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Abstract: Nine new microsatellite markers (SSR) were isolated from Salvia officinalis L. 

A total of 125 alleles, with 8 to 21 alleles per locus, were detected in a natural population 

from the east Adriatic coast. The observed heterozygosity, expected heterozygosity, and 

polymorphic information content ranged from 0.46 to 0.83, 0.73 to 0.93 and 0.70 to 0.92, 

respectively. New microsatellite markers, as well as previously published markers, were 

tested for cross-amplification in Salvia brachyodon Vandas, a narrow endemic species 

known to be present in only two localities on the Balkan Peninsula. Out of 30 

microsatellite markers tested on the natural S. brachyodon population, 15 were successfully 

amplified. To obtain evidence of recent bottleneck events in the populations of both 

species, observed genetic diversity (HE) was compared to the expected genetic diversity at 

mutation-drift equilibrium (HEQ) and calculated from the observed number of alleles using 
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a two-phased mutation model (TPM). Recent bottleneck events were detected only in the  

S. brachyodon population. This result suggests the need to reconsider the current threat 

category of this endemic species. 

Keywords: common sage; conservation; cross-amplification; Dalmatian sage; genetic 

bottleneck; microsatellites; Lamiaceae; population genetics; short-tooth sage 

 

1. Introduction 

The genus Salvia is one of the largest plant genera, with approximately 1000 species [1]. Of the 

approximately 250 species that are common in the Mediterranean region, 11 species belong to the  

Salvia officinalis group [2]. 

Dalmatian, or common, sage (S. officinalis L.) is economically one of the most prominent species of 

the Salvia officinalis group [3]. It is an outcrossed, insect-pollinated, long-lived and sub-shrubby plant 

species that is used as an herb with beneficial healing properties [4], as an aromatic plant in the meat 

industry and for the treatment of inflammation [5]. Its economic importance has grown rapidly over 

the last several years. Moreover, it has recently begun to be used as an ornamental garden plant [6]; 

therefore, several cultivars have been developed for that purpose. Due to its many uses, Dalmatian 

sage is common in the Mediterranean region and all over the world. Although knowledge and use of 

Dalmatian sage dates to the Greek era, there is remarkable confusion concerning its 

taxonomy, distribution and variability in its natural range [7]. 

Short tooth sage (S. brachyodon Vandas) is one of the most interesting species of the  

Salvia officinalis group from ecological, biogeographical, conservation and phylogenetic points of 

view (Figure 1). This is a relict species with a very narrow distribution (Figure 2). Although older 

literature [8–10] indicates its presence in more localities, only two have been confirmed at the present 

time: Mt. Sveti Ilija on the peninsula of Pelješac (Republic of Croatia) and 150 km southeast of  

Mt. Orijen (Republic of Bosnia and Herzegovina and Republic of Montenegro) [11–13]. Like many 

other members of this group, short-tooth sage is also rich in essential oils [14,15], and it is locally 

recognized and collected, especially in the region of Mt. Orjen [11]. Because of its very limited 

distribution, habitat fragmentation, succession and potential environmental threats, especially fire and 

overexploitation, short-tooth sage is a highly vulnerable species. It is noteworthy that the Croatian Red 

Book [16] classifies this species as near threatened (NT), while in the Republic of Montenegro, it is 

considered endangered (EN) [17]. In both countries, short-tooth sage is protected by law. 

The genetic structure of plant populations reflects the interactions of different processes, including 

shifts in distribution, habitat fragmentation, population isolation, mutations, genetic drift, gene flow, 

and selection [18,19]. Prior information about the genetic structure of natural plant populations is an 

irreplaceable starting point for successful conservation and sustainable gathering of wild resources as 

well as breeding programs and agricultural production. In recent decades, a number of DNA-based 

molecular marker systems have been developed for the investigation of genetic diversity. 

