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Abstract: The ability of macroencapsulated Saccharomyces cerevisiae CBS8066 to 

withstand readily and not readily in situ convertible lignocellulose-derived inhibitors was 

investigated in anaerobic batch cultivations. It was shown that encapsulation increased the 

tolerance against readily convertible furan aldehyde inhibitors and to dilute acid spruce 

hydrolysate, but not to organic acid inhibitors that cannot be metabolized anaerobically. 

Gene expression analysis showed that the protective effect arising from the encapsulation 

is evident also on the transcriptome level, as the expression of the stress-related genes 

YAP1, ATR1 and FLR1 was induced upon encapsulation. The transcript levels were 

increased due to encapsulation already in the medium without added inhibitors, indicating 

that the cells sensed low stress level arising from the encapsulation itself. We present a 

model, where the stress response is induced by nutrient limitation, that this helps the cells 

to cope with the increased stress added by a toxic medium, and that superficial cells in the 

capsules degrade convertible inhibitors, alleviating the inhibition for the cells deeper in  

the capsule. 

Keywords: lignocellulosic hydrolysate; ethanol; furfural; HMF (5-hydroxymethyl 
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1. Introduction 

Second generation biofuels, such as ethanol, are made from lignocellulosic sources, for example 

agricultural or wood residues. Due to their inherent recalcitrance, such raw materials are not as 

straightforwardly used as first generation starch-based feedstocks. Either extensive pretreatment 

followed by enzymatic hydrolysis, or complete acid hydrolysis, is necessary to release the fermentable 

sugars for fermentation [1]. The pretreatment or acid hydrolysis often creates significant amounts of  

by-products that act as inhibitors of the subsequent fermentation. Released inhibitors from cellulose 

and hemicelluloses mainly belong to the three classes carboxylic acids (formic, acetic and levulinic 

acid), phenolic compounds and furan aldehydes (furfural and HMF) [2–4]. 

The most widely-used microorganism for industrial fermentations is Saccharomyces cerevisiae, 

since it is capable of producing ethanol at high yields and rates and can also withstand high ethanol 

concentrations [5]. In order to reach the goal of an effective second generation bioethanol production, 

it is also of crucial importance to avoid inhibition of the fermentation by the aforementioned inhibitors. 

Several strains of S. cerevisiae are capable of in situ detoxification of toxic hydrolysates. However, 

rather low concentrations of the inhibitors, together with a high concentration of biomass, are  

required [6]. A lower concentration of inhibitors can be accomplished using fed-batch [6] or 

continuous cultivations [7], while a higher cell concentration can be achieved by cell immobilization or 

cell recycling [8,9]. 

An attractive method of cell immobilization is encapsulation, due to the possibility of achieving cell 

densities as high as 309 g/L of capsule volume [10]. Macroencapsulated cells are caught inside a gel 

membrane, within which the cells are suspended in the liquid core. Encapsulating yeast cells not only 

increases the possible cell concentration in a reactor, but also provides inhibitor resistance. 

Encapsulated cells have been reported to be able to ferment lignocellulosic hydrolysates that were too 

toxic for freely suspended cells at the same cell concentration [8]. However, it is not clear why the 

encapsulated cells are more tolerant, and it is therefore of interest to further study this immobilization 

system with respect to inhibitor tolerance. One plausible hypothesis is that encapsulated cells are 

protected by the high local cell density because the superficial cells inside a capsule take care of most 

inhibitors, letting cells in the core of the capsule experience sub-inhibitory concentrations of the 

inhibitory compounds. This explanation would require that the cells are able to convert the inhibitors at 

a relatively high rate. 

In order to test this hypothesis, we investigated the effect of encapsulation on the inhibitor tolerance 

of yeast exposed to two different classes of inhibitors derived from lignocellulosic materials, namely 

furan aldehydes and weak carboxylic acids. In anaerobic conditions, furan aldehydes are readily 

converted to less toxic alcohols by yeast [11]. Carboxylic acids are not converted to the same extent 

under anaerobic conditions, especially in the presence of glucose, since the metabolism of acetic acid 

is carbon repressed [12]. According to the hypothesis, a medium containing furan aldehyde would be 

less inhibitory to the encapsulated cells, whereas the fermentability of a medium containing carboxylic 

acids would not be improved by encapsulation of the fermenting yeast cells. To further characterize the 

physiological response to encapsulation and the tolerance towards inhibitors, we also investigated the 

gene expression of the genes YAP1, FLR1 and ATR1, known to confer resistance to compounds present 

in lignocellulosic hydrolysates [13]. 



