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Abstract: The protein structural entries grew far slower than the sequence entries. This is 

partly due to the bottleneck in obtaining diffraction quality protein crystals for structural 

determination using X-ray crystallography. The first step to achieve protein crystallization 

is to find out suitable chemical reagents. However, it is not an easy task. Exhausting trial 

and error tests of numerous combinations of different reagents mixed with the protein 

solution are usually necessary to screen out the pursuing crystallization conditions. 

Therefore, any attempts to help find suitable reagents for protein crystallization are helpful. 

In this paper, an analysis of the relationship between the protein sequence similarity and 

the crystallization reagents according to the information from the existing databases is 

presented. We extracted information of reagents and sequences from the Biological 

Macromolecule Crystallization Database (BMCD) and the Protein Data Bank (PDB) 

database, classified the proteins into different clusters according to the sequence similarity, 

and statistically analyzed the relationship between the sequence similarity and the 

crystallization reagents. The results showed that there is a pronounced positive correlation 

between them. Therefore, according to the correlation, prediction of feasible chemical 
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reagents that are suitable to be used in crystallization screens for a specific protein  

is possible. 

Keywords: crystallization reagents; protein sequence similarity; protein crystallization; 

molecular structure; X-ray crystallography 

 

1. Introduction 

Protein structure determination is still an important field utilized by many scientists in modern life 

sciences, as protein structures are the basis of not only protein function studies, but also the structure 

based drug design. The protein structure entries have increased steadily in Protein Data Bank (PDB) 

database [1]. More than 88% of protein structures in the PDB were determined by X-ray diffraction 

(XRD) technique [1]. However, the protein structural entries grew far slower than the sequence entries 

by one order of magnitude [1,2]. The big gap between the entries of protein structures and sequences 

was mainly caused by the bottleneck of protein crystallization for XRD technique [3–6].  

The difficulty in protein crystallization is mainly due to there being too many parameters, including 

temperature, pH, crystallization reagents, protein concentration, precipitant concentration, additives, 

and so on [7,8], that are governing the crystallization process. One of the most difficult obstacles might 

be choosing appropriate chemical reagents that are capable of crystallizing the target protein, because 

no one knows which reagent or combination of reagents among so many possibilities can help to 

crystallize the protein [9–13]. Therefore, a large number of chemical reagents and their different 

combinations are tested exhaustively hoping for a lucky break (such trial and error testing is called 

crystallization screening).  

To enhance the efficiency in the crystallization screening process, rationally arranging the 

combinations of chemical reagents for a specific protein might be a solution. However, there is no 

established method for this purpose. Fortunately, after many years of accumulation, there are some 

databases consisting of successful crystallization conditions, for example, the Biological 

Macromolecule Crystallization Database (BMCD) [14], the C6 Web Tool [15] and the XtalBase  

web-based program [16]. These databases may contain some useful information which can guide us to 

rationally enhance the efficiency of crystallization screening, and therefore partly avoid this time and 

energy consuming process.  

However, some researchers might argue that there is definitely no relationship between protein type 

and successful crystallization conditions, although there is no thorough investigation to support this 

assertion. Now databases like the BMCD contain information of protein types and crystallization 

conditions, which provide a good opportunity to examine whether there is any relationship between the 

protein type and the crystallization conditions. Based on this idea, we conducted an investigation about 

this issue through data mining from the existing databases (the BMCD and the PDB).  

The investigation was carried out according to the following guidelines: the protein types can be 

classified into categories based on their sequence similarity. On the other hand, random groups without 

sequence similarity from the raw datasets can be established as the control datasets for robust 

examination. Moreover, the consistency and the differences of the reagent types in each category can 
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be calculated for comparison with those of the overall and the random groups. If the consistency 

within each category is higher and the difference within each cluster is lower than those of the overall 

or the random groups, then there should be a correlation between the protein sequence similarity and 

crystallization reagents. Otherwise the result cannot support the correlation.  

2. Results and Discussion 

2.1. Datasets 

The 43,406 entries in the BMCD consisting of protein crystallization information were downloaded 

from the official site of the BMCD [17], and their sequences were downloaded from the PDB  

database [18]. The entries of the proteins with a length of less than 30 amino acid residues, i.e., short 

peptides, were discarded for this study. The crystallization reagent names of the whole entries were 

unified. Then the extracted protein entries were clustered into 12,765 groups according to a 100% 

sequence similarity, and the unified reagents of the same proteins remained. Therefore, the 12,765 

entries were used to establish the non-redundant dataset for the next analysis.  

