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Abstract: Molecular symmetry is intimately connected with the classical concept of
three-dimensional molecular structure. In a non-classical theory of wave-like interaction
in four-dimensional space-time, both of these concepts and traditional quantum mechanics
lose their operational meaning, unless suitably modified. A required reformulation should
emphasize the importance of four-dimensional effects like spin and the symmetry effects of
space-time curvature that could lead to a fundamentally different understanding of molecular
symmetry and structure in terms of elementary number theory. Isolated single molecules
have no characteristic shape and macro-biomolecules only develop robust three-dimensional
structure in hydrophobic response to aqueous cellular media.
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1. Introduction

Most quantum-theoretical concepts of chemistry have their origin in spectroscopy. The atomic
spectroscopy of Kirchhoff, Bunsen, Fraunhofer and others resulted in the formulation of Balmer’s
mysterious formula, the direct stimulus for the development of quantum mechanics. From molecular
spectroscopy, which also dates from the 19th century, developed the concept of molecular symmetry,
based on point-group theory. The concept of molecular structure was conjectured to bridge the gap
between the two branches of spectroscopy. It is noted in passing that the discipline of quantum molecular
theory is based entirely on this postulated, but unproven, concept of molecular structure.
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The analysis of molecular crystals by X-ray diffraction is routinely accepted as final justification of
the molecular-structure hypothesis, on assuming that individual molecules maintain their integrity and
structure in the solid state. This assumption is demonstrably unjustified. The molecular unit projected
from crystallographic analysis is best described as a rigid three-dimensional framework that connects
point atoms and is stabilized by crystal-packing interactions. In the absence of such constraints the
crystallographic point group no longer represents the shape of the more flexible molecule. Related
techniques such as gas-phase electron diffraction define no more than a radial distribution function.
Spectroscopists are well aware of the complications associated with defining the symmetry group of
non-rigid molecules, but the chemist naı̈vely accepts that their primitive concept of molecular structure
is consistent with the most fundamental theories of physics. It is not. A recently published history of
quantum chemistry [1] never mentions the concept “molecular structure”.

The classic example of a non-rigid molecule is ammonia, which appears as a bipyramidal arrangement
of interconverting polyhedra that reflects by tunneling through the plane of the central N atom [2]. It is
pointed out [2] that:

As far as the quantum-mechanical formalism is concerned, ammonia is by far no exception.
Similar situations can be constructed for all molecules.

They do not fit into the molecular-structure theme of traditional chemistry and are considered
as “strange” states from a chemical point of view. Neither chemical structures nor chemical
bonds do exist any more.

On the other extreme, molecules such as the adamantane-derived bispidine ligands have been
demonstrated in synthetic studies to operate as rigid units with apparently well-defined classical
structure [3]. We contend that the difference between ammonia and bispidine is one of degree only. In
both cases the equilibrium molecular geometry is essentially non-classical. Only in the case of bispidine
is there a striking correspondence with the structure predicted by classical concepts of valency.

Molecular symmetry is a classical concept based on the hypothetical model of point atoms held
together by rigid chemical bonds. There is no experimental evidence for the existence of either point
atoms nor chemical bonds. Both of these concepts are postulates to support the assumption of molecules
with three-dimensional geometrical structure and molecular symmetry is the mathematical description
of this structure. Alternatively molecular symmetry could be defined in line with more recent views on
atomic and molecular structure.

A more appropriate theory, starting from the nature of electrons and atomic nuclei as wave-like
distortions of four-dimensional space-time, characterizes a molecule as a 4D standing-wave structure
in which individual particles do not have independent existence. The only meaningful symmetry of such
a construct must be four- and not three-dimensional. It will be argued that classical molecular structure
is the three-dimensional projection of non-classical four-dimensional molecular geometry.
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2. Electron Theory

The point atom with mass mn is a remnant of the classically assumed ultimate philosophical limit to
the subdivision of matter. It has been used in this form by Newton, Dalton, Mendeleév and others, until
the end of the 19th century. Following Nagaoka, Rutherford and Bohr the concept of a structureless atom
was abandoned and replaced by the planetary model of point-like electrons, with massme in orbit around
a point-like heavy nucleus. With the advent of quantum mechanics the Bohr–Sommerfeld orbits gave
way to chemical shells of probabilistic charge density—now defining the electron as a point particle! To
account for the behaviour of electrons in diffraction experiments the kabbalistic notion of wave-particle
duality was concocted, notwithstanding the wave-mechanical alternative proposed by Schrödinger.