Int. J. Mol. Sci. 2012, 13 11883 

 

 

2. Results and Discussion 

2.1. Encapsulation Confers Tolerance to Some Inhibitors 

Anaerobic cultivations of encapsulated cells were performed in different inhibitory media as well as 

a non-inhibitory defined glucose medium to investigate the specificity and possible mechanism of  

the acquired inhibitor tolerance observed in encapsulated yeast. We have previously shown that  

S. cerevisiae CBS8066 was strongly inhibited by both furan aldehydes and carboxylic acids at the 

same concentrations in the medium as used in the current study, as well as by a dilute acid spruce 

hydrolysate [14]. The rate of consumption of the first 12 g/L glucose in the media containing carboxylic 

acid or furan aldehydes was roughly 40% of the rate obtained in the non-inhibitory medium. 

Glucose consumption and ethanol production profiles from the anaerobic batch cultivations of 

encapsulated yeast are presented in Figure 1 and final yields of important metabolites in Table 1. The 

chitosan-alginate capsules were successful in making the yeast able to ferment the toxic hydrolysate in 

anaerobic batch cultures (Figure 1). Encapsulation also helped against the mix of furan aldehydes 

(furfural and HMF), resulting in only slightly slower glucose consumption and ethanol production than 

what was observed for medium without inhibitors (Figure 1). The consumption rate of the first 12 g/L 

glucose was approximately 80% of the rate in the non-inhibiting medium. We hypothesize that the 

high local cell density inside the capsules facilitates a fast conversion of the inhibitors entering the 

capsule, thus keeping the local inhibitor concentration at a low level. By the end of the cultivations, the 

overall consumption of furfural and HMF was generally higher for the encapsulated cells than for free 

cells in similar conditions (Table 2), although the free cells were also able to convert most of the furan 

aldehydes in the defined medium and some in the hydrolysate medium. 

Figure 1. Hexose (A) and ethanol (B) concentrations during anaerobic batch cultivations 

using encapsulated yeast in defined glucose medium (DGM) ( ), DGM with furan 

aldehydes (□), DGM with carboxylic acids ( ), and hydrolysate (×). 
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Table 1. Final yields on consumed hexoses in anaerobic batch cultivations. 

Medium Cultivation mode YSE YSAce YSGly YSBiomass 

Defined glucose 
medium (DGM) 

Enc. 415 ± 30 1 ± 2 57 ± 5 51 ± 8 

Free 435 ± 10 11 ± 3 44 ± 2 64 ± 4 

Carboxylic acids Enc. 462 ± 4 18 ± 4 25 ± 6 −2 ± 2 

Free 416 ± 48 32 ± 10 73 ± 8 13 ± 7 

Furan aldehydes Enc. 426 ± 9 30 ± 3 41 ± 2 24 ± 1 

Free 432 ± 12 8 ± 2 33 ± 2 30 ± 3 

Hydrolysate Enc. 484 ± 23 7 ± 10 54 ± 6 34 ± 1 

Free 411 ± 5 70 ± 26 24 ± 10 76 ± 37 

Yields are shown as 95% confidence intervals (n ≥ 2) in mg product per g consumed hexose.  

Enc.: Encapsulated CBS8066; Free: Free CBS8066 (from [14]); YSE: Ethanol yield; YSAce: Acetate yield; 

YSGly: Glycerol yield; YSBiomass: Biomass yield. 

Table 2. Overall inhibitor conversion in anaerobic batch cultivations. 

Medium Cultivation mode HMF (%) Furfural (%) 

Furan aldehydes 
Enc. 61 ± 3 100 ± 0 

Free 73 ± 2 100 ± 0 

Hydrolysate 
Enc. 74 ± 2 99 ± 1 

Free 10 ± 2 67 ± 11 

Initial concentrations of the furan aldehydes; 2.0 and 0.79 g/L 5-hydroxymethyl furfural (HMF) and 1.5 and 

0.19 g/L furfural in the furan aldehydes medium and hydrolysate respectively. The decrease is shown as the 

percentage removed from the initial concentration of the inhibitory compound, with 95% confidence intervals 

(n ≥ 2) of free [14], and encapsulated (Enc.) S. cerevisiae CBS8066 grown in the indicated media. 

