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Abstract: Glutathione (GSH) is a tripeptide consisting of glutamate, cysteine, and glycine; 

it has a variety of functions in the central nervous system. Brain GSH depletion is 

considered a preclinical sign in age-related neurodegenerative diseases, and it promotes the 

subsequent processes toward neurotoxicity. A neuroprotective mechanism accomplished 

by increasing GSH synthesis could be a promising approach in the treatment of 

neurodegenerative diseases. In neurons, cysteine is the rate-limiting substrate for GSH 

synthesis. Excitatory amino acid carrier 1 (EAAC1) is a neuronal cysteine/glutamate 

transporter in the brain. EAAC1 translocation to the plasma membrane promotes cysteine 

uptake, leading to GSH synthesis, while being negatively regulated by glutamate transport 

associated protein 3-18 (GTRAP3-18). Our recent studies have suggested GTRAP3-18 as 

an inhibitory factor for neuronal GSH synthesis. Inhibiting GTRAP3-18 function is an 

endogenous mechanism to increase neuron-specific GSH synthesis in the brain. This review 

gives an overview of EAAC1-mediated GSH synthesis, and its regulatory mechanisms by 

GTRAP3-18 in the brain, and a potential approach against neurodegeneration. 
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1. Introduction 

The brain is vulnerable to oxidative stress because of its high demand for oxygen, abundant 

unsaturated fatty acids that are targets of lipid peroxidation, and lower antioxidant enzyme activities 

OPEN ACCESS



Int. J. Mol. Sci. 2012, 13 12018 

 

 

compared to other organs [1,2]. Under normal physiological conditions, antioxidant mechanisms 

function efficiently in the brain to overwhelm the lethal insults to neurons by reactive oxygen species 

(ROS). However, disequilibrium due to increased ROS production or decreased antioxidant defense 

systems would cause oxidative stress, which is considered a causal factor for neurodegeneration [3–5]. 

Glutathione (GSH) is the most abundant thiol-containing molecule and one of the most important 

substances in the brain for neuroprotection. GSH is a tripeptide synthesized from glutamate, cysteine 

and glycine via two enzymatic steps. Previous studies focused on the enzymatic regulation of GSH 

synthesis, and the regulatory mechanisms for the neuronal transport system of the rate-limiting 

substrate, cysteine, have not been clarified. Our recent studies have helped reveal the regulatory 

mechanisms for cysteine uptake leading to neuronal GSH synthesis. In the present review, we provide 

an overview of the key molecular mechanisms underlying cysteine uptake leading to increase neuronal 

GSH content in the brain. 

2. Glutathione as an Antioxidant 

GSH reacts non-enzymatically with superoxide, nitric oxide, hydroxyl radical, and peroxynitrite as 

an antioxidant [6] (Figure 1). Superoxide is generated by mitochondria in the process of ATP 

production. Superoxide or nitric oxide per se are not toxic unless they react with each other to form 

peroxynitrite [7], which is a potent oxidant in the brain [8]. Hydroxyl radicals form another potent 

oxidant, produced from hydrogen peroxide (H2O2) via the Fenton reaction or peroxynitrite 

decomposition [7,9], although the reaction rate of hydroxyl radical production is slow and the diffusion 

distance of hydroxyl radical is limited to much less than that of peroxynitrite [10]. GSH reacts directly 

with these oxidants to inhibit oxidative stress in the cell. In addition, GSH reacts enzymatically with 

GSH peroxidase (GPx) and GSH-S-transferase (GST) against neurodegeneration [6]. GPx requires 

GSH as electron donor to react with H2O2, which is produced from superoxide catalyzed by superoxide 

dismutase, or endogenous hydroperoxides, which are formed by lipid peroxidation [11]. In the process 

of peroxide disposal, GSH is oxidized to GSH disulfide (GSSG), which is then reduced back to GSH 

by GSH reductase (GR) with NADPH (nicotinamide adenine dinucleotide phosphate-oxidase) [12]. In 

neurons, GR is sufficiently active to allow the quick reduction of the accumulated GSSG [13]. GST 

reacts with various xenobiotics to form GSH conjugation, leading to detoxication of the compounds 

and their excretion from the cell.  