As the particle model found its way into textbooks the electronic wave structure was completely
forgotten, although the quantum-mechanical model never made any logical sense. In order to rationalize
the probability function as representing a single electron it is necessary to integrate over all space.
The electron associated with a given hydrogen atom, although likely to occupy the ground-state, has
a finite probability to be on the moon. The chemists of the world have been content to live with this
assumption for a hundred years. They have been brainwashed so thoroughly as not to tolerate any
alternative suggestion that makes logical sense.

The most bothersome aspect of electronic quantum mechanics is the failure to account for the most
prominent attribute of an electron, known as its spin. Efforts to artificially add a spin function to the
three-dimensional state function of an electron have only been partially successful. A common remedy
is often proposed through the assertion that spin is a relativistic phenomenon, but a conclusive proof has
never been formulated. What has been demonstrated is that the spin function, known as a spinor, occurs
naturally as an inherent feature of four-dimensional motion. In order to define an electron with spin it is
therefore necessary to describe it as an entity in four-dimensional space-time. This would automatically
rule out its definition as a point particle, noting that a point in four-dimensional space-time has, not only
zero extension but also zero duration. It cannot exist.

With this realization the interminable debate about particle or wave becomes redundant and the
remaining option is to consider the electron as a four-dimensional wave structure. In fact, Schrödinger’s
equation is a modification of the general wave Equation. It is fashionable to state [4] that

... analogies between geometrical optics and classical mechanics on the one hand, and wave
optics and quantum mechanics on the other hand ... can only make the Schrödinger equation
seem plausible; they cannot be used to derive or prove this equation.

Statements like this are standard textbook fare that derives from the Copenhagen campaign to discredit
Schrödinger’s wave interpretation [5]):
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By defining x0 = ict, etc., this equation rearranges into
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The solution of Equation 2 has the hypercomplex form

Φ = a+ ib+ jc+ kd

known as a quaternion or the spin function. The coefficients i, j, k are generalizations of
√
−1 with the

rule of composition: i2 + j2 + k2 = ijk = −1.
In order to obtain Schrödinger’s solution it is necessary to separate the space and time variables on

solving Equation 1. The result of this is to describe the electron as a three-dimensional object without
spin. The consequence is that the three-dimensional angular momentum defined by Schrödinger’s
equation is not a conserved quantity and hence inadequate as a basis on which to construct molecular
symmetry functions. The conserved quantity is traditionally defined as J = L + S, a solution of
Equation 2.

In the quaternion representation an electron can no longer be considered as an entity that moves
through space, but rather as a distortion of space-time, or the vacuum. A vivid visualization was proposed
by Weingard [6]

... conceiving of the motion of particles on analogy with the motion of the letters on the
illuminated news sign in Times Square. The letters move, not by anything moving, but
by the sequential blinking of the lights of which the sign is composed. Similarly, we can
conceive of the motion of a particle as the motion of a geometrical property. Regions of
space do not move, but the geometry of adjacent regions change in such a way that a pattern
of geometrical properties—the pattern we identify with a certain particle—moves.

In quaternion terminology such a geometrical pattern may be described as a standing four-dimensional
spin wave. Such a wave packet is flexible, by definition, and adapts to the geometry of its local
environment. The size of a wave packet in space-time is restricted by the limited time component that
prevents indefinite extension. The hydrogen electron can no longer be on the moon. The topology of the
wave packet manifests, in addition to spin, also as characteristic charge and mass.