Microsatellite markers (simple sequence repeats, SSRs) are one of the most valued genetic markers 

because of their high variability, codominance and repeatability. 
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Figure 1. Ecological and morphological characteristics of short-tooth sage  

(Salvia brachyodon Vandas) on the Pelješac peninsula. (a) Dense patches of short tooth 

sage individuals spread quickly after a black pine forest fire in 1998; (b) Flowers up to 4 cm 

long; (c) Stolons below ground indicate possible clonal propagation; (d) Two congeners 

grow side by side with different flowering times (left upper corner = common sage,  

right lower corner = short tooth sage). 

 

Figure 2. Geographic locations of the only known living populations of short-tooth sage 

(Salvia brachyodon Vandas). 

 

The primary goal of this research was to identify new microsatellite markers for Dalmatian sage and 

to establish, together with previously developed microsatellite markers, a set of SSR markers for future 

population genetics studies of this species. The secondary goal was to examine the possibility of using 

microsatellite markers developed for Dalmatian sage in population genetics studies of short-tooth sage. 

This second objective is highly dependent on the total number of available markers. To meet both 
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goals and to demonstrate that the loci contain sufficient variation for individual discrimination, natural 

populations of each species from the Pelješac peninsula were studied. 

2. Results and Discussion 

2.1. Development of New Microsatellite Markers for Dalmatian Sage 

In total, 3840 colonies were screened for dinucleotide repeats in Dalmatian sage (Salvia officinalis L.). 

After removing low quality reads, 235 unique sequences remained in a total length of 107,875 bp. Out 

of 235 unique sequences, 224 contained GA or GT microsatellite repeats. High quality PCR primer 

pairs were designed for 15 dinucleotide microsatellite loci. Eleven of these were polymorphic, 

while four were either monomorphic or did not amplify at all. Finally, nine primer pairs had 

suitable amplification patterns and signal intensity and were used to screen 25 individuals 

representing a natural Dalmatian sage population (Table 1). The screen resulted in a total of 

125 alleles, 8 to 21 alleles per locus, with an observed heterozygosity from 0.46 to 0.83, and an 

expected heterozygosity from 0.73 to 0.93. The DNA sequences of these microsatellite loci were 

deposited into GenBank under accession numbers JX440363 to JX440371. 

Table 1. Characteristics of nine new microsatellite markers and results of primer screening 

on 25 individuals from a natural population of Salvia officinalis L. from the  

Pelješac peninsula. 

Locus 

name 

Repeat 

motif 

Primer sequence (5'–3') Size (bp) Na HO HE PIC GenBank 

accession No. 

SoUZ021 (CA)13 F: CATTCTTTGCAGGGATTCGT 

R: GATGCTTCCTCGGCTGACTA 

226–242 8 0.50 0.73 0.70 JX440363 

SoUZ022 (AG)19 F: TCTTCGAGCCTGGAGTTTT 

R: AGAAGCAAGACAACCCCAAA 

226–264 18 0.54 0.89 * 0.89 JX440364 

SoUZ023 (AC)14 F: CCTGCAAAACACAAACGAA 

R: GTTGTTTCGCTGGTGATGAA 

171–185 8 0.83 0.83 0.81 JX440365 

SoUZ024 (GA)25 F: TGGTCGTGTTGAACTTTCG 

R: AAGGAAGGTGCACCAAAATG 

128–177 18 0.65 0.89 0.89 JX440366 

SoUZ025 (AG)31 F: AGGTGTGTGACCCTGCTATG 

R: GGTTTTGCTCCATTGCATTT 

205–246 21 0.67 0.93 * 0.92 JX440367 

SoUZ026 (AG)17 F: TTCATCTTTGACCGGAAAAC 

R: CATGTGGTGATGCGAGATTC 

160–191 13 0.67 0.86 0.85 JX440368 

SoUZ027 (AG)24 F: GGCGAGATTCATTTCCTTGA 

R: CATCAGTGAGGCTTGGTTCA 

196–240 14 0.46 0.84 * 0.83 JX440369 

SoUZ028 (AG)19 F: GGGCCTTGTCTGCATGTATT 

R: TCCGGCGATTGTTCTCTAAT 

201–235 15 0.71 0.88 0.87 JX440370 

SoUZ029 (GT)13 F: AAACACGCATTTGTACGTGAA 

R: CCAACGACAACATCATCGTC 

155–182 10 0.52 0.84 0.81 JX440371 

Na = number of alleles; HO = observed heterozygosity; HE = expected heterozygosity; PIC = polymorphic information content;  