GSH is resistant to intracellular degradation; it is hydrolyzed solely by γ-glutamyltranspeptidase 

extracellularly to form γ-glutamyl moiety and a cysteinyl-glycine conjugate, which is then cleaved by 

dipeptidase to generate cysteine and glycine. GSH conjugation mediated by GST is a major cause of 

intracellular GSH depletion. Another cause of intracellular GSH depletion is due to thiol-disulfide 

formation from two GSH molecules to GSSG. Under normal conditions, the intracellular GSSG level 

is low, and the GSH/GSSG ratio in tissues is high (99:1) [14]. Under insulted conditions, the 

GSH/GSSG ratio would be 49:1 [15]. Under oxidative stress, GR maintains the equilibrium of the 

GSH/GSSG redox state in the cell. GSH can also reversibly react with protein thiol groups, which are 

important for the protein functions as enzymes or receptors, to prevent irreversible protein  

oxidation [16]. Severe oxidative stress leads to the excessive production of GSSG, overwhelming the 

reduction of GSSG back to GSH. The excessive GSSG is then exported outside the cell to decrease the 
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intracellular GSH level. Importantly, GSH depletion induced by oxidative stress can subsequently 

exacerbate oxidative injury in the brain. However, it has been debated whether oxidative stress 

consistently precedes GSH depletion in patients with neurodegenerative diseases. 

Figure 1. Glutathione (GSH) as an antioxidant. Hydrogen peroxide (H2O2) and 

hydroperoxides (ROOH) are degraded by GSH peroxidase (GPx) to water and alcohols, 

respectively. GSH disulfide (GSSG), the oxidized form of GSH, is reduced back to GSH 

by the reaction of GSH reductase (GR) with NADPH. Catalase can remove H2O2 but not 

ROOH under normal physiological conditions. GSH conjugates with various endogenous 

and xenobiotic compounds (X), mediated by GSH-S-transferase (GST) to remove X from 

the cell. GSH can also react non-enzymatically with superoxide (O2
•−), nitric oxide (NO), 

hydroxyl radical (•OH), and peroxynitrite (ONOO−). 

 

3. Glutathione Depletion and Neurodegeneration  

The GSH level in the brain is approx. 2–3 mM [17]. However, the GSH content varies among brain 

regions and cell types. The GSH level is the highest in the cortex, followed by the cerebellum, 

hippocampus, and striatum, and it is lowest in the substantia nigra [18]. Importantly, the basal GSH 

level is lower in neurons than in glial cells [19], suggesting different mechanisms for preserving GSH 

homeostasis between neuron and glial cells. In addition, GPx activity is lower in neurons than in glial 

cells [13,19,20]. Certainly, the ability to detoxify peroxides is less efficient in neurons than in 

astrocytes [13,19]. Catalase, as is the case for GPx, can also detoxify H2O2 via degradation to H2O  

and O2. However, neuronal catalase activity does not compensate for the peroxide detoxication [19]. 

Catalase can remove only H2O2, but not hydroperoxides [21]. These results indicate that neurons are 

more vulnerable to oxidative stress than are glial cells in the brain, leading to neurodegeneration. 

Previous articles indicate an involvement of GSH depletion in neurodegeneration [2,22–24]. 

Indeed, some neurodegenerative diseases have shown decreased GSH levels in the brain [25,26], but it 

remains unclear whether the decreased GSH level is a cause or an outcome of neurodegeneration. In 

patients with Parkinson’s disease (PD), the GSH level was found to be significantly lower than that of  

age-matched controls [25], whereas the levels of other antioxidants, such as ascorbate and  
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α-tocopherol, were unchanged in the substantia nigra [27] and basal ganglia [28], respectively. 

Postmortem analysis revealed that normal individuals with incidental Lewy bodies―who would be 

considered pre-symptomatic PD subjects―showed decreased GSH levels in the substantia nigra 

compared to those of age-matched controls without Lewy bodies [29]. However, these  

pre-symptomatic PD subjects did not show any difference in the levels of pro-oxidants, such as iron, 

ferritin, copper, manganese, and zinc, or mitochondrial enzyme activities in the substantia nigra. These 

results strongly suggest that GSH depletion is the primary cause of neurodegeneration, and not only a 

result of oxidative stress [30,31]. 

