
Int. J. Mol. Sci. 2012, 13, 10959-10969; doi:10.3390/ijms130910959 

 
International Journal of 

Molecular Sciences 
ISSN 1422-0067 

www.mdpi.com/journal/ijms 

Article 

NAD(P)H:Quinone Oxidoreductase 1 (NQO1) P187S 
Polymorphism and Prostate Cancer Risk in Caucasians 

Christine G. Stoehr 1, Elke Nolte 2, Sven Wach 2, Wolf F. Wieland 3, Ferdinand Hofstaedter 4, 

Arndt Hartmann 1 and Robert Stoehr 1,* 

1 Institute of Pathology, University Hospital Erlangen, Erlangen 91054, Germany;  

E-Mails: christine.stoehr@uk-erlangen.de (C.G.S.); arndt.hartmann@uk-erlangen.de (A.H.) 
2 University Clinic of Urology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91054, 

Germany; E-Mails: elke.nolte@uk-erlangen.de (E.N.); sven.wach@uk-erlangen.de (S.W.) 
3 Department of Urology, Caritas St. Josef Medical Center, University of Regensburg,  

Regensburg 93053, Germany; E-Mail: wwieland@caritasstjosef.de  
4 Institute of Pathology, University of Regensburg, Regensburg 93053, Germany;  

E-Mail: ferdinand.hofstaedter@klink.uni-regensburg.de  

* Author to whom correspondence should be addressed; E-Mail: robert.stoehr@uk-erlangen.de;  

Tel.: +49-9131-854-3610; Fax: +49-9131-852-4745.  

Received: 26 July 2012; in revised form: 14 August 2012 / Accepted: 27 August 2012 /  

Published: 31 August 2012 

 

Abstract: NAD(P)H:quinone oxidoreductase 1 (NQO1) catalyses the reduction of quinoid 

compounds to hydroquinones, preventing the generation of free radicals and reactive 

oxygen. A “C” to “T” transversion at position 609 of NQO1, leading to a nonsynonymous 

amino acid change (Pro187Ser, P187S), results in an altered enzyme activity. No NQO1 

protein activity was detected in NQO1 609TT genotype, and low to intermediate activity  

was detected in NQO1 609CT genotype compared with 609CC genotype. Thus, this 

polymorphism may result in altered cancer predisposition. For prostate cancer, only sparse 

data are available. We therefore analyzed the distribution of the NQO1 P187S SNP (single 

nucleotide polymorphism) in prostate cancer patients and a healthy control group. Allelic 

variants were determined using RFLP analysis. Overall, 232 patients without any 

malignancy and 119 consecutive prostate cancer patients were investigated. The genotype 

distribution in our cohorts followed the Hardy–Weinberg equilibrium in cases and controls. 

The distribution of the NQO1 codon 187 SNP did not differ significantly between prostate 

cancer patients and the control group (p = 0.242). There was also no association between 

the allelic variants and stage or Gleason score of the tumors. The NQO1 P187S SNP was 
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not significantly associated with an increased prostate cancer risk in our cohorts. The SNP 

has also no influence on histopathological characteristics of the tumors. A combined 

analysis of all available data from published European studies also showed no significant 

differences in the genotype distribution between controls and prostate cancer patients.  

Our data suggest a minor role of the NQO1 nucleotide 609 polymorphism in  

prostate carcinogenesis.  

Keywords: prostate cancer; NQO1; case-control study; restriction fragment length 

polymorphism analysis 

 

1. Introduction 

Oxidative stress represents a cellular situation where the production of reactive oxygen species 

(ROS) outruns the cell’s capacity to metabolize ROS, resulting in its accumulation and an increased 

possibility of DNA damage [1]. Therefore, each cell uses an antioxidant defense system to prevent 

ROS overproduction.  

Oxidative stress and ROS signaling may play important roles in the development of several 

malignancies, including prostate cancer (PCa), and there is striking evidence for a potential role of 

increased ROS generation and its potential impact on etiology and progression of PCa [2]. An 

important factor of the cellular antioxidant defense system is the NAD(P)H:quinone oxidoreductase 1 

(NQO1). NQO1 represents a widely distributed FAD-dependent flavoprotein with multiple protective 

functions. Among others, NQO1 catalyzes the reduction of quinones, quinoneimines, nitroaromatics 

and azo dyes. This reduction minimizes the opportunities for generating reactive oxygen intermediates 

by redox cycling in the cell, underlining the significant impact of NQO1 on cellular protection [3].  