* significant deviations from Hardy-Weinberg equilibrium after sequential Bonferroni corrections at the 0.1% nominal level. 
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Eight out of nine microsatellites showed a high polymorphic information content (PIC) of more 

than 0.75. It should be noted that the PIC value of the remaining locus (SoUZ021) was rather  

high (0.70), indicating that all nine loci could be very useful in assessing the genetic diversity and 

population structure of Dalmatian sage. Three out of nine newly developed microsatellite  

markers (SoUZ022, SoUZ025 and SoUZ027) showed significant deviations from Hardy-Weinberg 

expectations (HWE) after application of the sequential Bonferroni corrections. These three loci also 

exhibited an overall excess of homozygotes and null allele frequencies using Brookfield's formula [20]. 

They varied from 0.14 (SoUZ025) to 0.21 (SoUZ027). However, bearing in mind the distribution 

range of the tested S. officinalis population as well as the range of altitudes of sampled individuals, this 

heterozygote deficiency is more likely due to population structure than to locus-specific phenomenon 

(e.g., scoring error or null alleles). In accordance with this opinion, we recommend a more detailed 

sampling in future population genetic studies of Dalmatian sage than was performed in this study. If 

using this sampling design results in the same loci continuing to show an overall excess of 

homozygotes and null allele frequency, corrections for null alleles or their exclusion from the study 

can be used as a last resort [21–23]. 

2.2. Cross-Amplification in Narrow Endemic Salvia brachyodon 

Including previously published di- and tri-nucleotide microsatellite loci [24,25] and the primers 

published in this study, we were able to test 29 Dalmatian sage microsatellite markers for  

cross-amplification in short-tooth sage. The amplification rate was 52%. The 15 successfully amplified 

microsatellite markers were used for in-depth analysis in natural populations of both species (Table 2). 

The development of new microsatellite markers, which were described earlier in this paper, proved to 

be entirely justified because as many as four of these markers were among the 15 polymorphic markers 

that were successfully amplified in short-tooth sage. A total of 87 alleles were observed across 15 loci. 

The number of alleles per locus ranged from 3 to 9, the observed heterozygosity ranged from 0.33 to 

0.92, and the expected heterozygosity ranged from 0.33 to 0.84. Only two microsatellite  

loci (SoUZ026 and SoUZ002) had low polymorphic information contents (PIC) of 0.31 and 0.47. One 

of the 15 microsatellite loci exhibited significant deviations from HWE (SoUZ020) and the presence of 

null alleles with a frequency of 0.18. Five out of the 105 tests for linkage disequilibrium were 

significant (p < 0.01) after applying sequential Bonferroni corrections (SoUZ006/SoUZ007, 

SoUZ009/SoUZ011; SoUZ014/SoUZ009; SoUZ006/SoUZ009 and SoUZ014/SoUZ020). Deviations 

from HWE and linkage disequilibrium are the result of primer-site mismatch (null alleles), which are 

common in cross-amplified species, or as a consequence of specific population structures (e.g., clonality). 

It is noteworthy that during fieldwork, dense patches of S. brachyodon individuals and stolons at the 

soil surface or below ground were observed (Figure 1c). Therefore, it is very likely that clonal 

individuals exist in S. brachyodon populations and that a significant result for linkage disequilibrium is 

a consequence. However, in our sample set of 25 individual short-tooth sage plants, none were 

genetically identical. More intensive population genetics research and tests for clonal propagation [26,27] 

will allow us to elaborate on short-tooth sage reproduction and offer a better explanation for deviations 

from HWE and linkage disequilibrium observed in this study.  
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2.3. Population Genetics Parameters and Structures of Natural Populations of Two Closely  

Related Species 

Based on our descriptive statistics (Table 2), we can conclude that the number of alleles as well as 

the expected heterozygosity or genetic diversity were prominently higher in Dalmatian than in  

short-tooth sage. Only 29 of 234 detected alleles were common to both species studied (Table 2). 