4. Approaches to Increase the GSH Levels in the Brain 

4.1. Cysteine Uptake 

GSH synthesis consists of two consecutive enzymatic steps requiring ATP (Figure 2). The first step 

is the reaction of glutamate with cysteine catalyzed by glutamate cysteine ligase (GCL), and the 

second is the reaction of γ-glutamylcysteine with glycine catalyzed by GSH synthase (GS). In neurons, 

the availability of cysteine, but not that of glutamate or glycine, limits intracellular GSH levels [32]. 

Compared to the intracellular concentrations of glutamate and glycine, the cysteine concentration is 

maintained at much lower levels because of its toxicity to the cell [33–36]. The first step, i.e., the 

catalysis by GCL, is considered the rate-limiting reaction for GSH synthesis. The Km value of GCL 

for cysteine is 0.1–0.3 mM: that of glutamate is 1.8 mM [37]. The intracellular glutamate concentration 

is much higher than the Km value, whereas the intracellular cysteine level is around the Km value. 

Therefore, the intracellular cysteine level is considered the rate-limiting precursor for GSH synthesis. 

4.2. EAAC1 for Neuronal Cysteine Uptake 

In neurons, cysteine uptake is mediated mainly by one of the Na+-dependent excitatory amino acid 

transporters, named excitatory amino acid carrier 1 (EAAC1) (Figure 2). EAAC1 is present in both 

glutamatergic and GABAergic neurons [38]. A number of studies have demonstrated that oxidative 

stress is involved in glutamate-induced neurotoxicity. Free radicals can increase the glutamate level in 

the synaptic cleft by increasing glutamate release and decreasing glutamate re-uptake [39]. Neuronal 

NMDA receptor activation leads to the formation of superoxide, causing oxidative stress [40]. EAAC1 

was first reported as a neuronal glutamate transporter, although most of the glutamate uptake in the 

brain is dependent on transport by the glial transporters, such as GLAST and GLT-1 [41–43].  

Notably, EAAC1 can also transport cysteine, the rate-limiting substrate for GSH synthesis, at a rate 

comparable to that of glutamate, whereas GLAST and GLT-1 can preferentially transport  

glutamate [44]. A previous study demonstrated that the glutamate transport was abolished in the 

R447C mutant of EAAC1, whereas that of cysteine was conserved, suggesting a different cysteine 

transport system from that of glutamate [45]. A recent study showed that the [3H]glutamate uptake 

activity in proteoliposomes prepared from GLT-1 knockout mouse brain was quite low (~2% of  

wild-type) compared to that from the wild-type, suggesting that the contribution of EAAC1 to synaptic 

glutamate clearance is almost negligible [38]. Indeed, the EAAC1 density in the rat hippocampus was 

100 times lower than that of GLT-1 [38]. EAAC1 is observed in neuronal soma and dendrites, but not in 



Int. J. Mol. Sci. 2012, 13 12021 

 

 

synaptic terminals [38,46,47]. These results support the hypothesis that the main role of EAAC1 in the 

brain is not neurotransmission but neuronal metabolism related to cysteine uptake. 

Figure 2. EAAC1/GTRAP3-18-mediated GSH synthesis in neurons. GSH is produced 

from three amino acids, i.e., glutamate (Glu), cysteine (Cys), and glycine (Gly) by 

reactions with two enzymes, γ-glutamylcysteine ligase (GCL) and GSH synthase (GS). 

Translocated to the plasma membrane, EAAC1 transports glutamate and cysteine into the 

neuron to increase GSH synthesis. Glutamate transporters, as the functioning forms, are 

present predominantly as trimers on the plasma membrane. SNAP-23 facilitates EAAC1 

expression on the plasma membrane. EAAC1 is subject to internalization into early 

endosome and is recycled back to the plasma membrane in a Rab11-dependent manner. 