Encapsulation of yeast in chitosan-alginate membranes did not aid in the protection against 

carboxylic acids inhibitors, showing that the protective effect from encapsulation is specific to some 

inhibitors. The glucose consumption was markedly slower in medium with carboxylic acid inhibitors 

than in medium without inhibitors or with furan aldehydes (Figure 1). The consumption rate of the first 

12 g/L glucose was close to 40% of that in the non-inhibiting medium, a similar inhibition level to 

what was seen for the free yeast. The reason for the specificity of the tolerance is likely that the 

carboxylic acids are not converted to less inhibitory compounds to the same extent as the furan 

aldehydes. A high local cell density yeast population does thus not help to keep the concentrations of 

carboxylic acids at a lower local level inside the capsules. 

The biomass yield was significantly lower for the encapsulated cells compared to the free cells in all 

media tested, with no apparent cell growth in the carboxylic acids medium for the encapsulated cells. 

The lower biomass yield is probably an effect of the low level of budding cells inside the capsules [15], 

where more cells are likely consuming glucose only for maintenance energy. The glycerol yields of the 

encapsulated yeast were generally lower, whereas the acetate yields were higher, in yeast grown in 

inhibitory media compared to the non-inhibitory medium, similar to previously observed trends [16]. 

The acetate yield was, in most cases, also lower for the encapsulated yeast, whereas the glycerol yield 

seemed to be generally higher for the encapsulated yeast when compared to the free yeast under the 

conditions tested. 
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2.2. Encapsulation Triggers Stress Responses 

In order to further investigate the protective effect of encapsulation, the expression of three relevant 

stress-responsive genes was quantified by q-PCR for cells grown in the different media. The genes 

chosen for expression analysis have been investigated in an over-expression study where they were 

shown to confer resistance to lignocellulose-derived inhibitors [13]. YAP1 encodes a transcription 

factor and responds to various different stress conditions. It confers resistance to coniferyl aldehyde, 

HMF and spruce hydrolysate [13]. It has also been shown to activate pleiotropic drug resistance [17] and 

to be important in oxidative stress response [18] as well as in the response to carbon stress [19]. YAP1 is 

also involved in the control of ATR1 [20] and FLR1 [21], which encode membrane  

transport proteins required for aminotriazole [22] and fluconazole [21] resistance, respectively. When 

over-expressed, ATR1 has also been shown to confer resistance to coniferyl aldehyde, and FLR1 to 

both coniferyl aldehyde and HMF, common inhibitors in spruce hydrolysate [13]. 

The gene expression analysis supported the finding that the cells inside the capsules grown in furan 

aldehydes medium and hydrolysate were less stressed, or at least found the changes in stress level  

less challenging, compared to freely grown cells under similar conditions. The expression of the 

transcription factor YAP1 was relatively unchanged in the encapsulated cells in different media, with 

only a slightly higher level in hydrolysate medium (Figure 2A,B). However, the YAP1 expression level 

was increased due to encapsulation already in the medium without inhibitors (Figure 2A), indicating 

that the cells sense a stress as a direct or indirect consequence of being encapsulated. This could have 

been beneficial when transferred to an inhibitory medium since they, through the activation of the 

initial stress response, may be better prepared to cope with the increased stress posed by the inhibitors. 

The expression levels of ATR1 were higher in the encapsulated cells than in the free cells for all media 

(Figure 2C). However, the relative change in expression from the level in DGM was higher only in the 

case of carboxylic acids, against which the encapsulation did not provide significant protection  

(Figure 2D). The most prominent change due to the encapsulation was found in the expression of 

FLR1 in furan aldehydes medium (Figure 2E,F). The expression was only slightly increased in the 

encapsulated cells, whereas a large increase in expression was observed for the free cells. Also for this 

gene, the expression relative to TAF10 was higher in DGM in the encapsulated than in the free cells 

(Figure 2E), leading to less drastic increases in the encapsulated cells when subjected to inhibitory 

media (Figure 2F). 