Because microsatellites are known to have very rapid evolutionary rates, prominent differences 

between Dalmatian and short-tooth sage in the length of alleles at each microsatellite locus  

were expected. Therefore, the alleles that are common to both species may be the same due to  

coincidence (identity-in-state) rather than because of a common origin (identity-by-descent). 

Table 2. Summary of the microsatellite amplifications in Salvia officinalis and  

Salvia brachyodon populations from the Pelješac peninsula. 

N = number of individuals; Na = number of alleles; HO = observed heterozygosity; HE = expected heterozygosity;  

PIC = polymorphic information content; CA = common alleles; a = previously published di-nucleotide microsatellite loci [24];  
b = previously published tri-nucleotide microsatellite loci [25]; * = significant deviations from Hardy-Weinberg equilibrium 

after sequential Bonferroni corrections at the 0.1% nominal level. 

This study is among those that have shown that rare species have less genetic variation than 

widespread species [28,29]. However, by virtue of selecting the most polymorphic microsatellites, 

number of alleles tends to be higher in the species from which they were originally developed [30–32] 

and it is impossible to estimate to which extent cross-amplification procedure itself also contributed to 

the reduced genetic variation observed in the population of short-tooth sage. If the occurrence of null 

alleles is uncommon, the microsatellites successfully amplified in a related species proved to be a very 

useful tool in population genetic studies. The greatest benefit of this study was the opportunity to explore 

population genetics phenomenon such as genetic bottleneck in rare and widespread congeners [33,34].  

In this case, the differences in microsatellite variability between species do not influence the outcome 

Locus 
Salvia officinalis (N = 25) Salvia brachyodon (N = 25) 

Size (bp) Na HO HE PIC Size (bp) Na HO HE PIC CA 

SoUZ001 a 159–195 15 0.83 0.90 0.90 158–172 4 0.72 0.66 0.62 - 

SoUZ002 a 199–222 11 0.60 0.77 0.74 190–194 3 0.67 0.54 0.47 - 

SoUZ004 a 195–227 12 0.62 0.82 0.80 199–212 6 0.58 0.60 0.57 2 

SoUZ005 a 131–160 9 0.30 0.81 * 0.79 122–130 5 0.83 0.77 0.73 - 

SoUZ006 a 204–244 14 0.83 0.88 0.87 204–233 9 0.76 0.84 0.82 6 

SoUZ007 a 214–227 8 0.58 0.72 0.69 210–240 9 0.92 0.84 0.82 5 

SoUZ008 a 190–210 10 0.71 0.80 0.77 176–180 3 0.80 0.65 0.57 - 

SoUZ009 a 209–250 9 0.61 0.74 0.70 220–235 6 0.72 0.73 0.70 2 

SoUZ011 a 175–227 19 0.76 0.93 0.93 230–250 6 0.92 0.77 0.74 - 

SoUZ014 b 201–237 12 0.87 0.88 0.87 192–218 9 0.75 0.82 0.80 2 

SoUZ020 b 198–246 10 0.50 0.77 0.74 199–217 4 0.33 0.62 * 0.55 - 

SoUZ021 226–242 8 0.50 0.73 0.70 224–238 5 0.58 0.69 0.65 4 

SoUZ023 171–185 8 0.83 0.83 0.81 167–183 6 0.75 0.76 0.72 2 

SoUZ024 128–177 18 0.65 0.89 0.89 116–134 8 0.83 0.75 0.72 2 

SoUZ026 160–191 13 0.67 0.86 0.85 166–176 4 0.37 0.33 0.31 4 
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of the analysis. The observed genetic diversity (HE) is compared to the expected genetic diversity at 

mutation-drift equilibrium (HEQ) in the same way regardless of the actual number of alleles at a locus 

and there is no advantage in using highly variable markers, as shown by the power analysis [35]. 