Rab1A regulates multiple membrane trafficking pathways. GTRAP3-18, a protein in the 

endoplasmic reticulum (ER), binds to Rab1A to interfere with the ER-Golgi transport of 

EAAC1. Moreover, GTRAP3-18 directly interacts with EAAC1 and retains EAAC1 at  

the ER to inhibit neuronal GSH synthesis. Arl6ip1 is a GTRAP3-18 interacting protein 

leading to decrease in GTRAP3-18/EAAC1 interaction. Arl6ip1 positively modulates 

EAAC1-mediated glutamate transport. 
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4.3. Regulation of EAAC1 Translocation to the Plasma Membrane 

The expression of EAAC1 on the plasma membrane is only 20% of the total intracellular EAAC1 

under normal conditions [48]. Glutamate transporters, including EAAC1, are predominantly present as 

trimers on the plasma membrane [42]. Translocated to the plasma membrane, EAAC1 can transport 

glutamate and cysteine for GSH synthesis. EAAC1 is translocated to the plasma membrane by 

phosphoinositide 3-kinase or protein kinase C (PKC) activation. Although EAAC1 is subject to a 

transcriptional regulation by nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant responsive 

element (ARE) pathway under oxidative stress [49], EAAC1 transport activity depends mainly on its 

cell surface expression, rather than de novo synthesis of the protein [48,50]. In the process of 

exocytosis, soluble N-ethylmaleimide-sensitive attachment protein receptor (SNARE) proteins 

facilitate the fusion of secretory vesicles to the plasma membrane. SNAP-23, a member of the SNARE 

family in the plasma membrane, is involved in EAAC1 trafficking to the plasma membrane [51]. The 

half-life of EAAC1 expression on the plasma membrane is approx. 5–7 min [48]. A substantial 

intracellular pool of EAAC1 is accomplished by endocytosis. Constitutive EAAC1 trafficking from 

endosome relies on a small GTP binding protein (G protein) activity. Small Rab GTPases regulate 

intracellular vesicle trafficking, especially in neurons [52,53]. These small G proteins are localized at 

the cytoplasmic faces of distinct membrane compartments. Recent studies demonstrated that EAAC1 

was recycled back from endosomes to the plasma membrane in a Rab11-dependent manner [54] and 

that Rab11 dysfunction slowed EAAC1 trafficking to the cell surface, leading to impairments of both 

cysteine uptake and GSH synthesis [55].  

4.4. GTRAP3-18 

EAAC1 expression on the plasma membrane is negatively regulated by glutamate transport 

associated protein 3-18 (GTRAP3-18). By a yeast two-hybrid screen system from rat brain, GTRAP3-18 

was isolated as an EAAC1-interacting protein [56]. GTRAP3-18 can specifically interact with 

EAAC1, but not with the other types of glutamate transporters. GTRAP3-18 is a member of the 

prenylated Rab acceptor (PRA) family [57]. There are two isoforms, PRA1 and PRA2, showing 

intracellular localization to the Golgi complex and the endoplasmic reticulum (ER), respectively [57]. 

Mouse GTRAP3-18 is almost identical to rat PRA2 [57,58]. GTRAP3-18/PRA2 is a 188-amino-acid 

protein and localizes in the ER with two extensive hydrophobic domains spanning amino acids 47 to 

82 and 101 to 135, respectively [57], which are tightly attached to the ER membrane with four 

transmembrane domains and cytosolic N and C termini [59]. GTRAP3-18 tends to be dimeric [56], and 

the oligomerization of the four transmembrane domains is crucial for its activity [59]. Similarly, the 

oligomeric nature of the Yip family (the PRA family in yeast) has been demonstrated to enhance the 

protein-binding activity and selectivity [60].  