On interaction with a proton, a spin wave of opposite charge and high mass, the electron envelops
the proton in a hyperspherical shroud. Assuming that waves of similar topology readily coalesce into
larger composite waves, the formation of heavier atoms appears as a natural process. All interactions and
rearrangements consist of finding an equilibrium among merging patterns. The only feature to explain is
the origin of the elementary patterns such as electron, proton and neutrino.

The answer is provided by the theory of general relativity. We note in passing that the Lorentz
transformation that defines special relativity amounts to a complex rotation in four-dimensional space-
time, with the same structure as the quaternion spin function [7]. Wave mechanics and relativity collapse
into a single theory [8]. The additional consideration that creates general relativity is formulation of the
theory in non-Euclidean space-time. The resulting field equations are of the form

Gµν = Rµν − gµνR = kTµν
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In words, the curvature tensor Gµν balances the energy-stress tensor Tµν , which may be interpreted
as distortions (matter) in space-time. This means that Euclidean (flat) space-time has Tµν = 0 and hence
contains no energy or matter. As space-time curves, elementary wrinkles develop and coalesce into
atomic matter and eventually into macroscopic massive objects that cause increased local curvature of
space-time, recognized as a gravitational field.

3. Atomic Structure

The empirical Periodic Table of the Elements is widely accepted as the major contribution of
chemistry to science, and correctly so. Whereas the Bohr–Sommerfeld atomic model could be
demonstrated to be consistent with the periodic model by invoking the empirical exclusion principle
of Pauli, the Schrödinger wave-mechanical model can only partially account for elemental periodicity.
Two reasons for the discrepancy are the neglect of spin and the assumption of zero interaction with the
environment as in Euclidean space-time.

A few years ago it was demonstrated [9] that, on specifying the local curvature of space-time by the
ubiquitous golden parameter, τ = 1

2
(
√

5 − 1), details not only of elemental periodicity but also of the
general periodicity of all stable nuclides may be mapped by elementary number theory as a function
of space-time curvature. It is of special interest to note that this periodic function extends in a natural
way to include antimatter in an involuted arrangement that strongly supports a projective topology of
space-time.

Of more immediate relevance is that appearance of the golden mean indicates a self-similar
relationship between atomic structure, botanical growth, patterns in the solar system and spiral galaxies.
In response it could be shown [10,11] that extranuclear electron density in all atoms is simulated by
golden logarithmic-spiral optimization. The result is a spherical distribution of charge in the form of
a standing wave around the nucleus. The distribution mirrors the best quantum-mechanical models in
the form of the arrangement predicted by Thomas–Fermi statistics [12] as well as self-consistent-field
Hartree–Fock calculations [13] of atomic structure.

4. Chemical Interaction

The classical straight-line representation of a chemical bond poorly describes the mode of interaction
between spherical wave structures. A more likely model is pictured in Figure 1 as the idealized
interference pattern of two wave systems.

Figure 1. Interactions of different order.

1 2 3
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The consecutive frames may be interpreted as schematic representations of homonuclear covalent
interactions of increasing order. To distinguish between different modes of overlap, frames 1 and 3
could represent integer and frame 2 half-integer order.

The relative nuclear positions implied by the two-dimensional drawing of Figure 1 are not necessarily
fixed, as the atomic waves may rotate around each other in all directions, without disturbing the
interference pattern. This conclusion is consistent with the standard assumption of spherical molecules
in the study of gas kinetics [14].

There are two possible modes of rotation, shown schematically in Figure 2. Either one sphere rotates,
by rolling around the other, or the spheres rotate together like mating gears. The geared rotation does
not change the relative disposition of the spheres and corresponds to the classical model of a vibrating
diatomic molecule. The other mode of rotation creates a situation without a fixed axis of symmetry. It
amounts to rotation around a point as described by the quaternion spin function. It requires a rotation of
4π to restore the initial configuration and represents an element of four-dimensional symmetry, which
does not occur in three dimensions.