Within the NQO1 gene located on chromosome 16q22.1, a prominent single nucleotide 

polymorphism (SNP) can be found. A “C” to “T” change at position 609 (C609T) of the NQO1 cDNA 

results in a non-synonymous amino acid change from proline to serine at position 187 (P187S). This 

amino acid substitution leads to an extremely unstable NQO1 protein which is rapidly ubiquitinated 

and degraded by the proteasome [4]. Therefore, individuals with the 609TT genotype lack both NQO1 

protein and activity [5]. The C609T SNP is associated with an increased risk for several malignancies, 

e.g., colorectal cancer, breast cancer, lung and bladder cancer [6–8]. For PCa, only sparse and conflicting 

data are available. Four studies (three case-control studies on Caucasian cohorts, 1 case-control study on 

a Japanese cohort) reported no influence of the NQO1 C609T SNP on PCa risk [9–12]. In contrast, 

Steinbrecher and colleagues reported a significant, reduced PCa risk for subjects with the 609CC 

genotype compared to 609CT and 609TT carriers in a German case-control study [13]. Unfortunately, the 

allele distribution of the control cohort in this study did not reach the Hardy–Weinberg equilibrium; 

therefore, the results of this study should be interpreted carefully. To advance this discussion we 

performed a case-control study on 119 PCa patients and 232 male controls using restriction fragment 

length polymorphism analysis (RFLP). In addition, we combined our results with the data from all 

published European studies and re-analyzed these data in a meta-analysis. 
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2. Results and Discussion 

2.1. Results from Method Validation and Cohort Testing 

The verification of RFLP analysis by sequencing showed 100% concordance between both 

methods. All results derived from RFLP analysis could be confirmed by sequencing. Representative 

examples of genotyping are shown in Figure 1a; representative sequencing results are shown  

in Figure 1b. 

Figure 1. (a) Representative example for RFLP analysis. St.: size standard; 1–9: DNA 

from prostate cancer patients; 10: positive control (DNA from bladder cancer cell line 

RT4); 11: negative control (H2O); (b) Results from sequencing analysis of samples 4, 5 

and 7 from (a). Both methods showed concordant results. 

 
(a) 

(b) 

The genotype distribution in our cohorts followed the Hardy–Weinberg equilibrium in cases  

(p = 0.578) and controls (p = 0.803). To ensure that our control group is representative for Caucasians, 

we compared the SNP distribution in our controls with published Caucasian control cohorts (Figure 2). 

Similar genotype distribution among the published cohorts from Germany underlined data integrity of 

our study. Allele frequencies from the Turkish study varied remarkably, which was presumably due to 

a small study cohort (n = 50 [11]).  
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Figure 2. Distribution of the NQO1 C609T polymorphism published European male control cohorts. 
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2.2. Results from Our Single Center Analysis  

Genotype distribution did not differ significantly between cases (609CC: 63.9%, 609CT: 31.1%, 
609TT: 5.0%) and controls (609CC: 71.6%, 609CT: 25.9%, 609TT: 2.5%) (p = 0.242) in our cohorts 

(Figure 3a). Referring to the putative risk allele 609T (S187), there was also no significant difference in 

genotype distribution between the analyzed cohorts (cases: 609CC: 63.9%; 609CT + 609TT: 38.1%; 

controls: 609CC: 71.6%, 609CT + 609TT: 28.4%; p = 0.146; OR: 1.423; 95%CI: 0.889–2.278) (Figure 3b). 

In addition, there was also no correlation between SNP distribution and histopathological characteristics 

of the tumors.  

Figure 3. (a) Distribution of the NQO1 C609T polymorphism in our cohorts (p = 0.242);  

(b) Distribution of the putative risk allele NQO1 609T in our study population (p = 0.146). 
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Figure 3. Cont. 
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2.3. Results from Combined Data of Published European Studies 

After the analysis of our cohorts, we wanted to increase the significance of the data by combining 

our results with available data from all published European studies on the influence of the NQO1 C609T 

SNP on PCa risk. This combination allowed the analyses of data from 874 control subjects and 466 

prostate cancer patients. The genotype distribution in both cohorts followed the Hardy–Weinberg 

equilibrium in cases (p = 1.000) and controls (p = 0.213). The genotype distributions were as follows: 

cases: 609CC: 64.2%, 609CT: 32.0%, 609TT: 3.8%; controls: 609CC: 67.4%, 609CT: 28.6%, 609TT: 4.0%; 

(Figure 4a). These differences in allele frequencies did not reach statistical significance (p = 0.438). 