The homo-oligomerization of GTRAP3-18 molecules may enhance its activity and specificity to 

certain oligomeric protein complexes. The C-terminal of GTRAP3-18 has a cluster of basic residues 

and a weak coiled-coil formation, which mediates protein-protein interaction. Changing the basic 

residues to an acidic residue (glutamate) resulted in partial localization of GTRAP3-18 to the Golgi 

complex [57]. This finding suggests that the C-terminal domain of GTRAP3-18 determines the 
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intracellular localization to the ER. The hydrophobic domain interaction between GTRAP3-18 and 

EAAC1 may inhibit EAAC1’s exit from the ER [59]. GTRAP3-18 can bind to the C-terninal domain 

of EAAC1 (the last 87 amino acids) [56]. It can keep EAAC1 in the ER to inhibit EAAC1-mediated 

glutamate uptake, and it was observed that the glutamate uptake was elevated in accord with the 

reduction of the GTRAP3-18 protein level [56]. GTRAP3-18 protein with truncation of the C-terminal 

domain was unable to reduce ER-Golgi trafficking of EAAC1, whereas N-terminal truncation of 

GTRAP3-18 retained this ability [59]. GTRAP3-18 contains two PKC phosphorylation sites as well as 

two putative cAMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase II 

phosphorylation sites [58]. There are two serine residues (S18 and S30) and three tyrosine residues 

(Y42, Y47 and Y182) in mouse GTRAP3-18 sequences. GTRAP3-18 may be regulated by protein 

phosphorylation via intracellular signaling molecules. 

ADP-ribosylation factor-like 6 interacting protein 1 (Arl6ip1) is a GTRAP3-18-associated protein 

to act as a positive modulator of EAAC1-mediated glutamate transport in a PKC activity-dependent 

manner [61] (Figure 2). Arl6ip1 can interact with the hydrophobic region (amino acids 103–117) of 

GTRAP3-18 and decrease the number of GTRAP3-18 molecules available for interacting with  

EAAC1 [61]. Arl6ip1 cannot directly interact with EAAC1; however, it indirectly promotes  

EAAC1-mediated glutamate transport activity. Arl6ip1 also has PKC phosphorylation motifs [61]. 

PKC activation might increase GTRAP3-18/Arl6ip1 interaction, while decreasing  

GTRAP3-18/EAAC1 interaction in neurons [61].  

4.5. Possible Regulation of ER-Golgi Transport by GTRAP3-18 

Protein prenylation on C-terminal cysteine (Cys) residues plays an important role in its molecular 

function. Most Rab proteins have either a Cys-x-Cys or Cys-Cys motif, of which both Cys residues are 

subject to prenylation (geranylgeranylation) [62]. This process is required not only for the membrane 

association but also for the protein-protein interaction [63,64]. GTRAP3-18 binds to Rab1A and 

Rab3A in either the GDP- (inactive) or GTP-bound (active) state, but the interaction was abolished 

when the Cys-Cys prenylation motif of Rab was deleted in vitro [57]. This result suggests that the 

prenylation might be needed for the interaction between GTRAP3-18 and these Rabs.  

The function of Rab1A is to promote ER-Golgi transport of vesicles. A recent study demonstrated 

that GTRAP3-18, most likely due to its Rab1 inhibitory action, inhibits neurite growth in vitro [65]. 

Rab3A is the most abundant Rab protein, localized to synaptic vesicles [64] to play a role in the 

recruitment of synaptic vesicles for exocytosis. Rab3A plays a key regulatory role in Ca2+-dependent 

exocytosis, particularly in neurotransmitter release from nerve terminals [66]. Although GTRAP3-18 is 

thought to be an ER protein, some reports have showed the subcellular localization of GTRAP3-18 in 

both the cytosol and the cell surface in vitro [56,67], suggesting a possible regulatory function for Rab3A. 

4.6. Physiological Roles of GTRAP3-18 

The physiological role of GTRAP3-18 is still poorly understood. The basal level of GTRAP3-18 is 

essentially low, and it is up-regulated by cell differentiation, heat shock, and oxidative stress [68–70]. 

