Fe _{2p3/2} BE (eV)	Gd _{4d5/2} BE (eV)	O _{1s} BE (eV)
	530.85	710.81	143.93	530.35
444.65	530.82		143.85	530.12


Table 3. Binding energies (BE) for key elements.

Figures 4 and 5 present the absorption spectra of Gd_2FeSbO_7 and Gd_2InSbO_7 , respectively. In contrast to the well-known TiO₂, whose absorption edge was less than 380 nm, the absorption edges of newly synthesized Gd_2FeSbO_7 and Gd_2InSbO_7 were found to be 586 nm and 428 nm, respectively, which were in the visible region of the spectrum. It was noteworthy that the apparent absorption (defined hereby as 1-transmission) could not take into consideration reflection and scattering. As a result, the apparent absorbance at sub-bandgap wavelengths (600 to 800 nm for Gd_2FeSbO_7 and 425 to 800 nm for Gd_2InSbO_7) was higher than zero.


For a crystalline semiconductor compound, the optical absorption near the band edge followed the equation [47,48]: $\alpha hv = A (hv - E_g)^n$. Here, A, α , E_g and v denoted proportional constant, absorption

coefficient, band gap and light frequency, respectively. In this equation, *n* determined the character of the transition in a semiconductor compound. E_g and *n* could be calculated by the following steps: (i) plotting $\ln(\alpha hv)$ versus $\ln(hv-E_g)$ assuming an approximate value of E_g , (ii) deducing the value of *n* based on the slope in this graph and (iii) refining the value of E_g by plotting $(\alpha hv)^{1/n}$ versus hv and extrapolating the plot to $(\alpha hv)^{1/n} = 0$. According to this method, Figure 6 shows the plot of $(\alpha hv)^{1/n}$ versus hv for Gd₂FeSbO₇ and Gd₂InSbO₇. It was evidently to be found from Figure 6 that the values of E_g for Gd₂FeSbO₇ and Gd₂InSbO₇ were calculated to be 2.151 eV and 2.897 eV, respectively, while the values of *n* for Gd₂FeSbO₇ possessed a narrower band gap compared with that of Gd₂InSbO₇.

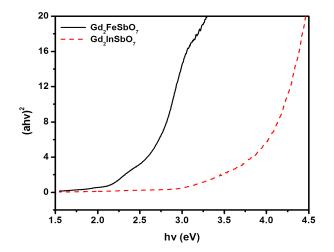
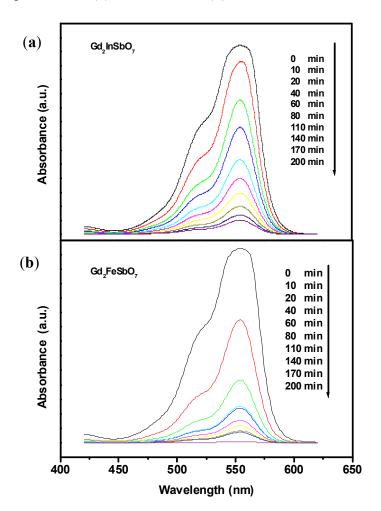

Figure 4. Upper trace: action spectra of rhodamine B degradation with Gd_2FeSbO_7 as catalyst under visible light irradiation. Lower trace: absorption spectra of Gd_2FeSbO_7 .

Figure 5. Upper trace: action spectra of rhodamine B degradation with Gd₂InSbO₇ as catalyst under visible light irradiation. Lower trace: absorption spectra of Gd₂InSbO₇.

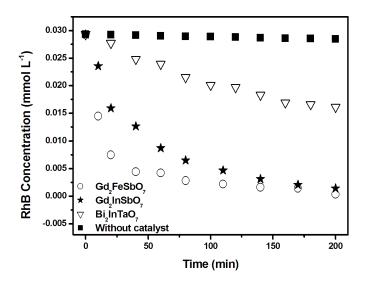
Figure 6. Plot of $(\alpha hv)^2$ versus hv for Gd₂FeSbO₇ and Gd₂InSbO₇.



2.2. Photocatalytic Activity

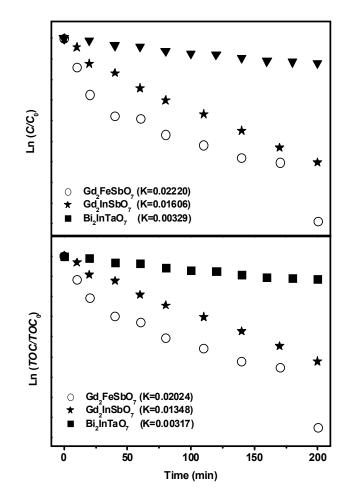
Generally, the photocatalytic process by semiconductors begins with the direct absorption of supra-bandgap photons and the generation of electron-hole pairs within semiconductor particles. This is followed by diffusion of the charge carriers to the surface of the semiconductor particle. Changes in

the UV-Vis spectrum of rhodamine B (RhB) upon exposure to visible light ($\lambda > 400$ nm) with the presence of Gd₂FeSbO₇ or Gd₂InSbO₇ are depicted in Figure 7a,b, respectively. The measurements were performed under oxygen-saturation conditions ([O₂]_{sat} = 1.02 × 10⁻³ M). The degradation of RhB did not occur in darkness within the Gd₂FeSbO₇/RhB suspension or Gd₂InSbO₇/RhB suspension or RhB suspension. It could be seen from Figure 7a and Figure 7b that a reduction of typical RhB peaks at 553.5 nm and 525 nm was clearly noticed. The results showed that the initial degradation rate of RhB was about 2.413 × 10⁻⁹ mol L⁻¹ s⁻¹, and the initial photonic efficiency was estimated to be 0.05069% ($\lambda = 420$ nm) for Gd₂InSbO₇. Similarly, the initial degradation rate of RhB was about 2.322 × 10⁻⁹ mol L⁻¹ s⁻¹, and the initial photonic efficiency was estimated to be 0.04877% ($\lambda = 420$ nm) for Gd₂InSbO₇. For Bi₂InTaO₇, after visible light irradiation for 200 min, the RhB concentration decreased only from 0.0293 mM to 0.0161 mM, and the initial degradation rate of RhB was about 1.1 × 10⁻⁹ mol L⁻¹ s⁻¹. The initial photonic efficiency was estimated to be 0.02311% ($\lambda = 420$ nm) for Bi₂InTaO₇. By contrast, the photonic efficiency of Bi₂InTaO₇ was inferior to that of Gd₂FeSbO₇ or Gd₂InSbO₇.


Figure 7. Temporal spectral changes of aqueous rhodamine B due to visible light irradiation in the presence of (a) Gd_2InSbO_7 or (b) Gd_2FeSbO_7 .