Figure 2. Spherical and geared rotation of spheres.

4π

2π

2π

2π

In this mode the cyclic disposition of atomic cores fluctuates with the spin function, consistent with
the interaction between wave structures being subject to spin pairing. The hyperspherical molecular
symmetry may be visualized as the interpenetration of two wave packets in spherical rotation such
that the equilibrium separation of their centres of mass defines a vibrating interatomic distance.
Generalization of this pattern suggests that atomic cores in multi-atomic molecules are confined, with
restricted freedom, within a sea of valence electrons.

In the case of heteronuclear interaction the interference patterns must obviously be of lower symmetry,
but in four dimensions it has the same hyperspherical symmetry as before. As more atoms participate in
the formation of larger molecules a unique holistic interference pattern characterizes each equilibrium
arrangement. The removal or displacement of any atom in the molecule from/by another affects the
entire wave pattern, and hence the molecular symmetry, in a non-trivial way.

4.1. The Valence State

Atoms do not interact spontaneously to form molecules under all circumstances. Chemical theory
assumes that interaction in a reacting system only commences under specific thermodynamic conditions
that define a characteristic valence state for the system. This happens when a single activated electron
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becomes decoupled from its atomic core and free to interact with a similarly activated electron from
another atom, as shown in Figure 1. The wave patterns of Figure 1 therefore only refer to a single pair
of activated valence electrons and not the composite electronic wave of the core.

The decoupled valence electron behaves like an elementary charge, which is smeared out uniformly
over a sphere of radius r0, known as the characteristic ionization radius (not to be confused with ionic
radius) [15] of the atom. Electronic charge density as calculated by the spherical wave model of an
atom [11] is distributed in the form of annular segments, separated by nodal surfaces. In order to specify
the ionization sphere of an atom, the total charge in the outermost segment is normalized over a sphere
of constant charge density, with a radius defined as r0. The valence electron in the activated stationary
state with spherical symmetry has neither kinetic nor classical potential energy and its energy of

Eg =
h2

8mr20

which represents quantum-potential energy (or chemical potential of the valence state) of

Vq =
~∇2R

2mR

is simply related to the classical electronegativity [16], χ =
√
Eg, with Eg in eV.

All covalence interaction parameters such as interatomic distance, bond order and dissociation energy
should therefore be simple functions of r0. Steric distortion of the equilibrium molecular arrangement
is resisted by the interference pattern that requires either integer or half-integer bond orders. Such
resistance should correlate with spectroscopically measured harmonic stretching force constants. In
principle all characteristics of covalent interaction could therefore be calculated directly from atomic
ionization radii as the only parameter.

4.2. Covalence

Although the definition of bond order as the extent of overlap between interfering waves is completely
different from the classical concept, interatomic distances predicted by the wave model are remarkably
similar to experimental estimates of empirically assumed bond orders. In terms of the wave model all
interatomic distances, d, of homonuclear diatomic interactions of the same order are linear functions of
ionization radius,

d = kbr0

where kb is characteristic for order b. In the same way that atomic electron distribution, as a standing
wave, is predicted by logarithmic-spiral optimization, bond-order coefficients, kb, are specified in the
same way, as shown in Figure 3, from [17]. It is instructive to note that kb varies from unity to τ for
b = 0 to 4.

For heteronuclear interaction the relationship between interatomic distance and bond order is more
complicated, but in all cases the golden ratio is involved. By the use of predicted bond orders and
interatomic distance, dissociation energy and stretching force constants are next calculated directly from
ionization radii and integral powers, τn, of the golden ratio.
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Figure 3. Golden-spiral optimization of bond order.
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Other alternative approaches to the problem of covalence have appeared in the recent
literature [18–22]. The main thrust of this research is to find an alternative to molecular-orbital theory
in terms of variables such as chemical action and chemical hardness, based on their relationship
with electronegativity and defined by various techniques, including semi-classical path integrals and
second quantization, culminating in the definition of bondons to represent the electron pairs of covalent
interaction. Final synthesis of these ideas into a working model of covalence seems to converge towards
an understanding based on the role of the quantum potential and the golden ratio [23].