Chronic administration of morphine to mice leads to a 300% to 400% increase in the GTRAP3-18 

mRNA level in the amygdala [71]. Chronic morphine treatment also increased δ-opioid receptor 
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expression in the nucleus accumbens [72]. GTRAP3-18 knockdown significantly decreased the withdrawal 

response to chronic morphine treatment [72], although the precise mechanism of GTRAP3-18 in the 

withdrawal responses to morphine is still elusive. In addition, GTRAP3-18 is reported to be able to 

regulate the trafficking of other transporters and receptors, such as dopamine transporter, GABA 

transporter (GAT-1), β2-adrenergic receptor, α1β receptor, and dopamine D2 receptor [59]. The 

common feature of these transporters and receptors is the formation of oligomeric complex before their 

exit from the ER. GTRAP3-18 may universally control neurotransmission by regulating the ER-Golgi 

transport of neuronal transporters and receptors. 

4.7. Induction of GTRAP3-18 by Methyl-β-cyclodextrin 

In the brain, GTRAP3-18 is widely expressed in the cerebral cortex, striatum, hippocampus and 

cerebellum [58]. GTRAP3-18 distribution in the brain showed widespread expression colocalized to 

neurons [56]. Strong GTRAP3-18 immunoreactivity was observed in the neuron-rich stratum 

pyramidale of the hippocampus and the Purkinje cells of the cerebellum [58], consistent with the 

distribution of EAAC1 [73–75]. In an in vivo study, the intraventricular administration of GTRAP3-18 

antisense oligomers significantly increased cortical glutamate uptake by EAAC1 [56].  

Methyl-β-cyclodextrin (MeβCD) significantly reduced Na+-dependent EAAC1-mediated 

[3H]glutamate uptake and increased GTRAP3-18 protein expression in vitro [76]. 

Intracerebroventricular administration of MeβCD to the mouse brain resulted in a significant increase 

in GTRAP3-18 immunoreactivity in the hippocampus and cerebral cortex [76].  

Cholesterol is required for Na+-dependent glutamate transport [77]. MeβCD has a high affinity for 

cholesterol and has been shown to promote the efflux of cholesterol from cells [78]. Cholesterol 

depletion by MeβCD has been shown to induce cAMP response element-mediated gene expression [79] 

and to increase the activity of the extracellular signal-related kinase (ERK) [80]. cAMP- and  

ERK-dependent transcription factors may be responsible for the MeβCD-induced increase in 

GTRAP3-18 expression. 

4.8. Regulation of GSH Synthesis by GTRAP3-18 

Our previous cell culture studies demonstrated that increased GTRAP3-18 expression by MeβCD 

decreased the intracellular GSH content and showed vulnerability to oxidative stress, whereas 

knockdown of GTRAP3-18 expression by antisense oligonucleotide increased the intracellular GSH 

content and showed resistance to oxidative stress [67,81]. Intracerebroventricular injection models 

with MeβCD and siRNA for GTRAP3-18 also showed that increased or decreased GTRAP3-18 

expression resulted in decreased or increased GSH level in the hippocampus, respectively. GTRAP3-18 

negatively regulates the neuronal GSH level by direct interaction with EAAC1, which mediates 

neuronal cysteine uptake [67,81,82]. Our results suggest that GTRAP3-18 is a potential target for 

increasing the neuronal GSH level. 
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4.9. GTRAP3-18-Deficient Mouse 

To further investigate the potential regulatory mechanism(s) underlying the increase in the neuronal 

GSH level in vivo, we generated GTRAP3-18-deficient (GTRAP3-18−/−) mice using embryonic stem 

cell technology [82]. The distribution of genotypes was close to the expected Mendelian frequency. 

GTRAP3-18−/− mice showed neither hindlimb clasping behavior, which is observed in neurodegenerative 

mice, nor histological abnormality in the brain. A recent study showed that the expression of 

GTRAP3-18 significantly declined from the embryonic stage to post-natal stage in the rat brains [65]. 

In addition, in vitro studies demonstrated that overexpression of GTRAP3-18 inhibited neurite 

outgrowth by blocking Rab1 function, whereas the knockdown of GTRAP3-18 had no effect on 

neurite length or the cell viability [65]. These results suggest a minor influence of the deletion of 

GTRAP3-18 on neurodevelopment, at least morphologically.  

The GTRAP3-18−/− mice showed an increased expression of EAAC1 on the plasma membrane [82]. 