The increased levels of stress-related genes in non-inhibitory medium could arise from a minor 

starvation of cells close to the center of the capsules, as there are probably nutrient limitations due to 

mass transfer limitations. Ge et al. [23] showed that intra-particle mass transfer limitations arise in 

flocs larger than 100 µm. Thus, it is obvious that mass transfer limitations are present in a capsule of  

3–4 mm in diameter with yeast inside. 

Due to metabolism and mass transfer limitation, it can be visualized that the physiology of the  

cells inside a capsule changes, depending on their position along the radius of the cell pellet. In a  

non-inhibitory medium, superficial cells thrive while the interior cells suffer from nutrient limitation 

due to both mass transfer limitation and consumption, giving rise to a slight stress response. In a 

medium with readily convertible inhibitors, on the other hand, the cells close to the surface are forced 

to convert the inhibitors, leaving glucose for cells deeper in the cell pellet. Depending on the outer 
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conditions, in this way there will be different parts of the capsule where cells thrive, as schematically 

depicted in Figure 3. 

Figure 2. Gene expression in different media after two hours of anaerobic batch 

cultivations; (A, C and E) YAP1, ATR1 and FLR1 respectively, relative to the level of 

TAF10, (B, D and F) YAP1, ATR1 and FLR1 respectively, relative to the expression level 

in DGM, for free yeast (white) and encapsulated yeast (black). The error bars depict 

variation in two biological replicates. The equality of means was tested using the logarithm 

of the relative gene expression in two-sided t-tests, assuming equal variance. Observed  

p-values are shown under each pair (Data from free yeast is from [14]). 

 

 

p = 0.01 p = 0.04 p = 0.66 p = 0.40 p = 0.97 p = 0.52 p = 0.03 p = 0.05

p = 0.26p = 0.89p = 0.01p = 0.92p = 0.10p = 0.11p = 0.00p = 0.08

p = 0.67p = 0.01p = 0.12p = 0.03 p = 0.18p = 0.01p = 0.84p = 0.97
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Figure 3. Schematic figure of the hypothesized glucose and inhibitor concentration profiles 

in a cross section of the capsules in non-inhibitory medium (A) and medium with 

convertible inhibitors (B) and the corresponding differences in cell physiology. The 

numbers indicate different cell populations: 1. non starved cells; 2. slightly starvation-stressed 

cells with triggered ESR; 3. starved cells; 4. non-growing cells converting inhibitors; 5. ESR 

triggered cells, growing and converting inhibitors; 6. slightly starvation-stressed cells. 

 

In the gene expression analysis, we see a mean value of all cells in the capsules, why cells at 

different depth inside the capsules (Figure 3) are likely to have higher or lower expression levels than 

the reported mean values. It has previously been shown that slowly growing yeast has an increased 

stress resistance [24] and this could be one reason for the increased inhibitor tolerance of encapsulated 

yeast cells as part of the Environmental Stress Response (ESR) [25]. The already slightly stressed  

cells would be helped to easier adapt to the new situation of inhibitors being present in the growth  

medium [26], whereas the cells closest to the surface would be sacrificed. This implies that the 

improved tolerance to lignocellulose-derived inhibitors is not simply a result of less inhibitors coming 

in contact with the cells when they are encapsulated, but also that at least some cells are actually better 

prepared to handle them. However, the encapsulated cells still require a means of reducing the levels 

of inhibitors by converting them to less inhibitory compounds. 

2.3. Diffusion Rate through the Capsule Membrane Is Enhanced by Chitosan 

A possible explanation for the observed differences in tolerance towards the furan aldehyde and 

carboxylic acid inhibitors could be differences in their diffusivity into the capsules. This was the case 

for the hydrophobic inhibitor limonene, which could not diffuse into the capsules [27]. The diffusion 

of glucose and the inhibitors furfural, HMF, acetic acid, formic acid and levulinic acid into the 

capsules was therefore investigated. The capsules used in the test did not contain yeast, and were 

equilibrated in water prior to the test. The diffusion of the compounds into the capsules was monitored 