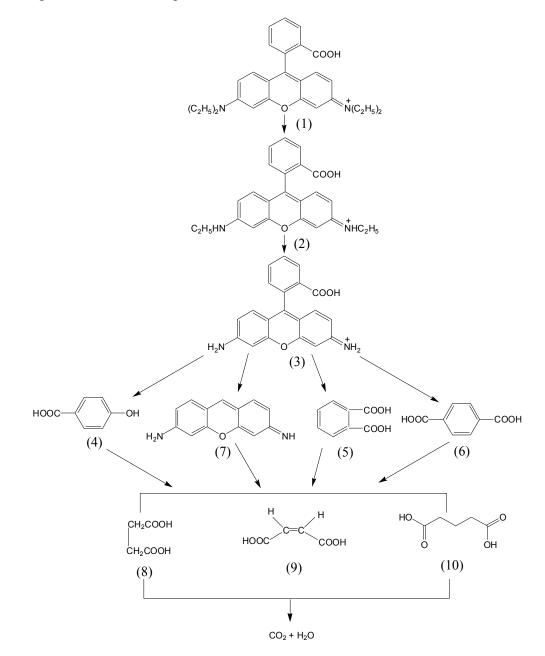
The kinetics of RhB degradation deduced according to the spectral changes under visible light irradiation are shown in Figure 8, which describes the kinetics not only with Gd₂FeSbO₇, Gd₂InSbO₇

and Bi₂InTaO₇ as catalysts, but also without any photocatalyst. As expected, reduction of RhB signal in the controlled measurements in the absence of a photocatalyst was promising. In addition, the photodegradation removal rate of RhB was 90.35%, 77.80% and 26.62% after visible light irradiation for 80 min with Gd₂FeSbO₇, Gd₂InSbO₇ and Bi₂InTaO₇ as catalysts, respectively. Complete removal of rhodamine B was observed after visible light irradiation for 225 min or 260 min with Gd₂FeSbO₇ or Gd₂InSbO₇ as photocatalyst. Based on the above outcomes, it was much faster for Gd₂FeSbO₇ and Gd₂InSbO₇ to photodegrade RhB compared with Bi₂InTaO₇, and the photocatalytic degradation activity of Gd₂FeSbO₇ or Gd₂InSbO₇ for degrading RhB was higher than that of Bi₂InTaO₇; moreover, Gd₂FeSbO₇ showed higher photocatalytic degradation activity than Gd₂InSbO₇. The main reason was that the lattice parameter $\alpha = 10.746410$ Å for Bi₂InTaO₇ was larger than the lattice parameter $\alpha = 10.449546$ Å for Gd₂InSbO₇, and the lattice parameter $\alpha = 10.276026$ Å for Gd₂FeSbO₇, which probably resulted in a decrease for the migration distance of photogenerated electrons and holes to reach the reaction site on the photocatalyst surface; subsequently, the creation of more active sites was realized. As a result, it would probably improve the photocatalytic activities by decreasing the lattice parameter of the photocatalyst.


Figure 8. Photocatalytic degradation of rhodamine B under visible light irradiation in the presence of Gd_2FeSbO_7 , Gd_2InSbO_7 , Bi_2InTaO_7 , as well as in the absence of a photocatalyst.

The first order nature of the photocatalytic degradation kinetics with Gd₂FeSbO₇, Gd₂InSbO₇ and Bi₂InTaO₇ as catalysts is clearly exhibited in Figure 9, which describes a linear correlation between $\ln(C/C_0)$ (or $\ln(TOC/TOC_0)$) and the irradiation time for the photocatalytic degradation of RhB under visible light irradiation by using Gd₂FeSbO₇ or Gd₂InSbO₇ or Bi₂InTaO₇ as catalyst. Here, *C* represented the RhB concentration at time t, and C_0 represented the initial concentration of RhB. *TOC* represented the total organic carbon concentration at time t, and TOC_0 denoted the initial total organic carbon concentration between $\ln(C/C_0)$ and the irradiation time, the apparent first-order rate constant *k* was estimated to be 0.02220 min⁻¹ with Gd₂FeSbO₇ as catalyst, indicating that Gd₂FeSbO₇ and Gd₂InSbO₇ were more effective than Bi₂InTaO₇ for the photocatalytic degradation

of RhB under visible light irradiation. Meanwhile, Gd_2FeSbO_7 showed more effective photocatalytic activity for degrading RhB than Gd_2InSbO_7 . According to the relationship between $ln(TOC/TOC_0)$ and the irradiation time, the apparent first-order rate constant *k* was estimated to be 0.02024 min⁻¹ with Gd_2FeSbO_7 as catalyst, 0.01348 min⁻¹ with Gd_2InSbO_7 as catalyst and 0.00317 min⁻¹ with Bi_2InTaO_7 as catalyst, indicating that the photodegradation intermediate products of RhB were probably produced during the photocatalytic degradation of RhB under visible light irradiation.


Figure 9. Observed first-order kinetic plots for the photocatalytic degradation of rhodamine B with Gd_2FeSbO_7 , Gd_2InSbO_7 or Bi_2InTaO_7 as catalyst under visible light irradiation.

The photodegradation intermediate products of RhB in our experiment were identified as succinic acid (m/z = 118), terephthalic acid (m/z = 166), pentanedioic acid, 3-Hydroxybenzoic acid (m/z = 138), 1,2-benzenedicarboxylic acid and maleic acid (m/z = 116). Based on the intermediate products detected in this work, a possible photocatalytic degradation pathway for RhB is proposed in Figure 10. This pathway was similar, but not identical, to the pathway proposed by Horikoshi *et al.* [49] for the photodegradation of RhB under ultraviolet light illumination assisted by microwave radiation with TiO₂ as catalyst. According to the research from Zhang *et al.* [32], the photodegradation of RhB occurred through two competitive processes: one was *N*-demethylation and the other one was the destruction of the conjugated structure. Thus, we considered that chromophore cleavage, opening-ring and mineralization would be the main photocatalytic degradation pathway of RhB in our experiment.

RhB was converted to smaller organic species, which were ultimately mineralized into inorganic products, such as CO₂ and water. Figure 11 shows CO₂ yields during the photocatalytic degradation of RhB with Gd₂FeSbO₇, Gd₂InSbO₇ or Bi₂InTaO₇ as catalyst under visible light irradiation. The results indicated that the yielded CO₂ increased gradually with the increase of reaction time by using Gd₂FeSbO₇, Gd₂InSbO₇ or Bi₂InTaO₇ as catalyst. The production rate of CO₂ with Gd₂FeSbO₇ or Gd₂InSbO₇ as catalyst was higher than that with Bi₂InTaO₇ as catalyst, which was in line with the absorption curves (Figures 4 and 5) of Gd₂FeSbO₇ and Gd₂InSbO₇. For example, after visible light irradiation for 200 min, the CO₂ production was 0.2366 mmol with Gd₂FeSbO₇ as catalyst.

Figure 10. Suggested photocatalytic degradation pathway scheme for rhodamine B under visible light irradiation in the presence of Gd₂FeSbO₇ or Gd₂InSbO₇.

Figure 11. CO₂ production kinetics during the photocatalytic degradation of rhodamine B with Gd₂FeSbO₇, Gd₂InSbO₇ or Bi₂InTaO₇ as catalyst under visible light irradiation.