EAAC1 activity is thought to largely depend on its cell surface expression, and not on de novo protein 

synthesis. The total amounts of brain glutamate, glycine, and GABA did not differ significantly between 

GTRAP3-18−/− and wild-type mice, but those of cysteine and GSH in the brain were significantly 

higher in the GTRAP3-18−/− mice compared to the wild-type mice. These results indicate that the 

ability of EAAC1 to increase cysteine uptake for GSH synthesis is potentiated in GTRAP3-18−/− 

mice. An immunostaining analysis showed that the increased GSH level was derived from neurons, but 

not from astrocytes or microglias [82]. Specifically, brain slices from GTRAP3-18−/− mice were 

resistant to oxidative stress. These results suggest that inhibition of GTRAP3-18 function leads to 

neuroprotection by increasing neuronal GSH synthesis. 

Previous studies demonstrated that EAAC1 expression was increased in the rat hippocampus during 

the Morris water maze [83] and contextual fear conditioning tests, or by induction of long-term 

potentiation (LTP) in the CA1 region [84], while it was reported that EAAC1−/− mice showed 

impaired learning and memory [85,86]. Glutamate uptake is involved in memory formation [87–89]. 

Glial glutamate transporters can affect the duration and amplitude of excitatory postsynaptic potentials 

and currents by glutamate uptake [90], whereas the contribution of EAAC1 to the synaptic clearance of 

glutamate seems to be negligible [38]. Thus, it is unlikely that increased EAAC1 expression on the 

plasma membrane in GTRAP3-18−/− mice facilitates LTP induction by increasing the synaptic 

clearance of glutamate.  

Another possible mechanism underlying the cognitive decline in EAAC1−/− mice is mediated by 

neuronal GSH depletion with aging. The presenile, but not young, EAAC1−/− mice showed brain 

atrophy and cognitive decline with aging compared to age-matched wild-type mice [85]. Neurons in 

the hippocampus of the EAAC1–/– mice showed low GSH and high oxidant levels, causing them to be 

vulnerable to oxidative stress. GSH depletion due to EAAC1 dysfunction could be the primary cause 

of age-dependent neurodegeneration. In our study [82], GTRAP3-18−/− mice showed high neuronal 

GSH levels and resistance to oxidative stress. They also showed better performance at forced 

motor/spatial learning and memory tests using rotarod and Morris water maze tests compared to  

age-matched wild-type mice. However, all of the mice in this study were under 6 months old, which is 

not old enough to develop age-dependent neurodegeneration. It is still unclear how GTRAP3-18 

regulates the hippocampus-dependent learning process. The possibility that GTRAP3-18−/− mice 
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might have facilitated learning and memory functions due to mechanisms not related to EAAC1 cannot 

be excluded. 

5. Antioxidant Supplementation 

Brain accessible antioxidants may provide a potential approach to slow the onset and progression of 

neurodegenerative diseases. However, approaches for increasing the GSH level in the brain are a 

matter of dispute. At present, there is no exogenous antioxidant for clinical use to demonstrate a 

therapeutic effect against neurodegeneration. 

5.1. L-cysteine and Glutathione 

L-cysteine barely penetrates the blood–brain barrier (BBB) due to its lack of an acidic omega  

side chain [36]. GSH also does not cross the BBB easily, and it is rapidly oxidized into GSSG in  

blood [91–93]. The plasma half-life of intravenously administered GSH is approximate 2–3 min [93–95] 

and only 0.5% of injected GSH could pass the BBB in vivo [91]. Peripherally administered GSH does 

not seem to function as an antioxidant in the brain. 

5.2. Vitamins 

Ascorbate (Vitamin C) and α-tocopherol (Vitamin E) are also important antioxidants in the  

brain [96–98]. The concentration of ascorbate in the human brain ranges from 1 to 2.6 mM [99], 

similar to that the concentration of GSH in the brain. However, humans cannot produce ascorbate and 

the BBB almost completely blocks ascorbate penetration into the brain [100]. Alpha-tocopherol is the 

most potent antioxidant in the lipid part of the biological membrane [98]. However, the α-tocopherol 

level in the brain is relatively lower than those of ascorbate and GSH [17,98,99,101]. In addition, the 

oral administration of α-tocopherol did not increase its concentration in the central nervous system 

(CNS) due to its limited penetration of the BBB [102]. 