The frequency of each kind of crystallization reagent was calculated by Equation (1) from the local 

non-redundant dataset. The crystallization reagents and their frequencies are shown in Figure 1. 

Reagents such as PEG class, (NH4)2SO4, TRIS class, NaCl, HEPES class, sodium acetate, and so on, 

are clearly dominant in the successful crystallization category.  

Figure 1. The main crystallization reagents and their frequencies in the non-redundant 

dataset from the Biological Macromolecule Crystallization Database (BMCD). 

 

2.2. Establishing the Large Sequence Similarity Clusters (LSSC) Dataset and Random Datasets 

Large sequence similarity clusters (LSSC) datasets, including the information of protein sequence 

similarity and crystallization reagents, were established. Entries of the non-redundant dataset (12,765) 

were clustered into 5,447 clusters according to more than 30% similarity clustering results by 

Blastclust software. Then 3,921 entries (belonging to 173 LSSC, the size of which has 10 or more than 

10 members per cluster) were extracted to establish the LSSC dataset (named as LSSC30). Then the 

LSSC40, LSSC50, LSSC60, LSSC70, LSSC80 LSSC90 datasets based on more than 40% to 90% 

sequence similarity were established in the same way. The entry and cluster numbers of LSSC datasets 

are shown in Table 1.  
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Seven random datasets were also established based on the above LSSC datasets by rearranging 

methods. Therefore, sequences within each cluster in LSSC datasets (LSSC30 to LSSC90) had above 

30% to 90% sequence similarity with each other, respectively, but sequences within each group in 

random datasets were less similar for control analysis.  

Table 1. The numbers of clusters and entries of the large sequence similarity clusters (LSSC) datasets. 

LSSC datasets Number of clusters  Amount of entries 
Average size  

of each cluster 

LSSC30 173 3,921 22.7 
LSSC40 144 3,006 20.9 
LSSC50 122 2,433 19.9 
LSSC60 105 2,068 19.7 
LSSC70 87 1,757 20.2 
LSSC80 81 1,586 19.6 
LSSC90 70 1,340 19.1 

2.3. Statistical Analysis of Reagent Consistency within Each LSSC and Random Group 

The reagent consistency within each LSSC (ܵ௅ௌௌ஼) and random groups (ܵோ஺ே) was both calculated 

and the result was shown in Figure 2a. The average of ܵ௅ௌௌ஼ values of LSSC30 to LSSC90 datasets 

were 0.75, 0.76, 0.78, 0.79, 0.81, 0.83 and 0.85, respectively, and the average of ܵோ஺ே  values of 

RAN30 to RAN90 datasets were 0.66, 0.66, 0.66, 0.67, 0.67, 0.67 and 0.66, respectively. It can be 

seen that the seven mean values of ܵ௅ௌௌ஼ (of LSSC30 to LSSC90) were significantly higher than ܵோ஺ே 

(of RAN30 to RAN90), respectively, as proven by two-tailed Student t-test (p < 0.001). This result 

verified that most ܵ௅ௌௌ஼  were significantly higher than ܵோ஺ே, suggesting that proteins within the same 

family are more likely crystallized by similar reagents.  

Moreover, the linear regression relationship between reagent consistency and sequence similarity 

was established based on those data (Figure 2b). The linear regression equation was:  y ൌ 0.1946x ൅ 0.676, and the correlation exponential of the equation (R²) was 0.9849. This result 

shows the strong positive correlation between reagent consistency and sequence similarity, that is to 

say, the increase in reagent consistency correlates with the increase in protein sequence similarity. 
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Figure 2. (a) The reagent consistency within each LSSC (ܵ௅ௌௌ஼ ) and random groups 

(ܵோ஺ே). (Error Bar: standard error of mean; ** p < 0.001 of the t-test results). (b) The 

reagent consistency against the sequence similarity level of the LSSC and random datasets. 

(Error bar: standard error of mean; Dashed line: the linear regression line between reagent 

consistency and sequence similarity.)  

 
(a) 

 
(b) 

2.4. Statistical Analysis of Reagent Variety between Each LSSC and Random Group 

The transferred weighted values of reagents ( ௝ܸ) of each condition were calculated, and the mean ௝ܸ  values in each cluster in LSSC datasets (LSSC30, LSSC60 and LSSC90) and every group in random 

datasets (RAN30, RAN60, RAN90) were shown in Figure 3. The range of mean ௝ܸ  values in LSSC 

datasets (from 0.032 to 0.989) was wider than the range of random datasets (form 0.347 to 0.871). The 
wider range of mean ௝ܸ  values in LSSC datasets showed that the variety of reagents in LSSC was 
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larger than in the random groups. This result can be interpreted to infer that different protein families 

have different crystallization reagents.  