Tests for evidence of a recent bottleneck based on microsatellite loci and assuming the two-phased 

mutation model (TPM) were applied to both Dalmatian and short-tooth sage populations. A 

statistically significant departure from mutation-drift equilibrium was detected in short-tooth  

sage (Wilcoxon test; p = 0.02), suggesting that this population underwent a recent bottleneck that 

reduced its genetic diversity. The results of the same test, when applied to Dalmatian sage and based  

on 29 (all loci) or 15 (only those loci that were amplified in short-tooth sage) microsatellite loci, were 

not significant in either case (p = 0.99 and 0.81, respectively). This result was expected for Dalmatian 

sage population because this is a large population with an extended distribution range. 

According to recent data, short-tooth sage from the Pelješac peninsula is considered a near 

threatened (NT) species of Croatian flora [16]. According to the IUCN Standards and Petitions 

Subcommittee [36], near threatened species are close to being qualified as vulnerable. Evidence of a 

genetic bottleneck in the population on the Pelješac peninsula should prompt new testing of IUCN 

quantitative criteria used in determining whether a species is truly endangered. If these criteria prove that 

short-tooth sage is truly threatened, then we hope that this study will contribute to better protection. 

3. Experimental Section  

This study was carried out on 25 Dalmatian sage and 25 short-tooth sage plants from the natural 

populations originating on the Pelješac peninsula (Croatia). New microsatellites for S. officinalis L. 

were developed from genomic DNA libraries enriched for GA and GT repeats as described earlier [37], 

but with several modifications. 

Genomic DNA samples were extracted from dried leaves using the GenElute Plant Genomic DNA 

Miniprep Kit (Sigma-Aldrich, St. Louis, MO, USA). Nine restriction enzymes were used for genomic 

DNA digestion (HaeIII, MseI, Sau3AI, RsaI, AluI, HinfI, EcoRV, BglII and EcoRI) (New Englands 

Biolabs, Ipswich, MA, USA). Single-stranded overhangs of restriction fragments were removed using 

mung bean nuclease and dephosphorylated using calf intestinal alkaline phosphatase (CIP) (New 

England Biolabs, Ipswich, MA, USA). Phosphorylated linkers were prepared from SNXfor and 

SNXrev primers using T4 polynucleotide kinase (Thermo Fisher Scientific Inc., Waltham, MA, USA) [38]. 

Ligation of linkers to DNA fragments was performed by combining double-stranded SNX linkers, 

DNA fragments, XmnI restriction enzyme and T4 DNA ligase (New England Biolabs, Ipswich, MA, 

USA). Long (GA)n and (GT)n probes were constructed in a PCR extension reaction, followed by their 

attachment to small (5 × 5 mm) pieces of nylon membrane (Nytran® Super Charge, Schleicher & 

Schuell BioScience GmbH, Dassel, Germany) and overnight hybridization of DNA fragments 

containing microsatellite regions. After the nylon membranes were rinsed, the microsatellite fragments 

were ligated into the pGEM-T Easy Vector (Promega Corporation, Madison, WI, USA), and  

heat-shock transformation into XL10-Gold Ultracomponent Cells (Agilent Technologies, Stratagene,  

La Jolla, CA, USA) was performed. The resulting culture was spread on LB-agar plates containing 

ampicillin, IPTG and X-gal. After overnight incubation, white bacterial colonies were transferred by 

toothpick into 384-well plates containing Luria-Bertani (LB) freezing media (LB broth + 13 mM  
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KH2PO4, 36 mM K2HPO4, 1.7 mM sodium citrate, 6.8 mM (NH4)2SO4, 4.4% v/v glycerol) for  

long-term storage. Libraries were transferred onto nylon membranes and screened by Southern 

analysis using Cy5- and Cy3-labeled 30 bp oligonucleotides with microsatellite core repeats. Positives 

were detected after stringent washing by scanning the blots using an Ettan DIGE Imager (GE 

Healthcare Biosciences, Pittsburgh, PA, USA).  