Indeed, supplementation with ascorbate, α-tocopherol, or both, have failed to produce conspicuous 

benefit in patients with neurodegenerative diseases such as PD and Alzheimer’s disease (AD) [103–107], 

although several conflicting lines of evidence have been reported [108–110]. In addition, it was 

reported that the levels of ascorbate and α-tocopherol in the CNS did not change in patients with PD 

and AD, compared with controls [27,28,101,111]. The principal function of ascorbate and  

α-tocopherol as antioxidants may be based on a synergistic effect with GSH in the CNS [97,112]. 

5.3. Uric Acid 

Uric acid (UA) is an important antioxidant in blood. UA scavenges singlet oxygen, hydroxyl 

radicals, and peroxynitrite in blood at its physiological concentration [113]. Indeed, epidemiological 

studies have shown an association between low plasma UA levels and neurodegenerative diseases [114]. 

However, the UA level is much lower in the CNS than in blood [115,116]. It is still unclear whether 

UA is able to act as a direct antioxidant in the brain. We recently reported that UA treatment increased 

both cysteine uptake in vitro and the brain GSH level at the physiological concentration in vivo [117]. 

Our results also showed that mouse hippocampal slices treated with UA were resistant to oxidative 
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stress and increased the GSH level in neurons. UA might indirectly exert a neuroprotective effect via 

the mediation of GSH synthesis in the brain by EAAC1, although further studies are needed to 

elucidate the mechanisms of any UA-mediated neuroprotective effect in the brain. 

5.4. N-acetylcysteine 

N-acetylcysteine (NAC) is a promising compound to increase GSH synthesis in the brain. NAC 

stimulates GSH synthesis not only by providing a source of cysteine, but also by activating GR [118]. 

NAC can permeate the cell membrane without the neuronal cysteine transporter EAAC1 [85,119] to 

yield cysteine via intracellular deacetylation. NAC also acts as a direct chemical antioxidant, although 

its potency is less than that of GSH [120]. Chronic dietary administration with 0.3% NAC containing 

food pellets reduced the protein carbonyl contents in synaptic mitochondria even without affecting the 

GSH level [121], although a single intraperitoneal injection of 150 mg/kg NAC can increase the GSH 

level in the mouse brain [85]. 

Indeed, neuroprotective effects of NAC have been reported on amyloid β [122], 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine (MPTP) [123], 6-hydroxydopamine [124], CNS trauma [125], and brain 

ischemia-induced neurotoxicity [119,126]. We also confirmed the neuroprotective ability of NAC to 

increase the GSH level in mesencephalic dopaminergic neurons [127]. However, the effect of NAC is 

not neuron-specific [128], and excessive production of cysteine may be neurotoxic [33–36]. The 

appropriate dose of NAC for clinical use against neurodegeneration remains to be determined. 

6. Conclusions  

In the treatment of neurodegenerative diseases, replacement therapy is still the main approach to 

ameliorate the symptoms, but not to inhibit neurodegeneration, whereas antioxidant therapy has been 

suggested to be a fundamental approach against neurodegeneration. Among the antioxidant agents, 

GSH plays a critical role in the CNS. Increasing the neuronal GSH content in the brain is a promising 

approach by which neuroprotective effects have been demonstrated. Not a small number of published 

papers have suggested potential candidates to increase neuronal GSH content. However, most of these 

candidates simply act as precursors for cysteine or GSH. Considering delivery systems into the brain, 

these exogenous supplementations do not seem to be the best way to increase the neuronal GSH level. 

We have focused on GTRAP3-18 as a target for neuroprotection. GTRAP3-18 is localized in neurons 

to negatively regulate EAAC1 function, a mechanism by which neurons can increase GSH synthesis. 

The endogenous regulation of GTRAP3-18 would be an alternative approach to the inhibition of 

neurodegeneration. However, considering a potential ability to regulate intracellular trafficking of 

various receptors and transporters, other, as yet unknown, physiological functions of GTRAP3-18  

in vivo should be clarified. 
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