for 120 min (Figure 4), after which water was added and the diffusion out of the capsules was 

monitored. Although the acids had a somewhat faster diffusion into the capsules than the furan 

aldehydes (Table 3), it can most likely be ruled out as a reason for the increased tolerance towards 

furan aldehydes, since the diffusion was rather fast for all tested compounds. The diffusion rate was 

markedly faster than what has previously been reported for Ca-alginate capsules, identical to the 

capsules used in this study, except for the additional chitosan incorporation [8,15]. The results show 
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that the chitosan treatment of the capsules resulted in a faster diffusion of glucose, HMF, furfural and 

acetate, with 95 ± 3% of the final concentrations already after 14 min, compared to the reported  

90 ± 3% after 20 min without chitosan treatment [8]. The volumetric mass transfer coefficient for 

glucose into the chitosan-alginate capsules was calculated to 10.04 (cm3/min), which can be compared 

with a value of 6.28 (cm3/min) calculated for cell-free Ca-alginate capsules in a similar experimental 

setup [15]. The volumetric mass transfer coefficients for the compounds tested was proportional to the 

molecular weight of the compound (Table 3), with lighter molecules diffusing faster into the capsules. 

The diffusion out of the capsules was slightly slower than the diffusion in, (96 ± 3% of the final 

concentrations after 20 min), likely due to the slower internal mixing rate inside the capsules. The 

tendency towards an over-estimation of the glucose concentration at early time points by Equation 1, 

both in Figure 4 and a previous work [15], is hypothesized to come from osmosis of water from the 

capsules to the surrounding solution, because of the high solute concentration, shrinking the capsules 

(also noticed by visual observation), and thus lowering the measured solute levels. As the solute 

concentrations are leveled out, the capsules regain their original shape. 

Figure 4. Time course of diffusion through the membrane of the chitosan-alginate 

capsules; glucose (), HMF ( ), furfural ( ), levulinic acid (+), acetic acid ( ) and 

formic acid ( ). The lines show the profile of diffusion according to Equation 1 for the  

respective compounds. 

 

Table 3. Volumetric mass transfer coefficient into empty chitosan-alginate capsules. 

Compound K (cm3 min−1) Mw (g mol−1) 

Formic acid 20.69 46.03 
Acetic acid 15.99 60.05 

Levulinic acid 14.65 116.11 
Furfural 13.44 96.08 

HMF 13.13 126.11 
Glucose 10.04 180.16 
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3. Experimental Section 

3.1. Yeast Strains and Medium 

The S. cerevisiae CBS8066 obtained from Centraalbureau voor Schimmelcultures (Delft, The 

Netherlands) was used in all experiments. It was maintained on YPD agar plates (10 g/L of yeast 

extract (Scharlau), 20 g/L of soy peptone (Fluka), 20 g/L agar (Scharlau) and 20 g/L of D-glucose 

(Fisher Scientific) as an additional carbon source). 

The growth medium used for the batch cultivations was a defined glucose medium (DGM), as 

previously reported [28], with glucose as energy and carbon source. The compositions of media for the 

batch cultivations were a complete spruce hydrolysate as well as DGM (20 g/L glucose) with and 

without addition of various inhibitors in the following concentrations: the furan aldehydes medium 

contained 2 g/L 5-hydroxymethyl furfural (HMF) and 1.5 g/L furfural and the carboxylic acids 

medium contained 200 mM each of acetic, formic and levulinic acid. The hydrolysate contained, 

according to what was identified using HPLC, glucose 9.2 ± 0.2 g/L, mannose 12.5 ± 0.2 g/L, 

galactose 2.5 ± 0.0 g/L, xylose 5.2 ± 0.1 g/L, arabinose 1.7 ± 0.0 g/L, acetic acid 2.2 ± 0.1 g/L, furfural 

0.19 ± 0.02 g/L, HMF 0.79 ± 0.01 g/L, catechol 0.03 ± 0.01 g/L and vanillin 0.08 ± 0.01 g/L after 

supplementation of salts, trace metals and vitamins at the same concentrations as in the DGM. 

