Supporting Information

1. Instrumentation and Reagents

Peptide synthesis was performed on a Zinsser Sophas synthesizer starting from Wang resin ($0.8 \mathrm{mmol} / \mathrm{g} ; 100-200 \mathrm{mesh}$) using standard Fmoc-chemistry. All commercially available reagents and solvents were used without further purification.

HPLC purifications were performed on a preparative HPLC Shimazu LC-8A equipped with a Shimazu SPD-20A UV detector. The column used for separation was a Jupiter Proteo $4 \mu 90 \AA$ $250 \times 21.2 \mathrm{~mm}$, flow: $17 \mathrm{~mL} / \mathrm{min}$, eluents: $\mathrm{H}_{2} \mathrm{O}+0.1 \% \mathrm{HCOOH}(\mathrm{A}), \mathrm{CH}_{3} \mathrm{CN}+0.1 \% \mathrm{HCOOH}(\mathrm{B})$, gradient: $0-30 \mathrm{~min} 5 \%-35 \% \mathrm{~B}, \lambda_{\text {det }}=226 \mathrm{~nm}$. The chromatographic column used for separations in UHPLC analysis was a Zorbax RRHP Eclipse Plus C18 $2.1 \times 100 \mathrm{~mm}, 1.8 \mu \mathrm{~m}$, flow $0.2 \mathrm{~mL} / \mathrm{min}$, eluents: $\mathrm{H}_{2} \mathrm{O}+0.1 \% \mathrm{HCOOH}(\mathrm{A}), \mathrm{CH}_{3} \mathrm{CN}+0.1 \% \mathrm{HCOOH}$ (B), gradient: $0-5 \mathrm{~min} 10 \%-90 \% \mathrm{~B}$. Aqueous phases were concentrated at reduced pressure using a Genevac EZ-2 Plus centrifuge.

The UPLC/MS analysis were performed using an Agilent 1290 Infinity UPLC equipped with diode array and ESI-MS detector. The chromatographic column used was an Agilent RRHD Zorbax Eclipse Plus C18 ($2.1 \times 150 \mathrm{~mm} 1.8 \mathrm{micron}$), flow $0.2 \mathrm{~mL} / \mathrm{min}$, from 2% to $52 \% \mathrm{CAN}+0.1 \% \mathrm{HCOOH}$ in 5 min . High resolution mass-spectra were recorded on a Mariner ESI-TOF spectrometer (Perceptive BioSystems) in positive ion mode, as indicated.

Kinetic experiments were performed on a Varian Cary 100 UV/Vis spectrophotometer equipped with thermostatted multiple cell holders.

Fluorescence spectra were recorded on a Varian Cary Eclipse Fluorescence spectrophotometer equipped with a thermostatted cell holder.

2. Protocols

All binding studies and kinetic studies were performed in an analogous manner, as reported before by Zaramella, et al. [21].

3. Synthesis and Characterization of $\mathbf{B}-\mathbf{H}$

The synthesis of peptides $\mathbf{B}-\mathbf{H}$ was performed on a Zinsser Sophas synthesizer starting from Wang resin ($0.8 \mathrm{mmol} / \mathrm{g}$; 100-200 mesh) using standard Fmoc-chemistry using DIC/HOBt as coupling agents. After TFA cleavage, the peptides were precipitated using $\mathrm{Et}_{2} \mathrm{O}$ and purified with preparative RP-HPLC (Jupiter Proteo $4 \mu, 90 \AA, 250 \times 21.2 \mathrm{~mm}$, flow: $17 \mathrm{~mL} / \mathrm{min}$, eluents: $\mathrm{H}_{2} \mathrm{O}+0.1 \% \mathrm{HCOOH}(\mathrm{A})$, $\mathrm{CH}_{3} \mathrm{CN}+0.1 \% \mathrm{HCOOH}(\mathrm{B})$, gradient: $0-30 \mathrm{~min} 5 \%-35 \% \mathrm{~B}, \lambda_{\text {det }}=226 \mathrm{~nm}$). The purified products were analyzed with UPLC/MS (Agilent Zorbax RRHD Eclipse C18, $1.8 \mu, 2.1 \times 150 \mathrm{~mm}$, flow: $0.2 \mathrm{~mL} / \mathrm{min}$ (peptides $\mathbf{B}-\mathbf{D}$) and $0.4 \mathrm{~mL} / \mathrm{min}$ (peptides $\mathbf{E}-\mathbf{H}$), eluents: $\mathrm{H}_{2} \mathrm{O}+0.1 \% \mathrm{HCOOH}(\mathrm{A})$, $\mathrm{CH}_{3} \mathrm{CN}+0.1 \% \mathrm{HCOOH}(\mathrm{B})$, gradient: $0-5 \mathrm{~min} 2 \%-52 \% \mathrm{~B}, \mathrm{~T}=40^{\circ} \mathrm{C}, \lambda_{\text {det }}=240-350 \mathrm{~nm}$).