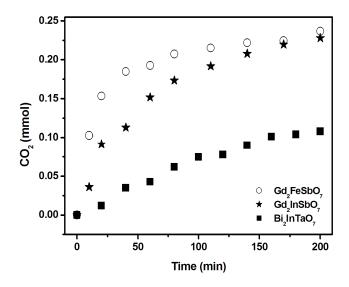
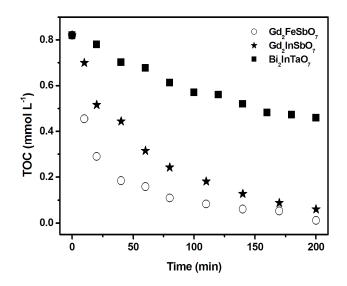



Figure 12 shows the change of the total organic carbon (TOC) for photocatalytic degradation of rhodamine B during visible light irradiation with Gd₂FeSbO₇, Gd₂InSbO₇ or Bi₂InTaO₇ as catalyst. The TOC measurements revealed the disappearance of organic carbon when the RhB solution containing Gd₂FeSbO₇, Gd₂InSbO₇ or Bi₂InTaO₇ was exposed under visible light irradiation. The results showed that 86.70%, 70.49% or 25.26% of TOC decrease was obtained after visible light irradiation for 80 min with Gd₂FeSbO₇, Gd₂InSbO₇ or Bi₂InTaO₇ as catalyst, respectively. The turnover numbers, which were the ratio between total amount of evolved gas and exhausted catalyst, were calculated to be more than 0.18 or 0.19 for Gd₂FeSbO₇ or Gd₂InSbO₇ after 200 min of reaction time under visible light irradiation. The reactions ceased when the light was turned off, indicating an obvious photic response.

Figure 12. Disappearance of the total organic carbon (TOC) during the photocatalytic degradation of rhodamine B with Gd₂FeSbO₇, Gd₂InSbO₇ or Bi₂InTaO₇ as catalyst under visible light irradiation.

The photocatalytic performance of Gd₂FeSbO₇ and Gd₂InSbO₇ was remarkable under visible light irradiation. This superior quality could be even more bracing if one considered the fact that the specific surface areas of Gd₂FeSbO₇ and Gd₂InSbO₇ were further smaller than that of titanium dioxide. In this experiment, BET isotherm measurements gave a specific surface area of 4.12 m² g⁻¹, 3.26 m² g⁻¹ and 1.26 m² g⁻¹ for Gd₂FeSbO₇, Gd₂InSbO₇ and Bi₂InTaO₇, respectively, which was almost 12-times smaller than that of TiO₂ (46.24 m² g⁻¹). The particle sizes of Gd₂InSbO₇ and Gd₂FeSbO₇. Simultaneously, we give the TEM images of Gd₂InSbO₇ and Gd₂FeSbO₇, which represent the average particle size. Because the particle size of Gd₂InSbO₇ and Gd₂FeSbO₇ compounds were greater than 230nm, their specific surface areas were less than 5 m² g⁻¹.

There are three main reasons to choose Gd for producing Gd₂FeSbO₇ and Gd₂InSbO₇ in this paper. Firstly, the substitution of Bi³⁺ by Gd³⁺ and the substitution of Ta⁵⁺ by Sb⁵⁺ in Bi₂InTaO₇ will produce smaller catalyst particles and increase the specific surface area, because the radii of Gd³⁺, Bi³⁺, Ta⁵⁺ and Sb⁵⁺ are 1.053 Å, 1.17 Å, 0.74 Å and 0.60 Å, which shows that the radius of Gd^{3+} is smaller than the radius of Bi^{3+} , and the radius of Sb^{5+} is smaller than the radius of Ta^{5+} . Similarly, the substitution of Bi³⁺ by Gd³⁺, the substitution of In³⁺ by Fe³⁺ and the substitution of Ta⁵⁺ by Sb⁵⁺ in Bi₂InTaO₇ will produce smaller catalyst particles and increase the specific surface area, because the radii of In³⁺ and Fe^{3+} are 0.92 Å and 0.78 Å, which shows that the radius of Gd^{3+} is smaller than the radius of Bi^{3+} , the radius of Fe^{3+} is smaller than the radius of In^{3+} and the radius of Sb^{5+} is smaller than the radius of Ta^{5+} . Thus, the active sites and the catalytic activity will increase. Secondly, the smaller catalyst particles probably result in a decrease of the migration distance of photogenerated electrons and holes, which are formed under visible light irradiation from the grain interior to reach the reaction site on the photocatalyst surface. Subsequently, the photogenerated electrons and the photogenerated holes that reach the surface of the particles in unit time increase, and the creation of more active sites is realized. As a result, it will probably improve the photocatalytic activities with decreasing the particle size of the photocatalyst. Thirdly, some literatures reported that Gd-containing catalyst had excellent catalytic performance [50-53].

Figure 4 and Figure 5 show the action spectra of RhB degradation in the presence of Gd₂FeSbO₇ or Gd₂InSbO₇ under visible light irradiation. A clear photonic efficiency (0.03921% at its maximal point for Gd₂FeSbO₇ and 0.03145% at its maximal point for Gd₂InSbO₇) at wavelengths that corresponded to sub-Eg energies of the photocatalysts (λ from 425 to 800 nm) was observed for Gd₂FeSbO₇ and Gd₂InSbO₇. The existence of photonic efficiency at energies where photons were not absorbed by the photocatalysts, and the correlation between the low-energy action spectrum and the absorption spectrum of RhB clearly demonstrated that any photodegradation at wavelengths above 479 nm should be attributed to the photosensitization by RhB dye itself, the mechanism showing as follows:

$$RhB_{(ads)} \xrightarrow{\text{visible light}} RhB^*_{(ads)}$$
(1)

$$\operatorname{RhB}^{*}_{(ads)} + \operatorname{Gd}_{2}\operatorname{FeSbO}_{7}(\operatorname{or} \operatorname{Gd}_{2}\operatorname{InSbO}_{7}) \rightarrow \operatorname{Gd}_{2}\operatorname{FeSbO}_{7}(\operatorname{or} \operatorname{Gd}_{2}\operatorname{InSbO}_{7})(e) + \operatorname{RhB}^{+}_{(ads)}$$
 (2)

 $Gd_2FeSbO_7 \text{ (or } Gd_2InSbO_7 \text{) (e)} + O_2 \rightarrow Gd_2FeSbO_7 \text{ (or } Gd_2InSbO_7 \text{)} + O_2^-$ (3)

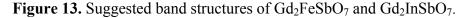
According to this mechanism, RhB adsorbed on Gd₂FeSbO₇ or Gd₂InSbO₇ was excited by visible light irradiation. Subsequently an electron was injected from the excited RhB to the conduction band

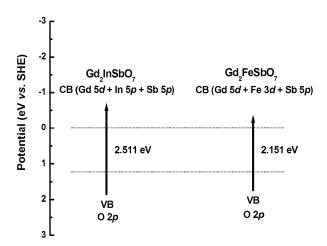
1013

of Gd_2FeSbO_7 or Gd_2InSbO_7 , where the electron was scavenged by molecular oxygen. Scheme I served to explain the results obtained with Gd_2FeSbO_7 or Gd_2InSbO_7 as catalyst under visible light irradiation, where Gd_2FeSbO_7 or Gd_2InSbO_7 might serve to reduce recombination of photogenerated electrons and holes by scavenging of electrons [54].