Figure 3. Range of mean ௝ܸ values in each cluster in LSSC datasets (from 0.032 to 0.989) 

was wider than the range in random datasets (form 0.347 to 0.871). (Group numbers: 

1~173 belonged to the LSSC30 or RAN30 datasets, 194~298 belonged to the LSSC60 or 

RAN60 datasets, 319~388 belonged to the LSSC90 or RAN90 datasets; Solid black 
square: mean ௝ܸ in each cluster in LSSC datasets, hollow red triangle: mean of ௝ܸ in each 

group in random datasets.) 

 

Table 2 shows that most of the variance of ௝ܸ (ܸܣ ௝ܴ) of LSSC clusters were lower than the total 

variance of ௝ܸ ௧௢௧௔௟ܴܣܸ)  ). The proportions of lower ܸܣ ௝ܴ  than ܸܴܣ௧௢௧௔௟  were 76.3%, 77.1% and 

75.7% in LSSC datasets, but the proportions were about 54% in the random datasets. This result shows 
that the variance of transferred weighted values of reagents ( ௝ܸ) within each LSSC was smaller than 

the whole variance in the datasets, which also means that the crystallization reagents have a close 

relationship with the sequence similarity.  
Then the differences of ௝ܸ  within groups were compared with those between groups, by one-way 

ANOVA method. The resulting p values were all less than 0.001 in LSSC datasets, indicating that the ௝ܸ differences within each LSSC were significantly smaller than those between different clusters in 

LSSC30, LSSC60 and LSSC90. In other words, the difference in ௝ܸ was significantly affected by the 

grouping of proteins according to the sequence similarity. On the other hand, the resulting p values in 

three random datasets (RAN30, RAN60, RAN90) were 0.475, 0.716 and 0.962, which were all much 
larger than 0.05 (p > 0.05). This result showed that the ௝ܸ differences within each random group were 

not significantly smaller than those between groups. Therefore, the ௝ܸ values of random groups were 

not relevant to random groups.  
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Table 2. Comparison of ௝ܸ variance (ܸܣ ௝ܴ) between LSSC and Random datasets. 

Datasets ࢒ࢇ࢚࢕࢚ࡾ࡭ࢂ Group number 
under ࢒ࢇ࢚࢕࢚ࡾ࡭ࢂ Group size 

Proportion of lower ࢐ࡾ࡭ࢂ than ࢒ࢇ࢚࢕࢚ࡾ࡭ࢂ 
LSSC30 0.109 132 173 76.3% 
LSSC60 0.111 81 105 77.1% 
LSSC90 0.097 53 70 75.7% 
RAN30 0.099 93 173 53.8% 
RAN60 0.101 58 105 55.2% 
RAN90 0.098 38 70 54.3% 

In summary, it can be concluded from the above analyses that there was a significant positive 

correlation between sequence similarity and crystallization reagents, and such correlation was not 

produced by random events.  

Some studies showed that the positive correlation between sequence similarity and crystallization 

probability drops rapidly below 90% sequence identity, while negative correlation between sequence 

similarity and the probability of crystallization not being achieved did not drop significantly. This is 

because negative features impacting crystallization are often conserved in groups of similar  

sequences [19]. The strong positive correlation between sequence similarity and crystallization 

reagents achieved in this study can also suggest that some features contained in sequence similarity 

can also influence the reagent selection of crystallization.  

On the other hand, it is known that the structure of a protein molecule is determined by its  

sequence [20,21], and protein structure affects the crystallization process, because many  

crystallization influencing factors are determined by their structures, such as solubility, pI value, 

hydrophobicity [22–26]. Hence the result in this study, i.e., the positive correlation between the 

sequence similarity and crystallization reagents, indicated that the selection of appropriate 

crystallization reagents is influenced by the molecular structure. This result and previous study of the 

correlation between protein sequence similarity and X-ray diffraction quality [27] both confirmed that 

the structure of protein molecules can affect the crystallization process. 

3. Methods and Experimental Section  

3.1. Datasets 

The Biological Macromolecular Crystallization Database (BMCD) is a publicly available resource, 

containing information on molecules, crystals and crystallization conditions for macromolecules for 

which diffraction quality crystals have been obtained [14]. BMCD entries include macromolecule 

sequence, protein properties and crystallization conditions, which can be downloaded from the 

internet freely.  