Figure S1. Ultra High Performance Liquid Chromatography (UHPLC) chromatogram of Ac-WHDDD-OH (B). Gradient $2 \%-52 \%$ of $\mathrm{CH}_{3} \mathrm{CN}$ in 5 min with $0.1 \% \mathrm{HCOOH}$. Flow $0.2 \mathrm{~mL} / \mathrm{min} . \lambda=220 \mathrm{~nm}$.

Figure S2. m / z spectrum of Ac-WHDDD-OH (\mathbf{B}); theoretical $\mathrm{MW}_{\text {mono }}=728.229 \mathrm{Da}$.

Figure S3. UHPLC chromatogram of Ac-HWGDDD-OH (C). Gradient 2\%-52\% of ACN in 5 min with $0.1 \% \mathrm{HCOOH}$. Flow $0.2 \mathrm{~mL} / \mathrm{min}$. $\lambda=220 \mathrm{~nm}$.

Figure S4. m / z spectrum of Ac-HWGDDD-OH (C): theoretical $\mathrm{MW}_{\text {mono }}=785.251 \mathrm{Da}$.

Figure S5. UHPLC chromatogram of Ac-WHGDDD-OH (D). Gradient $2 \%-52 \%$ of ACN in 5 min with $0.1 \% \mathrm{HCOOH}$. Flow $0.2 \mathrm{~mL} / \mathrm{min} . ~ \lambda=220 \mathrm{~nm}$.

Figure S6. m / z spectrum of Ac-WHGDDD-OH (\mathbf{D}) : theoretical $\mathrm{MW}_{\text {mono }}=785.251 \mathrm{Da}$.

Figure S7. UHPLC chromatogram of Ac-FHFWDDD-OH (E). Gradient $2 \%-52 \%$ of ACN in 5 min with $0.1 \% \mathrm{HCOOH}$. Flow $0.4 \mathrm{~mL} / \mathrm{min}$. $\lambda=220 \mathrm{~nm}$.

Figure S8. m / z spectrum of Ac-FHFWDDD-OH (\mathbf{E}) : theoretical MW $_{\text {mono }}=1022.366 \mathrm{Da}$.

Figure S9. UHPLC chromatogram of Ac-LHLWDDD-OH (F). Gradient 2\%-52\% of ACN in 5 min with $0.1 \% \mathrm{HCOOH}$. Flow $0.4 \mathrm{~mL} / \mathrm{min}$. $\lambda=220 \mathrm{~nm}$.

Figure S10. m / z spectrum of Ac-LHLWDDD-OH (\mathbf{F}) : theoretical MW $_{\text {mono }}=954.397 \mathrm{Da}$.

Figure S11. UHPLC chromatogram of Ac-SHSWDDD-OH (G). Gradient $2 \%-52 \%$ of ACN in 5 min with $0.1 \% \mathrm{HCOOH}$. Flow $0.4 \mathrm{~mL} / \mathrm{min} . \lambda=220 \mathrm{~nm}$.

Figure S12. m / z spectrum of Ac-SHSWDDD-OH (G): theoretical MW $_{\text {mono }}=902.293 \mathrm{Da}$.

Figure S13. UHPLC chromatogram of Ac-YHYWDDD-OH (H). Gradient $2 \%-52 \%$ of ACN in 5 min with $0.1 \% \mathrm{HCOOH}$. Flow $0.4 \mathrm{~mL} / \mathrm{min} . ~ \lambda=220 \mathrm{~nm}$.

Figure S14. m / z spectrum of Ac-YHYWDDD-OH (\mathbf{H}) : theoretical $\mathrm{MW}_{\text {mono }}=1054.356 \mathrm{Da}$.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