The situation was different below 479 nm, where the photonic efficiency correlated well with the absorption spectra of Gd_2FeSbO_7 and Gd_2InSbO_7 . This result evidently showed that the mechanism, which was responsible for the photodegradation of RhB, went through band gap excitation of Gd_2FeSbO_7 or Gd_2InSbO_7 . Although detailed experiments about the effect of oxygen and water on the degradation mechanism were not performed, it was sensible to assume that the mechanism in the first steps was similar to the observed mechanism for Gd_2FeSbO_7 or Gd_2InSbO_7 under supra-bandgap irradiation, namely showing below:

$$Gd_2FeSbO_7 \text{ (or } Gd_2InSbO_7) \xrightarrow{\text{Visible light}} h^+ + e^-$$
 (4)


$$e^{-} + O_2 \rightarrow O_2^{-} \tag{5}$$


$$h^+ + OH^- \to OH \tag{6}$$

Previous luminescent studies had shown that the closer the M-O-M bond angle was to 180°, the more delocalized was the excited state [55]; As a result, the charge carriers could move easily in the matrix. The mobility of the photoinduced electrons and holes influenced the photocatalytic activity, because high diffusivity increased the probability that the photogenerated electrons and holes would reach the reactive sites of the catalyst surface. Based on the above results, the lattice parameter $\alpha = 10.276026$ Å for Gd₂FeSbO₇ was smaller than the lattice parameter $\alpha = 10.449546$ Å for Gd₂InSbO₇, thus the photoinduced electrons and holes inside Gd₂FeSbO₇ was easier and faster to reach the reactive sites of the Gd₂FeSbO₇ surface than those inside Gd₂InSbO₇; as a result, the photocatalytic degradation activity of Gd₂FeSbO₇ was higher than that of Gd₂InSbO₇. Moreover, in this experiment, for Gd₂FeSbO₇, the Fe–O–Fe bond angle was 116.424°; at the same time, for Gd₂InSbO₇, the In–O–In bond angle was 123.338°. The above results showed that the Fe–O–Fe bond angle of Gd₂FeSbO₇ or the In-O-In bond angle of Gd₂InSbO₇ was close to 180°, thus the photocatalytic activity of Gd₂FeSbO₇ or Gd₂InSbO₇ was accordingly higher. Moreover, the In–O–In bond angle of Gd₂InSbO₇ was larger than the Fe–O–Fe bond angle of Gd₂FeSbO₇, which led to an increase of photocatalytic activity for Gd₂InSbO₇ compared with that of Gd₂FeSbO₇. The crystal structures of Gd₂FeSbO₇, Gd₂InSbO₇ and Bi₂InTaO₇ were the same, but their electronic structures were considered to be a little different. For Gd₂FeSbO₇ or Gd₂InSbO₇, Sb or In was a 5*p*-block metal element, Gd was a 5*d*-block rare earth metal element and Fe was a 3*d*-block metal element, but for Bi₂InTaO₇, Ta was a 5*d*-block metal element and Bi was a 6p-block metal element, indicating that the photocatalytic activity might be affected not only by the crystal structure of the photocatalysts, but also by the electronic structure of the photocatalysts. According to the above analysis, the difference of RhB photocatalytic degradation among Gd₂FeSbO₇, Gd₂InSbO₇ and Bi₂InTaO₇ could be mainly attributed to the difference of their crystalline structure and electronic structure.

Figure 13 shows the suggested band structures of Gd_2FeSbO_7 and Gd_2InSbO_7 . The positions and width of the conduction band (CB) and the valence band (VB) were investigated by calculating the electronic band structure of Gd_2FeSbO_7 and Gd_2InSbO_7 with the plane-wave-based density functional

method. The band structure calculations of Gd_2FeSbO_7 and Gd_2InSbO_7 were performed with the program of cambridge serial total energy package (CASTEP) and first-principles simulation. The CASTEP calculation was composed of the plane-wave pseudopotential total energy method according to the density functional theory. The generalized gradient approximation (GGA-PBE) and the geometry optimization were adopted. The selected unit cell for calculation was [Gd2FeSbO7]2 or [Gd₂InSbO₇]₂. The pseudo-atomic calculations were accomplished for Gd₂FeSbO₇ with 5d¹6s² (Gd), $3d^{6}4s^{2}$ (Fe), $5s^{2}5p^{3}$ (Sb) and $2s^{2}2p^{4}$ (O). The pseudo-atomic calculations were accomplished for Gd_2InSbO_7 with $5d^16s^2$ (Gd), $5s^25p^1$ (In), $5s^25p^3$ (Sb) and $2s^22p^4$ (O). The self-consistent field tolerance was 1.0×10^{-6} eV/atom. The core electrons were replaced by the ultra-soft pseudopotentials. The FFT grid of the basis was $40 \times 30 \times 30$. The kinetic energy cutoff was 400 eV. $4 \times 5 \times 5$ k-point, and the ultrasoft pseudopotential was applied in the above calculation. The total and partial density of the states of Gd₂FeSbO₇ and Gd₂InSbO₇ was taken into consideration. We determined the band structures of Gd₂InSbO₇ and Gd₂FeSbO₇ by borrowing ideas from the relevant literature [56–62]. Recently, the electronic structures of InMO₄ (M = V, Nb and Ta) and BiVO₄ were reported by Oshikiri et al. based on the first principles calculations [63]. The conduction bands of $InMO_4$ (M = V, Nb and Ta) were mainly composed of a dominant d orbital component from V 3d, Nb 4d and Ta 5d orbitals, respectively. The valence bands of BiVO₄ were composed of a small Bi 6s orbital component and a dominant O 2p orbital component. The band structures of Gd₂FeSbO₇ and Gd₂InSbO₇ should be similar to that of the above compounds. Therefore, we concluded that the conduction band of Gd₂FeSbO₇ was composed of Gd 5d, Fe 3d and Sb 5p orbital components; meanwhile, the valence band of Gd₂FeSbO₇ was composed of a small dominant O 2p orbital component. Similarly, the conduction band of Gd₂InSbO₇ was composed of Gd 5d, In 5p and Sb 5p orbital components; moreover, the valence band of Gd_2InSbO_7 was composed of a small dominant O 2p orbital component. Direct absorption of photons by Gd₂FeSbO₇ or Gd₂InSbO₇ could produce electron-hole pairs within the catalyst, indicating that larger energy than the band gap of Gd₂FeSbO₇ or Gd₂InSbO₇ was necessary for decomposing RhB by photocatalysis.