Since the structures in the BMCD were determined in different laboratories and/or at different 

times, the BMCD database contains considerable redundant information for the same proteins. To 

establish a non-redundant dataset containing information of protein sequences and crystallization 

conditions, it is necessary to find the unified reagents for the same proteins. Unified reagents, which 

means all possible reagents for a given protein, were combined from all kinds of reagents appearing 
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for the same proteins, so that each important reagent for the given protein crystallization can be held in 

reserve. Therefore, the unified reagents are more suitable to represent the requirements of protein 

crystallization. The current paper will analyze the correlation between the unified reagents and the 

sequence similarity.  

Current release of the BMCD (version 4.03) includes 43,406 crystal entries. Protein crystallization 

conditions data for the current study were first downloaded from the BMCD (released in May  

2012) [17] and data of their amino acid sequences were downloaded from the PDB web site (released 

in May 2012) [18]. Other data were excluded.  

The downloaded data were then screened based on the criterion: the entries left for analysis should 

consist of proteins of more than 30 amino acid residues. The names of the crystallization reagents were 

unified, e.g., sodium chloride was converted to NaCl, and all kinds of PEG (such as PEG3350, 

PEG3000) were converted to “PEG class”. Then the redundant entries were filtered. All of the protein 

sequences were clustered at 100% sequence similarity level by using the BlastClust program [28,29], 

so as to filter the protein redundant entries. The unified reagents of the same proteins were left to 

construct the local non-redundant dataset for the next step of analysis.  

3.2. Calculating the Frequency of each Kind of Crystallization Reagent 

The frequency of each kind of crystallization reagent was calculated from the local non-redundant 

dataset, to establish the necessity of each reagent for protein crystallization. The frequency of the 

reagent ݅ (ܨ௜) is given by Equation (1).  ܨ௜ ൌ ∑ ௜௝ே௝ୀଵܰݔ
 (1)  

where ݔ௜௝ ൌ 1 (when reagent ݅ appears in condition ݆), ݔ௜௝ ൌ 0 (when reagent ݅ does not appear in the 

condition ݆), ܰ: the total amount of the crystallization condition entries of the non-redundant dataset. 

For example, if NaCl appeared in 2,194 conditions among the total 12,765 conditions, the frequency of 

NaCl (ܨே௔஼௟ ) can be calculated as 0.172. Moreover, the 100 highest frequency reagents from the  

non-redundant dataset were chosen to calculate the similarity of reagents between crystallization 

conditions, and to convert a reagents combination of a given condition into a transferred weighted 

value. On the other hand, the ܨ௜  values of reagents were used as the weighting factor for 

calculating analysis.  

3.3. Clustering by Sequence Similarity to Establish the LSSC Datasets 

Sequences of homological protein structures usually have more than 30% similarity [30–32]. 

Therefore in this study, we adopted the 30% to 90% (10% interval) similarity levels as thresholds to 

categorize the proteins from the local non-redundant dataset into seven sequence similarity cluster 

(SSC) datasets by BlastClust program. Thus, for example, proteins within every clusters of SSC30 had 

at least 30% sequence similarity. 

Some of the SSC may have less than 10 members, which means that those protein families have 

been seldom crystallized, and may not be able to provide enough information for our study. Therefore, 

we built the large sequence similarity clusters (LSSC) datasets from SSC clusters with 10 or more than 
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10 entries. These seven LSSC datasets (named as LSSC30, LSSC40, …, LSSC90, respectively) were 

constructed and used for further analysis to check the relationship between the reagents and the 

sequence similarity.  

3.4. Establishing the Random Datasets from the LSSC Datasets for Robust Analysis 

To check the reliability of the analysis results, we established seven random datasets (named as 

RAN30, RAN40, …, RAN90, respectively) based on the seven LSSC datasets and did the same 

approaches on them (as those on the LSSC datasets) to analyze the relationship between the reagents 

and the random groups. The procedures were as follows: all entries of LSSC datasets were randomly 

rearranged into groups (the amounts of group number and group size are both same as those of LSSC 

datasets). Rearranged datasets had the same number of entries grouped randomly against LSSC 

datasets and did not contain the repeated entries. To check whether the reagents were affected by 

random grouping or not, we performed the same statistical analysis process on the random datasets. 

The results of the analysis between random datasets and LSSC datasets were compared, to find out 

whether the correlation between the reagents and the sequence similarity is a significant rule or just a 

random phenomenon.  