To cut a long story short we repeat that the characteristics of electrons, atoms and molecules are
intimately related to the golden parameter and in order to understand molecular structure and symmetry
we find it necessary to establish why this should be the case. At the most fundamental level we suspect
the golden ratio to function as a critical characteristic of the general curvature of space-time. In order
to explore this possibility it is necessary to consider a few relevant aspects of cosmology. We start from
classical cosmology with a known link to the golden ratio, which Johannes Kepler, on cosmological
grounds, referred to as the divine proportion.

5. Cosmic Self-Similarity

The cosmology of Pythagoras [24,25] (and of Kepler), based on natural numbers, can be summarized
briefly as follows:

The cosmic unit is polarized into two antagonistic halves (male and female) which interact
through a third irrational diagonal component that contains the sum of the first male and
female numbers (3 + 2), divides the four-element (earth, water, fire, air) world in the divine
proportion of τ = (

√
5/4− 1/2) and sounds the music of the spheres.

1

21

τ
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Translated into modern terms [26]:

The cosmic whole consists of a world and an anti-world, separated by an interface that
creates all matter as it curves through four-dimensional space-time, with an involution,
described by the golden ratio τ , which puts the universe into harmonious perspective of
projective geometry.

For the benefit of prospective readers not familiar with projective geometry, a short introductory
primer summarizes some details and Kepler’s contribution in the Appendix.

It seems that a relationship between cosmic structure and the golden ratio has been surmised for
millenia without understanding its cause. Projective cosmology now suggests that the common factor is
space-time curvature—a complete unknown. However, the prominent role of the golden spiral (Figure 3)
could provide this insight. By construction, the golden spiral is made up of circular segments that fit
diagonally into touching squares with side lengths in golden ratio. In each square a measure of the
curvature follows from the ratio of arc length (πr/2) to the length of the diagonal chord (

√
2r), i.e.,

π/(2
√

2) = 1.111 '
√

5/2. The agreement is not exact, but seductive (It is equally close to the ratio
of 1.1115 said [27] to “keep popping up more frequently than coincidence would seem to allow”. The
king’s chamber in the great pyramid is a 1:2 rectangle with its ceiling at the height of half its long
floor diagonal,

√
5/2. [28]). It provides sufficient grounds to assume that cosmic self-similarity is

a manifestation of general space-time curvature, resulting from cosmic projective geometry, of
√

5/2,
with respect to Euclidean tangent space.

We emphasize the similitude between Pythagorean and projective cosmologies to highlight the
importance of self-similarity for the understanding of molecular symmetry. Noting that [29]

... space itself has a structure that influences the shape of every existing thing,

molecules, like space-time itself, would be shaped in four dimensions. This is referred to as non-classical
molecular shape as distinct from the traditionally assumed three-dimensional classical shape. The
closest accord between classical and non-classical molecular structures occurs in close confinement
as in a crystal lattice. The biggest difference is in free interstellar space where any stable molecule
is of highly symmetrical shape. As such a molecule finds itself in more crowded environments, as
in a molecular cloud, each interaction reduces its symmetry according to Goldstone’s theorem [30].
Likewise, reduced temperatures and increased pressure cause further symmetry breakdown until the
molecule in the crystalline state at 0 K has the least symmetry.

It becomes problematic to decide which of these is the true molecular symmetry. The 0 K classical
structure which is used invariably in spectroscopic analysis is probably the worst possible choice. The
reason why it is a good practical model is because spectroscopic analysis relies mainly on internal
parameters such as interatomic distance, described correctly by the classical structure. Molecular shape
and symmetry are not predicted by molecular spectra.