The presented results indicated that the Gd_2FeSbO_7 (or Gd_2InSbO_7)-visible light photocatalysis system might be regarded as a method for practical treatment of diluted colored waste water. Our Gd_2FeSbO_7 (or Gd_2InSbO_7)-visible light photocatalysis system could be utilized for decolorization, purification and detoxification in the textile, printing and dyeing industries within semi-arid countries. We designed Gd₂FeSbO₇ (or Gd₂InSbO₇)-visible light photocatalysis system without demanding chemical reagents or using the high pressure of oxygen or heating. The decolorized and detoxified water was submitted to our new system for treatment, and the results showed that the Gd₂FeSbO₇ (or Gd₂InSbO₇)-visible light photocatalysis system might provide a valuable treatment for purifying and reusing colored aqueous effluents.

3. Experimental Section

The novel photocatalysts were synthesized by a solid-state reaction method. Gd_2O_3 , Bi_2O_3 , Fe_2O_3 , In₂O₃, Sb₂O₅ and Ta₂O₅ with purity of 99.99% (Sinopharm Group Chemical Reagent Co., Ltd., Shanghai, China) were used as starting materials. All powders were dried at 200 °C for 4 h before synthesis. For the sake of synthesizing Gd₂FeSbO₇, the precursors were stoichiometrically churned up, subsequently pressed into small columns and put into an alumina crucible (Shenyang Crucible Co., LTD, Shenyang, China). Eventually, calcination was performed at 1250 °C for 65 h in an electric furnace (KSL 1700X, Hefei Kejing Materials Technology CO., LTD, Hefei, China). Similarly, Gd₂InSbO₇ was prepared by calcination at 1320 °C for 65 h, and Bi₂InTaO₇ was prepared by calcination at 1050 °C for 46 h. The crystal structures of Gd₂FeSbO₇ and Gd₂InSbO₇ were analyzed by the powder X-ray diffraction method (D/MAX-RB, Rigaku Corporation, Tokyo, Japan) with CuKa radiation ($\lambda = 1.54056$ angstrom). The data were collected at 295 K with a step-scan procedure in the range of $2\theta = 10-100^\circ$. The step interval was 0.02° , and the time per step was 1.2 s. The chemical composition of Gd₂InSbO₇ and Gd₂FeSbO₇ was inspected by scanning electron microscope-X-ray energy dispersion spectrum (SEM-EDS, LEO 1530VP, LEO Electron Microscopy Inc., New York, NY, USA) and X-ray fluorescence spectrometer (XFS, ARL-9800, Thermo ARL, ARL Applied Research Laboratories S.A., Ecublens, Switzerland). The Gd³⁺ content, Sb⁵⁺ content, Fe³⁺ content, In³⁺ content and O²⁻ content of Gd₂FeSbO₇ and Gd₂InSbO₇ were detected by X-ray photoelectron spectroscopy (XPS, ESCALABMK-2, VG Scientific Ltd., East Grinstead, UK). The chemical composition within the depth profile of Gd₂FeSbO₇ or Gd₂InSbO₇ was examined by the argon ion denudation method when X-ray photoelectron spectroscopy was used. The optical absorption of Gd₂FeSbO₇ and Gd₂InSbO₇ was analyzed with an UV-visible spectrophotometer (Lambda 40, Perkin-Elmer Corporation, Waltham, MA, USA). The surface areas of Gd₂InSbO₇ Gd₂FeSbO₇ and Bi₂InTaO₇ were surveyed by the Brunauer-Emmett-Teller (BET) method (MS-21, Quantachrome Instruments Corporation, Boynton Beach, FL, USA), with N₂ adsorption at liquid nitrogen temperature. The particle sizes of the photocatalysts were measured by Malvern's mastersize-2000 particle size analyzer (Malvern Instruments Ltd, Worcestershire, United Kingdom). The particle morphology of Gd₂FeSbO₇ and Gd₂InSbO₇ were measured by transmission electron microscope (TEM, Tecnal F20 S-Twin, FEI Corporation, Hillsboro, OR, USA).

The photocatalytic degradation of rhodamine B (RhB) (Tianjin Kermel Chemical Reagent Co., Ltd., Tianjin, China) was performed with Gd₂InSbO₇ or Gd₂FeSbO₇ or Bi₂InTaO₇ powder (0.8 g) suspended in RhB (300 mL 0.0293 mmol) solution by a pyrex glass cell (Jiangsu Yancheng Huaou Industry, Yancheng, China). Before visible light irradiation, the suspensions were magnetically stirred in darkness for 45 min to make sure the establishment of an adsorption/desorption equilibrium among

Gd₂FeSbO₇, Gd₂InSbO₇, Bi₂InTaO₇, the RhB dye and atmospheric oxygen. The photocatalytic reaction system was composed of a 300 W Xe arc lamp, which was a light resource, with the main emission wavelength at 436 nm (Nanjing JYZCPST CO., LTD, Nanjing, China), a magnetic stirrer and a cut-off filter ($\lambda > 400$ nm, Jiangsu Nantong JSOL Corporation, Nantong, China). The Xe arc lamp was surrounded by a quartz jacket and was placed inside a photoreactor quartz vessel (5.8 cm in diameter and 68 cm in length) by which a suspension of RhB and the photocatalyst was circulated. An outer recycling water glass jacket maintained a near constant reaction temperature (22 °C), and the solution was stirred and aerated continuously. Two milliliters aliquots were sampled at various time intervals. The incident photon flux Io measured by a radiometer (Model FZ-A, Photoelectric Instrument Factory Beijing Normal University, Beijing, China) was determined to be 4.76×10^{-6} Einstein L⁻¹ s⁻¹ under visible light irradiation (wavelength range of 400-700 nm). The incident photon flux on the photoreactor was varied by adjusting the distance between the photoreactor and the Xe arc lamp. The initial pH value of the liquid was 7.0 and was not adjusted subsequently. The concentration of RhB was determined based on the absorption at 553.5 nm measured by an UV-Vis spectrophotometer (Lambda 40, Perkin-Elmer Corporation, Waltham, MA, USA). The inorganic products obtained from RhB degradation were analyzed by ion chromatograph (DX-300, Dionex Corporation, Sunnyvale, CA, USA). The identification of RhB and the degradation intermediate products of RhB were performed by gas chromatograph—mass spectrometer (GC-MS, HP 6890 series gas chromatograph, AT[™] column, 20.3 m \times 0.32 mm, ID of 0.25 µm) operating at 320 °C, which was connected to a HP 5973 mass selective detector and a flame ionization detector, with H₂ as the carried gas. The intermediate products of RhB were measured by liquid chromatograph-mass spectrometer (LC-MS, Thermo Quest LCQ Duo, Atlanta, GA, USA, Beta Basic- C_{18} HPLC column: 150×2.1 mm, ID of 5 µm, Finnigan, Thermo, Atlanta, GA, USA). Here, post-photocatalysis solution (20 µL) was injected automatically into the LC-MS system. The eluent contained 60% methanol and 40% water, and the flow rate was 0.2 mL min⁻¹. MS conditions included an electrospray ionization interface, a capillary temperature of 27 °C with a voltage of 19.00 V, a spray voltage of 5000 V and a constant sheath gas flow rate. The spectrum was acquired in the negative ion scan mode, sweeping the m/z range from 50 to 600. Evolution of CO₂ was analyzed with an intersmat[™] IGC120-MB gas chromatograph equipped with a porapack Q column (3 m in length and an inner diameter of 0.25 in.), which was connected to a catharometer detector.