3.5. Statistical Analysis of Reagent Consistency within Each Group 

The similarity of reagent kinds within each LSSC (ܵ௅ௌௌ஼) was assessed and compared with the 

similarity of random groups (ܵோ஺ே). The similarity of reagent kinds of crystallization conditions in 

group ݇ (ܵ௞) of LSSC or random datasets is defined by Equation (2):  ܵ௞ ൌ ∑ ሺs௜௞ܨ௜ሻ௠௜ୀଵ∑ ሺܨ௜ሻ௠௜ୀଵ  (2)  

where ݊  is the number of crystallization condition entries in group ݇ , ݉  is the number of the 

considered high frequency reagent number (݉ ൌ 100, in this paper), s௜௞ is similarity of reagent ݅ in 

group ݇, which is defined as: s௜௞ ൌ 2 ฬ∑ ௫೔ೕೖ೙ೕసభ௡ െ 0.5ฬ. (s௜௞ ൌ 0 means the lowest similarity of reagent ݅, when reagent ݅ appeared at just half conditions in group ݇; s௜௞ ൌ 1 means the highest similarity of 
reagent ݅, when reagent ݅ appeared at either all or none conditions in group ݇.) ݔ௜௝௞ and ܨ௜ is the value 

of reagent ݅  of condition ݆  in group ݇  and the frequency of the reagent ݅  in the whole dataset, 

respectively, as already assigned in Equation (1). For example, if group ݇ has 50 entries, which mainly 

100 reagents appeared 46, 0, 8 … times and had 0.593, 0.286, 0.276 … frequencies in the whole 

dataset respectively, the similarity of reagents in group ݇ (ܵ௞) can be calculated as: ሺ2 ൈ ቚସ଺ହ଴ െ 0.5ቚ ൈ0.593 ൅ 2 ൈ ቚ ଴ହ଴ െ 0.5ቚ ൈ 0.286 ൅ 2 ൈ ቚହ଼଴ െ 0.5ቚ ൈ 0.276 ൅ ڮ ሻ/ሺ0.593 ൅ 0.286 ൅ 0.276 ൅ ڮ ሻ.  

Then the seven pairs of average values of reagent consistency of clusters or groups between LSSC 

dataset and random datasets (Means of ܵ௅ௌௌ஼ or ܵோ஺ே) could be compared and tested for significance of 

difference respectively, with use of Student t-test.   
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3.6. Statistical Analysis of Reagent Variety between Groups 

We used variance comparison and one-way ANOVA to analyze the reagent variety between each 

LSSC or random groups of the datasets, so as to check the correlation between the reagents and the 

sequence similarity from another point of view. The transferred weighted value of reagents of each 

condition for ANOVA analysis was assigned as the sum of the products of each reagent value and its 

frequency, as given by Equation (3) for condition ݆:  

௝ܸ ൌ ෍൫ݔ௜௝ܨ௜൯௠
௜ୀଵ  (3)  

where ݉ is the number of 100 high frequency reagent types, ௝ܸ is the transferred weighted value of 

reagents in condition ݆, ݔ௜௝ is the value of reagent ݅ in condition ݆, as already assigned in Equation (1). 

For example, if just NaCl and MgCl2 appeared in condition ݆ , the transferred weighted value of 
reagents in condition ݆ ( ௝ܸ) can be calculated as 0.281 (i.e., 1 ൈ 0.172 ൅ 1 ൈ 0.109).  

The variance of ௝ܸ ܣܸ)  ௝ܴ ) of each clusters or groups about LSSC and random datasets was 

calculated and compared with the total variance of ௝ܸ (ܸܴܣ௧௢௧௔௟) about LSSC and random datasets, 

respectively. If most of ܸܣ ௝ܴ values were lower than ܸܴܣ௧௢௧௔௟, it will mean that reagent differences 

within groups are lower than the whole difference of the dataset. Moreover, the ௝ܸ values of LSSC and 

random datasets were statistically analyzed by one-way ANOVA method to check whether the reagent 

differences between groups are significantly larger than those within groups. It will mean that reagent 

differences between groups are significantly larger than those within groups, if the resulting ݌ value is 

less than 0.01.  

The analysis strategy of this work is shown in Figure 4.  

Figure 4. The analysis strategy and process of this work. 
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4. Conclusions  

In this investigation, information on crystallization reagents and the sequence of proteins was 

extracted from the BMCD and the PDB databases. Then the relationship between the sequence 

similarity and the unified reagents was statistically analyzed. The results showed that protein 

crystallization reagents were significantly positively correlated with protein sequence similarity. The 

robust estimation results showed that correlation was not caused by random events. The results also 

indicated that protein structure determined by sequence would affect the crystallization process.  

The current work further indicated that rationally selecting crystallization reagents and the design of 

a new crystallization screening kit for crystallizing a specific protein is feasible. Or according to the 

correlation, it is possible to predict preferable crystallization reagents for a new protein, and thereby 

select the most suitable screening kit from those commercially available.  
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