3.2. Encapsulation Procedure 

The capsules were prepared by the liquid-droplet-forming method [29]. Yeast cells were grown in 

250 mL cotton-plugged Erlenmeyer flasks with 100 mL DGM for 24 h in a water bath at 30 °C at  

130 rpm. Yeast from 50 mL of the cultivation was harvested at 3500 g for 5 min and resuspended in  

50 mL 1.3% (w/v) sterile CaCl2 solution containing 1.3% (w/v) carboxymethylcellulose (CMC) 

(Product number 419303, Sigma-Aldrich) with average Mw of 250 kDa and degree of substitution 0.9. 

CMC increases the viscosity of the CaCl2 solution, thereby enhancing the formation of spherical 

capsules. A sterile solution containing 0.6% (w/v) sodium alginate (Product number 71238, Sigma) and 

0.1% (v/v) Tween 20 (Sigma-Aldrich) was used for capsule formation. The surfactant Tween 20 

improves the permeability of the capsule membrane, thereby preventing the capsules from rupturing due 

to CO2 formation during the cultivation [30]. Capsules were formed by dripping the CMC-yeast-CaCl2 

solution into the stirred sodium alginate solution through syringe needles (21 G × 1.5 inches). The 

capsules were gelled for 10 min, washed with distilled water and hardened in 1.3% (w/v) CaCl2 

solution for 20 min. The Ca-alginate capsules were thereafter treated with a 0.2% (w/v) low molecular 

weight chitosan (Product number 448869, Aldrich) solution with 300 mM CaCl2 in 0.040 M acetate 

buffer, pH 4.5, at a ratio of 1:5 of capsules to solution, for approximately 24 h. The treatment was 

performed in 1 L Erlenmeyer flasks in a water bath at 30 °C at 140 rpm. Chitosan molecules were 

incorporated in the alginate matrix, thereby improving the strength of the capsule membrane [31]. 

After washing the capsules in 0.9% NaCl solution, yeast in 10 mL capsules was cultivated aerobically 

in 100 mL DGM (50 g/L glucose), which was changed after 24 h to fresh medium for another 24 h for 

cell propagation prior to the anaerobic batch cultivations. 
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3.3. Batch Cultivations 

The batch cultivations were carried out in 250 mL conical flasks, cotton plugged for aerobic 

cultivation and equipped with rubber stoppers with two stainless steel capillaries and a loop trap for 

anaerobic cultivations as previously described [32], however without purging with N2 (g) prior to 

cultivation. Sterile water was used in the loop traps to permit produced CO2 to escape from the flasks. 

The anaerobic cultivations were started with 50 capsules in 120 mL fresh medium of different 

composition. Samples for HPLC analyses were taken through one of the steel capillaries. The samples 

were centrifuged to remove possible particles and cells and stored at −20 °C until analysis. Biomass 

samples were only taken at the beginning and the end of each batch, due to the difficulties of taking 

these samples during the cultivations. 

3.4. Quantitative PCR 

Cell samples to study the expression of YAP1, FLR1, and ATR1 were taken after two hours of 

anaerobic cultivation with inhibitors as described in Section 2.3. The capsules were broken and the 

cells washed with ice cold water. The samples were thereafter centrifuged for 1 min at 10,000× g in a 

microcentrifuge, the pellet was frozen in N2 (l) and thereafter stored at −80 °C until RNA extraction. 

RNA extraction, q-PCR analysis and data evaluation were performed as previously described [14]. The 

primer sequences used in the analysis were designed from the sequences listed in the Saccharomyces 

Genome Database (http://www.yeastgenome.org/). The primer sequences used are found in Table 4. 

The expression levels of the resistance genes were normalized to the expression of the internal 

reference gene TAF10 that showed a stable expression in all samples. TAF10 has previously been 

shown to be a suitable reference gene for q-PCR experiments with S. cerevisiae [33]. The levels were 

also normalized to the expression level in defined glucose medium, for easier comparison. 

Table 4. Primer sequences used in the q-PCR analysis. 