The total organic carbon (TOC) concentration was determined with a TOC analyzer (TOC-5000, Shimadzu Corporation, Kyoto, Japan). The photonic efficiency was calculated according to the following equation [64]:

$$\xi = R / I_0 \tag{7}$$

where φ was the photonic efficiency (%), *R* was the rate of RhB degradation (Mol L⁻¹ s⁻¹) and *I*_o was the incident photon flux (Einstein L⁻¹ s⁻¹).

4. Conclusions

Gd₂FeSbO₇ and Gd₂InSbO₇ were prepared by the solid-state reaction method for the first time. The structural, optical absorption and photocatalytic properties of Gd₂FeSbO₇ and Gd₂InSbO₇ were investigated and compared with Bi₂InTaO₇. XRD results indicated that Gd₂FeSbO₇ and Gd₂InSbO₇

crystallized with the pyrochlore-type structure, cubic crystal system and space group Fd3m. The lattice parameters of Gd₂FeSbO₇ and Gd₂InSbO₇ were found to be $\alpha = 10.276026$ Å and $\alpha = 10.449546$ Å. The band gaps of Gd₂FeSbO₇ and Gd₂InSbO₇ were estimated to be about 2.151 eV and 2.897 eV, indicating that Gd₂FeSbO₇ and Gd₂InSbO₇ showed a strong optical absorption in the visible light region ($\lambda > 400$ nm). Photocatalytic degradation of aqueous RhB was observed under visible light irradiation in the presence of Gd₂FeSbO₇ and Gd₂InSbO₇ accompanied with the formation of final products, such as CO₂ and water. Complete removal of carbon from RhB was obtained, as indicated from TOC and CO₂ yield measurements, with Gd₂FeSbO₇ or Gd₂InSbO₇ as catalyst under visible light irradiation. A Gd₂FeSbO₇ or (Gd₂InSbO₇) visible light photocatalysis system could be regarded as an effective way for treating textile industry wastewater. Gd₂FeSbO₇ or Gd₂InSbO₇ also showed higher photocatalytic activity compared with Bi₂InTaO₇ for RhB photocatalytic degradation under visible light irradiation. Moreover, Gd₂FeSbO₇ exhibited higher catalytic activity than Gd₂InSbO₇. The photocatalytic degradation of RhB was in line with the first-order reaction kinetics. The apparent first-order rate constant k was 0.01606, 0.02220 and 0.00318 min⁻¹ with Gd₂FeSbO₇, Gd₂InSbO₇ or Bi₂InTaO₇ as catalyst. The possible photocatalytic degradation pathway of RhB was proposed under visible light irradiation.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21277067). This work was supported by a grant from the China-Israel Joint Research Program in Water Technology and Renewable Energy (No. 5). This work was supported by a grant from The Fourth Technological Development Scheming (Industry) Program of Suzhou City of China from 2010 (SYG201006). This work was supported by a grant from the Fundamental Research Funds for the Central Universities.

References

- 1. Bhatnagar, A.; Jain, A.K. A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water. *J. Colloid Interface Sci.* **2005**, *281*, 49–55.
- 2. Fu, H.B.; Pan, C.S.; Yao, W.Q.; Zhu, Y.F. Visible-light-induced degradation of rhodamine B by nanosized Bi₂WO₆. *J. Phys. Chem. B* **2005**, *109*, 22432–22439.
- Guo, Y.P.; Zhao, J.Z.; Zhang, H.; Yang, S.F.; Qi, J.R.; Wang, Z.C.; Xu, H.D. Use of rice husk-based porous carbon for adsorption of Rhodamine B from aqueous solutions. *Dyes Pigm*. 2005, 66, 123–128.
- 4. Gupta, V.K.; Ali, I.; Saini, V.K. Removal of rhodamine B, fast green and methylene blue from wastewater using red mud, an aluminum industry waste. *Ind. Eng. Chem. Res.* **2004**, *43*, 1740–1747.
- 5. Fujii, T.; Nishikiori, H.; Tamura, T. Absorption-Spectra of Rhodamine-B dimers in dip-coated thin-films prepared by the sol-gel method. *Chem. Phy. Lett.* **1995**, *233*, 424–429.
- 6. Wang, S.B.; Li, H.T. Dye adsorption on unburned carbon: Kinetics and equilibrium. *J. Hazard. Mater.* **2005**, *126*, 71–77.

- 7. Wang, S.B.; Boyjoo, Y.; Choueib, A. A comparative study of dye removal using fly ash treated by different methods. *Chemosphere* **2005**, *60*, 1401–1407.
- 8. Gupta, V.K.; Jain, R.; Malathi, S.; Nayak, A. Adsorption-desorption studies of indigocarmine from industrial effluents by using deoiled mustard and its comparison with charcoal. *J. Colloid Interface Sci.* **2010**, *348*, 628–633.
- 9. Ohsaki, H.; Kanai, N.; Fukunaga, Y.; Suzuki, M.; Watanabe, T.; Hashimoto, K. Photocatalytic properties of SnO₂/TiO₂ multilayers. *Thin Solid Films* **2006**, *502*, 138–142.
- Davit, P.; Martra, G.; Coluccia, S.; Augugliaro, V.; Lopez, E.G.; Loddo, V.; Marci, G.; Palmisano, L.; Schiavello, M. Adsorption and photocatalytic degradation of acetonitrile: FT-IR investigation. J. Mol. Catal. A 2003, 204, 693–701.
- 11. Kim, S.; Choi, W. Dual photocatalytic pathways of trichloroacetate degradation on TiO₂: Effects of nanosized platinum deposits on kinetics and mechanism. *J. Phys. Chem. B* **2002**, *106*, 13311–13317.
- Luan, J.F.; Ma, K.; Wang, S.; Hu, Z.T.; Li, Y.M.; Pan, B.C. Research on Photocatalytic Degradation Pathway and Degradation Mechanisms of Organics. *Curr. Org. Chem.* 2010, 14, 645–682.
- 13. Chatterjee, D.; Mahata, A. Visible light induced photodegradation of organic pollutants on dye adsorbed TiO₂ surface. *J. Photochem. Photobiol. A* **2002**, *153*, 199–204.
- Fabbri, D.; Prevot, A.B.; Zelano, V.; Ginepro, M.; Pramauro, E. Removal and degradation of aromatic compounds from a highly polluted site by coupling soil washing with photocatalysis. *Chemosphere* 2008, 71, 59–65.
- 15. Sohrabi, M.R.; Ghavami, M. Comparison of Direct Yellow 12 dye degradation efficiency using UV/semiconductor and UV/H(2)O(2)/semiconductor systems. *Desalination* **2010**, *252*, 157–162.
- 16. Franch, M.I.; Peral, J.; Domenech, X.; Howe, R.F.; Ayllon, J.A. Enhancement of photocatalytic activity of TiO₂ by adsorbed aluminium(III). *Appl. Catal. B* **2005**, *55*, 105–113.
- Yamashita, H.; Nose, H.; Kuwahara, Y.; Nishida, Y.; Yuan, S.; Mori, K. TiO₂ photocatalyst loaded on hydrophobic Si₃N₄ support for efficient degradation of organics diluted in water. *Appl. Catal. A* 2008, *350*, 164–168.
- Neppolian, B.; Yamashita, H.; Okada, Y.; Nishijima, H.; Anpo, M. Preparation of unique TiO₂ nano-particle photocatalysts by a multi-gelation method for control of the physicochemical parameters and reactivity. *Catal. Lett.* 2005, *105*, 111–117.
- An, H.Q.; Zhou, J.; Li, J.X.; Zhu, B.L.; Wang, S.R.; Zhang, S.M.; Wu, S.H.; Huang, W.P. Deposition of Pt on the stable nanotubular TiO₂ and its photocatalytic performance. *Catal. Commun.* 2009, 11, 175–179.
- Davit, P.; Martra, G.; Coluccia, S. Photocatalytic degradation of organic compounds on TiO₂ powders: FT-IR investigation of surface reactivity and mechanistic aspects. *J. Jpn. Pet. Inst.* 2004, 47, 359–376.
- 21. Cernigoj, U.; Stangar, U.L.; Trebse, P. Degradation of neonicotinoid insecticides by different advanced oxidation processes and studying the effect of ozone on TiO₂ photocatalysis. *Appl. Catal. B* **2007**, *75*, 229–238.
- 22. Sohrabi, M.R.; Ghavami, M. Photocatalytic degradation of Direct Red 23 dye using UV/TiO2: Effect of operational parameters. *J. Hazard. Mater.* **2008**, *153*, 1235–1239.