Referring to the putative risk allele 609T (S187), there was also no significant difference in genotype 

distribution between the combined analyzed cohorts (cases: 609CC: 64.2%; 609CT + 609TT: 35.8%; 

controls: 609CC: 67.4%, 609CT + 609TT: 32.6%; p = 0.249; OR: 1.154; 95%CI: 0.911–1.462) (Figure 4b). 

Figure 4. (a) Distribution of the NQO1 C609T polymorphism and the putative risk allele 

NQO1 609T; (b) in healthy controls and PCa patients from all published European studies.  
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Figure 4. Cont. 
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3. Discussion  

There is strong evidence for the relationship between SNPs in genes coding for members of the 

antioxidant defense system and PCa. Among others, allelic variants of the superoxide dismutase and 

the catalase genes were described as associated with an increased risk for PCa development [14]. For 

the NQO1 C609T SNP, there is still an ongoing discussion about its impact on PCa risk. The presented 

data showed no involvement of this SNP in PCa risk and strengthened results from previous studies 

performed on smaller cohorts or on cohorts whose allele frequencies did not reach the Hardy–Weinberg 

equilibrium. In addition, the presented meta-analysis displayed the largest case-control study on  

the NQO1 C609T SNP in Caucasian PCa patients reported so far. Therefore, it might be assumed  

that the presented study contributed substantially to the discussion about the role of this NQO1 SNP in 

PCa risk.  

Nevertheless, the NQO1 protein might play an important role in PCa etiology. NQO1 is constitutively 

expressed in normal prostate tissue and is therefore capable of activating pro-carcinogens to reactive 

DNA-damaging metabolites [15]. High levels of reactive species increase oxidative stress in the cell, 

resulting in chronic inflammation, damage of nucleic acids and proteins, and deregulation of androgen 

receptor signaling [16]. All these effects are known to promote PCa development and progression. 

Unfortunately, first promising results in PCa chemoprevention with antioxidants in the preclinical 

settings could not be validated in clinical translation [16].  

In PCa, NQO1 is overexpressed, compared to adjacent normal tissue, in approximately 60% of the 

analyzed cases, although the chromosomal region of the NQO1 gene was described as frequently 

affected by deletions [17,18]. This overexpression might be utilized for beta-lapachone-induced 

apoptosis and cell toxicity. Beta-lapachone is a naturally occurring o-naphthoquinone showing  

anti-tumor properties and induces apoptosis in a variety of cells [19]. PCa cells were described as 

being killed by beta-lapachone via NQO1 metabolic bioactivation, resulting in e.g., a massive 

production of ROS and poly(ADP-ribose) polymerase-1 (PARP-1) hyperactivation. PARP-1 

hyperactivation initiates programmed necrosis and was shown in massive, ROS-induced  
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injury [20]. Moreover, the clinical utilization of beta-lapachone as a possible radiosensitizer in  

NQO1-overexpressing PCa to prey PARP-1 hyperactivation was suggested after promising in vitro 

studies [17]. In this context, the NQO1 C609T SNP might play an important role. In tumors 

overexpressing the non-active serine-variant of NQO1, this sensitizing effect should not be expected. 

This gives a possible rationale for the determination of the NQO1 genotype at position 609 in PCa, 

because without knowledge of the allele status, this therapeutic option might remain ineffective. But, 

to date, this rationale remains speculative and convincing in vitro or in vivo data are missing. 

Most recently, crucial, but ambiguous roles of NQO1 in PCa cells were demonstrated. Stable 

expression knockdown of NQO1 resulted in both increased cell proliferation and sensitivity to oxidant 

treatment. Moreover, deregulated expression of more than 1600 genes after NQO1 knockdown was 

determined. Interestingly, expression of genes of the pro-inflammatory network (e.g., IL-8, IL1R2) 

increased, whereas expression of members of the melanoma tumor specific antigen gene family 

decreased. Unfortunately, the mechanism by which NQO1 might regulate this differential gene 

expression is still unclear [21]. 

In summary, the presented study showed no influence of the NQO1 C609T polymorphism on PCa 

risk in Caucasians. Nevertheless, data from actual literature indicate important functional roles of 

NQO1 in both prostate carcinogenesis and possibly therapy. 