Gene Forward (5'→3') Reverse (5'→3') 

ATR1 ATTCTTTGGATGGGGCTCTT AGCCCACATTGAATGCTACC 
FLR1 GCCTGCCTCTGTCTTTGTTC ACCAAACAACGGAAAAGCAC 
YAP1 TACACGTGATGGCGAGGATA CCACTTCATTTTGCTGCTGA 
TAF10 TACCCGAATTTACAAGAAAAGATAAGA ATTTCTGAGTAGCAAGTGCTAAAAGTC 

3.5. Analytical Methods 

The amounts of metabolites and inhibitors were quantified by HPLC using an Aminex HPX-87H 

column (Bio-Rad, Hercules, CA, USA) at 60 °C with 5 mM H2SO4 as eluent at a flow rate of  

0.6 mL/min. A refractive index detector (Waters 2410, Milford, MA, USA) was used for glucose, 

glycerol and ethanol and a UV absorbance detector (Waters) was used for formic acid, acetic acid, 

levulinic acid, furfural and HMF. For the hydrolysate samples, an Aminex HPX-87P (Bio-Rad) 

column at 85 °C with ultrapure water as eluent at a flow rate of 0.6 mL/min was used to analyze the 

glucose, xylose, galactose and mannose concentrations. These compounds were detected using a 

refractive index detector (Waters 2410, Milford, MA, USA). 
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The cell dry weight was measured in pre-dried and pre-weighed glass tubes or watch glasses. Cells 

from 10 capsules were washed out with distilled water after mechanical crushing of the capsules. The 

cells were washed once with distilled water before drying for approximately 24 h at 105 °C. 

3.6. Statistics, Yields and Elemental-Balance Calculations 

The biomass and metabolite yields were calculated from the determined concentrations at the end of 

the fermentations. Error intervals shown are ±95% confidence intervals of the mean unless  

otherwise mentioned. 

3.7. Diffusion through the Capsule Membrane 

The diffusion into the capsules was tested using 60 mL of cell-free capsules that were added to  

180 mL of a solution containing glucose, furfural, HMF, acetic acid, levulinic acid and formic acid at 

the same concentrations used in the anaerobic batch cultivations as described above. Samples were 

thereafter withdrawn from the bulk solution at time intervals and the decreasing concentrations were 

analyzed using HPLC as described above. The diffusion out of the capsules was tested by addition of 

100 mL ultrapure water to the solution after equilibrium was reached and the increasing concentrations 

of the solutes were analyzed using HPLC. 

Determination of the mass transfer coefficient was performed as described elsewhere [15]. In short, 

assuming there are no concentration gradients inside the capsule and a capsule to solute volume ratio 

of 1:3, the concentration ratio can be expressed as: 

Ct

C0
=

Ceq

C0
+ (1 - 

Ceq

C0
) e

-4
Kt
V0 (1) 

Where C0, Ceq and Ct are the initial, equilibrium and time t concentrations of solute in the solution 

outside the capsules respectively, and V0 is the volume of the solution outside the capsules. Estimation 

of the volumetric mass transfer coefficient, K (cm3/min), was performed by fitting the theoretical curve 

from Equation 1 to experimental data with the nonlinear regression function SOLVER in Excel 

(Microsoft, Redmond, WA, USA) according to [34]. 

4. Conclusions 

This study shows that encapsulation enhances tolerance towards certain lignocellulose-derived 

inhibitors. The high local cell density inside the capsule forces the cells close to the membrane of the 

capsule to take care of readily convertible inhibitors such as furan aldehydes, letting cells in the core  

of the capsule experience sub-inhibitory levels, ensuring survival of the population as a whole. 

Encapsulation does thus not aid significantly against the inhibitory effect of non- or less convertible 

compounds, such as weak acids in anaerobic conditions. It was further shown that the protective effect 

could be observed also on a transcript level, with higher expression levels of the stress-related genes in 

non-inhibitory medium in encapsulated cells as compared to free cells. Due to the higher initial level of 

transcripts important for inhibitor resistance, a lower relative increase of the genes in inhibitory media 

containing furan aldehydes could be observed, helping the cells to cope with the increased stress. The 

higher tolerance towards furan aldehydes compared to acids was not due to exclusion of furan 
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aldehydes from the capsules, since all inhibitors easily diffused into the capsules. We also showed that 

the alginate capsules treated with chitosan facilitated a faster diffusion of glucose than was reported for 

non-treated capsules. A faster diffusion of glucose into the capsules lowers the impact of mass transfer 

limitations, likely leading to higher maximum ethanol production rates. 
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