- Franch, M.I.; Peral, J.; Domenech, X.; Ayllon, J.A. Aluminium(III) adsorption: A soft and simple method to prevent TiO₂ deactivation during salicylic acid photodegradation. *Chem. Commun.* 2005, 14, 1851–1853.
- Hammami, S.; Bellakhal, N.; Oturan, N.; Oturan, M.A.; Dachraoui, M. Degradation of Acid Orange 7 by electrochemically generated (OH)-O-center dot radicals in acidic aqueous medium using a boron-doped diamond or platinum anode: A mechanistic study. *Chemosphere* 2008, 73, 678–684.
- Luan, J.F.; Pan, B.C.; Paz, Y.; Li, Y.M.; Wu, X.S.; Zou, Z.G. Structural, photophysical and photocatalytic properties of new Bi₂SbVO₇ under visible light irradiation. *Phys. Chem. Chem. Phys.* 2009, *11*, 6289–6298.
- Arana, J.; Rendon, E.T.; Rodriguez, J.M.D.; Melian, J.A.H.; Diaz, O.G.; Pena, J.P. FTIR study of the photocatalytic degradation of NH⁴⁺ determination wastes. *J. Photochem. Photobiol. A* 2002, 148, 215–222.
- Arana, J.; Nieto, J.L.M.; Melian, J.A.H.; Rodriguez, J.M.D.; Diaz, O.G.; Pena, J.P.; Bergasa, O.; Alvarez, C.; Mendez, J. Photocatalytic degradation of formaldehyde containing wastewater from veterinarian laboratories. *Chemosphere* 2004, 55, 893–904.
- Vijayabalan, A.; Selvam, K.; Velmurugan, R.; Swaminathan, M. Photocatalytic activity of surface fluorinated TiO₂-P25 in the degradation of Reactive Orange 4. *J. Hazard. Mater.* 2009, *172*, 914–921.
- 29. Arana, J.; Rodriguez, J.M.D.; Diaz, O.G.; Melian, J.A.H.; Pena, J.P. Comparative study on the photocatalytic mineralization of homologous aliphatic acids and alcohols. *Appl. Surface Sci.* 2006, *252*, 8193–8202.
- Eslami, A.; Nasseri, S.; Yadollahi, B.; Mesdaghinia, A.; Vaezi, F.; Nabizadeh, R.; Nazmara, S. Photocatalytic degradation of methyl tert-butyl ether (MTBE) in contaminated water by ZnO nanoparticles. *J. Chem. Technol. Biotechnol.* 2008, *83*, 1447–1453.
- Arana, J.; Cabo, C.G.I.; Rodriguez, C.F.; Melian, J.A.H.; Mendez, J.A.O.; Rodriguez, J.M.D.; Pena, J.P. Combining TiO₂-photocatalysis and wetland reactors for the efficient treatment of pesticides. *Chemosphere* 2008, *71*, 788–794.
- Li, J.P.; Zhang, X.; Ai, Z.H.; Jia, F.L.; Zhang, L.Z.; Lin, J. Efficient visible light degradation of rhodamine B by a photo-electrochemical process based on a Bi₂WO₆ nanoplate film electrode. *J. Phys. Chem. C* 2007, *111*, 6832–6836.
- 33. Li, X.; Ye, J.H. Photocatalytic degradation of rhodamine B over Pb₃Nb₄O₁₃/fumed SiO₂ composite under visible light irradiation. *J. Phys. Chem. C* **2007**, *111*, 13109–13116.
- 34. Wu, J.M. Photodegradation of rhodamine B in water assisted by titania nanorod thin films subjected to various thermal treatments. *Environ. Sci. Technol.* **2007**, *41*, 1723–1728.
- 35. Wu, J.M.; Zhang, T.W. Photodegradation of rhodamine B in water assisted by titania films prepared through a novel procedure. *J. Photochem. Photobiol. A* **2004**, *162*, 171–177.
- Li, J.Q.; Li, L.P.; Zheng, L.; Xian, Y.Z.; Jin, L.T. Photoelectrocatalytic degradation of rhodamine B using Ti/TiO₂ electrode prepared by laser calcination method. *Electrochim. Acta* 2006, *51*, 4942–4949.