4. Experimental Section  

4.1. Samples 

Overall, 119 unselected PCa patients, who all underwent radical prostatectomy, were included in 

our study. Formalin-fixed and paraffin-embedded tissue samples from these patients were available 

from the prostatectomy specimens. For comparison, 232 blood or tissue samples from a male control 

group of patients without any malignancy were investigated. 

All tumors were diagnosed according to the 2004 WHO classification of prostate tumors [22] and 

staged according to the TNM system [23]. Clinicopathological characteristics of the study participants 

are shown in Table 1. Internal Review Board approval was obtained for the study. 

Table 1. Characteristics of study participants. 

 Cases  Controls  

Number n = 119  n = 232  
Age (years) Median: 66 Range: 46–74 Median: 69.5 Range: 25–94 

 Mean: 64.3 (± 6.4)  Mean: 67.9 (± 10.2)  
Stage Organ-confined n = 59   

 Non-Organ-confined n = 55   
 No data available n = 5   

Gleason Score Median: 7 Range: 3–10   
Gleason Sum 3–4 n = 3   

 5–7 n = 80   
 8–10 n = 28   
 No data available n = 8   
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4.2. Tissue Microdissection and DNA Isolation 

DNA was extracted from manually microdissected, histopathological inconspicuous tissue or 

peripheral blood using the High Pure PCR Template Preparation Kit (Roche GmbH, Mannheim, 

Germany) according to manufacturer’s instructions. 

4.3. NQO1 P187S SNP Analysis 

SNP analysis was carried out by restriction fragment length polymorphism analysis (RFLP) of the 

polymorphic region in exon 6 which contains a HinfI recognition site (5'-GANTC-3') in presence of 

the 609T-allele (S187). The presence of the S187 allele resulted in a digest of the PCR product into 

three fragments (230 bp → 151 bp + 44 bp + 35 bp), whereas PCR products containing the 609C-allele 

(P72) resulted in two fragments (230 bp → 195 bp + 35 bp). 

4.4. Amplification of NQO1 Variants and RFLP Analysis 

SNP region was amplified by PCR using primers (sense: 5'-TCC TCA GAG TGG CAT TCT GC-3'; 

antisense: 5'-TCT CCT CAT CCT GTA CCT CT-3') obtained from Metabion (Martinsried, Germany) 

in a total volume of 25 µL containing 100 ng DNA, 0.2 mM dNTP (Promega), 0.18 µM primers and 

0.0025 U/µL GoTaq (Promega, Mannheim, Germany). The thermal cycling conditions were as 

follows: initial denaturation for 3 min at 94 °C, 35 cycles of denaturation at 94 °C for 1 min, annealing 

at 58 °C for 45 s, elongation at 72 °C for 45 s and final primer extension at 72 °C for 10 min. Gradient 

PCR was used for optimization of cycling conditions. 

PCR products were incubated for 4 hours with 10 U HinfI (New England Biolabs, Frankfurt/Main, 

Germany) at 37 °C in a total volume of 30 µL to ensure complete digestion. Restriction fragments 

were separated by electrophoresis using 3.5% agarose gels and visualized under ultraviolet light by 

using 0.05% ethidium bromide. 

4.5. Sequencing Analysis 

Nine randomly selected cases were sequenced to verify the RFLP results. After amplification,  

PCR-products were purified using the Qiagene Dye Ex 2.0 TM Spin Kit according to manufacturer’s 

conditions. Sequence analysis was performed with primers mentioned above using Applied 

Biosystems Big Dye Terminator Cycle Sequencing Kit (version 1.1; Applied Biosystems, Austin, TX, 

USA, 2012) and an Applied Biosystems Genetic Analyzer (version ABI 3500 CE-IVD; Life 

Technologies Corporation, Carlsbad, CA, USA, 2011). 

4.6. Statistical Analysis 

To test if the genotype distribution followed Hardy–Weinberg equilibrium, a public software from 

the Institute of Human Genetics, Helmholtz Center Munich, Germany was used [24]. Chi square test 

(two-sided exact) was used to evaluate case-control differences in the distribution of genotypes and to 

analyze associations between genotypes and age or histopathological characteristics. To determine  
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the distribution of the risk allele versus non-risk-allele Fisher’s exact test (two-sided) was used.  

p-values < 0.05 were interpreted as statistically significant. 

5. Conclusions  

The NQO1 C609T polymorphism seems not to play an important role in the risk for PCa 

development in Caucasians. Possible effects on disease aggressiveness, progression and therapy are yet 

to be determined in more detail. 
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