Positive clones were randomly selected from the libraries and used for plasmid isolation (Wizard 

Plus SV Minipreps, Promega Corporation, Madison, WI, USA). Sequencing of plasmid isolates was 

performed by means of T7 and SP6 universal primers using Big Dye chemistry and an ABI 3730XL 

analyzer (Applied Biosystems, Foster City, CA, USA). Sequences were edited and assembled using 

CodonCode Aligner software version 2.0.6 (CodonCode Corporation, Dedham, MA, USA). 

Microsatellite repeats in sequences were localized by MISA PERL SCRIPT [39]. PCR primer pairs 

flanking microsatellite repeats were designed using the PRIMER 3 program [40]. Because some of the 

SSR markers could have been monomorphic or might not have amplified well, new microsatellite PCR 

primers were first tested on five randomly chosen Dalmatian sage DNAs. Only polymorphic SSR 

markers with good amplification were tested on the complete set of DNA samples from both natural 

populations studied using a tailed primer protocol [41]. PCR amplification was performed on the 

GenAmp® PCR System 9700 (Applied Biosystems, Foster City, CA, USA) using a two-step protocol 

with an initial touchdown cycle. The cycling condition were as follows: 94 °C for 5 min; five cycles of 

45 s at 94 °C, 30 s at 60 °C for the first cycle and 1 °C less in each subsequent cycle, and 90 s at 72 °C; 

25 cycles of 45 s at 94 °C, 30 s at 55 °C, and 90 s at 72 °C; and an 8 min extension step at 72 °C. Three 

different lebeled PCR products (6-FAM, VIC, NED) and 500-LIZ size standard were collected and run 

as a single sample on an ABI 3730XL (Applied Biosystems, Foster City, CA, USA). The results were 

analyzed using GeneMapper 4.0 software (Applied Biosystems, Foster City, CA, USA).  

For each microsatellite locus, the average number of alleles per locus (Na), the observed 

heterozygosity (HO), the expected heterozygosity or genetic diversity (HE), and the polymorphism 

information content (PIC) [42] were calculated using PowerMarker V3.23 [43]. GENEPOP  

version 3.4 [44] was used to test genotypic frequencies for conformance to Hardy-Weinberg 

expectations (HWE) and to test the loci for gametic disequilibrium (LD). Sequential Bonferroni 

adjustments [45] were applied to correct for the effect of multiple tests using SAS release 8.02 (SAS 

Institute Inc., Cary, NC, USA). Each locus was evaluated for the presence of null alleles, scoring 

errors, and allelic dropout using Micro-Checker version 2.2.3 [46]. The program BOTTLENECK 

version 1.2.02 [35] was used to test for evidence of recent bottleneck events in the populations of both 

species on the basis of this theoretical expectation [47]. The observed genetic diversity (HE) was 

compared to the expected genetic diversity at mutation-drift equilibrium (HEQ) and calculated from the 

observed number of alleles under the intermediate Two-Phase Model (TPM), assuming 30% multistep 

changes. The Two-Phase Model was applied because it has been shown to be the most appropriate for 

microsatellite DNA data [48]. Based on the number of loci in our dataset, the Wilcoxon signed-rank 

test [49] was chosen for the statistical analysis of heterozygote excess or deficiency, as recommended 

by Piry et al. [47]. 
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4. Conclusions 

Nine new microsatellite markers (SSR) were isolated from Dalmatian sage (Salvia officinalis L.). 

The observed parameters indicate that all loci may be very useful for assessing genetic diversity and 

population structures of Dalmatian sage. New microsatellite markers, as well as previously published 

markers, were tested for cross-amplification in short-tooth sage (Salvia brachyodon Vandas). The 

amplification rate was 52%. The greatest benefit of this study was the opportunity to compare genetic 

variation in rare and widespread congeners. This study is among those that have shown that rare 

species have less genetic variation than widespread species. Recent bottleneck events detected in the 

short-tooth sage population using a two-phased mutation model (TPM) highlight the need to reconsider 

the current threat category of this endemic species. 
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