- Qu, P.; Zhao, J.C.; Shen, T.; Hidaka, H. TiO₂-assisted photodegradation of dyes: A study of two competitive primary processes in the degradation of RB in an aqueous TiO₂ colloidal solution. *J. Mol. Catal. A* 1998, *129*, 257–268.
- Zhao, J.C.; Wu, T.X.; Wu, K.Q.; Oikawa, K.; Hidaka, H.; Serpone, N. Photoassisted degradation of dye pollutants.
 Degradation of the cationic dye rhodamine B in aqueous anionic surfactant/TiO₂ dispersions under visible light irradiation: Evidence for the need of substrate adsorption on TiO2 particles. *Environ. Sci. Technol.* 1998, *32*, 2394–2400.
- Luan, J.F.; Ma, K.; Zhang, L.Y.; Li, M.; Li, Y.M.; Pan, B.C. Research on Different Preparation Methods of New Photocatalysts. *Curr. Org. Chem.* 2010, 14, 683–698.
- 40. Kitano, M.; Takeuchi, M.; Matsuoka, M.; Thomas, J.M.; Anpo, M. Preparation of visible light-responsive TiO₂ thin film photocatalysts by an RF magnetron sputtering deposition method and their photocatalytic reactivity. *Chem. Lett.* **2005**, *34*, 616–617.
- Anpo, M.; Yamashita, H.; Ikeue, K.; Fujii, Y.; Zhang, S.G.; Ichihashi, Y.; Park, D.R.; Suzuki, Y.; Koyano, K.; Tatsumi, T. Photocatalytic reduction of CO₂ with H₂O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts. *Catal. Today* **1998**, *44*, 327–332.
- 42. Anpo, M.; Takeuchi, M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J. Catal. 2003, 216, 505–516.
- Hamadanian, M.; Reisi-Vanani, A.; Majedi, A. Preparation and characterization of S-doped TiO₂ nanoparticles, effect of calcination temperature and evaluation of photocatalytic activity. *Mater. Chem. Phys.* 2009, *116*, 376–382.
- Luan, J.F.; Zhao, W.; Feng, J.W.; Cai, H.L.; Zheng, Z.; Pan, B.C.; Wu, X.S.; Zou, Z.G.; Li, Y.M. Structural, photophysical and photocatalytic properties of novel Bi₂AlVO₇. *J. Hazard. Mater.* 2009, *164*, 781–789.
- 45. Izumi, F. A software package for the Rietveld analysis of X-ray and neutron diffraction patterns. *J. Crystallogr. Assoc. Jpn.* **1985**, *27*, 23–26.
- 46. Zou, Z.; Ye, J.; Arakawa, H. Preparation, structural and photophysical properties of Bi₂InNbO₇ compound. *J. Mater. Sci. Lett.* **2000**, *19*, 1909–1911.
- 47. Tauc, J.; Grigorov, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium. *Phys. Status Solidi* **1966**, *15*, 627–637.
- 48. Butler, M.A. Photoelectrolysis and physical-properties of semiconducting electrode WO₃. *J. Appl. Phys.* **1977**, *48*, 1914–1920.
- 49. Horikoshi, S.; Saitou, A.; Hidaka, H.; Serpone, N. Environmental remediation by an integrated microwave/UV illumination method. V. Thermal and nonthermal effects of microwave radiation on the photocatalyst and on the photodegradation of rhodamine-b under UV/Vis radiation. *Environ. Sci. Technol.* **2003**, *37*, 5813–5822.
- 50. Li, G.R.; Qu, D.L.; Arurault, L.; Tong, Y.X. Hierarchically Porous Gd³⁺-Doped CeO₂ Nanostructures for the Remarkable Enhancement of Optical and Magnetic Properties. *J. Phys. Chem. C* 2009, *113*, 1235–1241.
- 51. Selvan, R.K.; Gedanken, A.; Anilkumar, P.; Manikandan, G.; Karunakaran, C. Synthesis and Characterization of Rare Earth Orthovanadate (RVO₄; R = La, Ce, Nd, Sm, Eu & Gd) Nanorods/Nanocrystals/Nanospindles by a Facile Sonochemical Method and Their Catalytic Properties. J. Cluster Sci. 2009, 20, 291–305.

- Perles, J.; Fortes-Revilla, C.; Gutierrez-Puebla, E.; Iglesias, M.; Monge, M.A.; Ruiz-Valero, C.; Snejko, N. Synthesis, structure and catalytic properties of rare-earth ternary sulfates. *Chem. Mater.* 2005, *17*, 2701–2706.
- Wang, W.; Su, C.; Ran, R.; Shao, Z.P. A new Gd-promoted nickel catalyst for methane conversion to syngas and as an anode functional layer in a solid oxide fuel cell. *J. Power Sources* 2011, *196*, 3855–3862.
- Nasr, C.; Vinodgopal, K.; Fisher, L.; Hotchandani, S.; Chattopadhyay, A.K.; Kamat, P.V. Environmental photochemistry on semiconductor surfaces. Visible light induced degradation of a textile diazo dye, naphthol blue black, on TiO₂ nanoparticles. *J. Phys. Chem.* **1996**, *100*, 8436–8442.
- 55. Wiegel, M.; Middel, W.; Blasse, G. Influence of NS₂ ions on the luminescence of niobates and tantalates. *J. Mater. Chem.* **1995**, *5*, 981–983.
- 56. Li, N.; Xiao, H.Y.; Zu, X.T.; Wang, L.M.; Ewing, R.C.; Lian, J.; Gao, F. First-principles study of electronic properties of La₂Hf₂O₇ and Gd₂Hf₂O₇. *J. Appl. Phys.* **2007**, *102*, 063704:1–063704:6.
- Luan, J.F.; Zhang, L.Y.; Ma, K.; Li, Y.M.; Zou, Z.G. Preparation and property characterization of new Y₂FeSbO₇ and In₂FeSbO₇ photocatalysts. *Solid State Sci.* **2011**, *13*, 185–194.
- Charifi, Z.; Reshak, A.H.; Baaziz, H. Phase transition of LaX (X = P, As, Sb and Bi) at high pressure: Theoretical investigation of the structural and electronic properties. *Solid State Commun.* 2008, *148*, 139–144.
- 59. Vajenine, G.V.; Hoffmann, R.; zurLoye, H.C. The electronic structures and magnetic properties of one-dimensional ABO₆ chains in Sr₃ABO₆ (A = Co,Ni; B = Pt,Ir) and two-dimensional MO₃ sheets in InMO₃ (M = Fe,Mn). *Chem. Phys.* **1996**, *204*, 469–478.
- Luo, H.Z.; Zhu, Z.Y.; Liu, G.D.; Xu, S.F.; Wu, G.H.; Liu, H.Y.; Qu, J.P.; Li, Y.X. *Ab-initio* investigation of electronic properties magnetism of half-Heusler alloys XCrAl (X = Fe, Co, Ni) and NiCrZ (Z = Al, Ga, In). *Phys. B Condens. Matter* **2008**, *403*, 200–206.
- 61. Xiang, H.P.; Wu, Z.J.; Meng, J. Theoretical investigation on the magnetic and electronic properties of Sr₂BMoO₆ (B = Fe, Co). *Phys. Status Solidi B* **2005**, *242*, 1414–1421.
- 62. Zhou, A.; Liu, L.S.; Shu, C.C.; Zhai, P.C.; Zhao, W.Y.; Zhang, Q.J. Electronic Structures and Transport Properties of RFe₄Sb₁₂ (R = Na, Ca, Nd, Yb, Sn, In). *J. Electron. Mater.* **2011**, *40*, 974–979.
- Oshikiri, M.; Boero, M.; Ye, J.H.; Zou, Z.G.; Kido, G. Electronic structures of promising photocatalysts InMO₄ (M = V, Nb, Ta) and BiVO4 for water decomposition in the visible wavelength region. *J. Chem. Phys.* 2002, *117*, 7313–7318.
- 64. Marugan, J.; Hufschmidt, D.; Sagawe, G.; Selzer, V.; Bahnemann, D. Optical density and photonic efficiency of silica-supported TiO₂ photocatalysts. *Water Res.* **2006**, *40*, 833–839.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).