Without this knowledge the vibrational symmetry of molecules becomes as meaningless as the
feckless caricature of statically rigid three-dimensional molecules.
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6. Molecular Symmetry

Nowhere in nature is there exact symmetry, only equilibrium. The reason is that the symmetry of
any object depends on the symmetry of its environment, which is nowhere rigorously isotropic. It is
safe to conclude that there are no symmetrical molecules except at 0 K, which is unreachable. As a
mathematical concept however, symmetry is precisely defined by group theory and we hear that [31]

... the number and kinds of energy levels which an atom or molecule may have are rigorously
and precisely determined by the symmetry of the molecule or of the environment of the atom.

This statement can only refer to a hypothetical molecule considered as a static array of point atoms.
Knowing the number and kinds of energy levels of such a molecule is of no chemical interest. In fact,
there is only the single ground-state energy level. In systems of chemical significance group theory has
no function unless molecular symmetry is already known empirically. One may ask, as in the classic
hamburger commercial: “ where is the beef?”

Without any knowledge of molecular shape or symmetry all that remains is the connectivity pattern
which is directly commensurate with the 0 K classical structure and symmetry via the techniques of
classical molecular mechanics. In principle it is possible to progress from here to situations of chemical
importance by modelling the effects of thermodynamics on classical bond parameters. Considerable
progress has been achieved by simulations of this type, known as molecular dynamics. However,
commentators [32] who proclaim the power of quantum mechanics to predict the structure, symmetry
and chemical properties of non-existent chemical compounds can safely be ignored.

Chemistry has a long way to go towards an understanding of the four-dimensional shape and
symmetry of molecules. A useful first step would be to admit the inadequacy of three-dimensional
quantum mechanics, which cannot deal with four-dimensional wave phenomena such as the
electromagnetic field and the solutions of Equation 2. It is encouraging to note that pedagogical
trends in this direction [33,34] are gaining momentum. These authors object to the way in which
chemical bonding is understood and taught, although unaware of the root cause of their irritation. The
irksome orbital concept and the very idea of a chemical bond are relics of extravagant efforts to develop
quantum-mechanical arguments from classical molecular structures. The result is a mess. As remarked
by Sheldon Goldstein [35]:

... it is not unusual when it comes to quantum philosophy, to find the very best physicists
and mathematicians making sharp emphatic claims, almost of a mathematical character, that
are trivially false and profoundly ignorant.

The performance of chemists is even worse—they accept the claims of the physicist at face value, then
insert their classical model as a quantum concept, by the simple device of describing complex functions
as real hybrid orbitals [10]. The implied violation of the exclusion principle is considered a small enough
price to pay for the recognition of classical molecular structure and symmetry in quantum chemistry. It
means that in reality there is no conceptual support for molecular symmetry, the way it features as a
pillar of theoretical chemistry. The whole scheme is self-contradictory—in order to construct sp hybrids
the orthogonality of s and p functions, which means zero overlap, is simply ignored.
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Equally remarkable is the way in which molecular spectroscopists keep up the pretence of a quantum
theory, despite the well-known fact that the assignment of group frequencies is independent of the
assumed molecular structure and symmetry. Without classical structure there is precious little left of
molecular quantum theory and symmetry. To fill this hiatus would require a complete reformulation of
the problem.

It is, first of all, necessary to appreciate the four-dimensional nature of molecules. The symmetry of
such a molecule is to be understood, by analogy with the three-dimensional VSEPR model, as resulting
from the equilibrium arrangement of various wave structures that minimizes the spin function. Molecules
with non-zero residual angular momentum are optically active. All others project into three dimensions
with spherical symmetry. It should be clear that this 3D projection cannot be static as the time coordinate
of space-time, as perceived in projection, would be non-zero. This means that the shape of a free achiral
molecule represents the average of a spherically pulsating configuration.

The spherical symmetry could break down if the molecule, when set into axial rotation, as in a
microwave field, exhibits a dipole moment. In an applied electric field Stark modulation permits
spectroscopic measurement of the dipole moment. Infrared and Raman spectra arise from molecular
vibrations induced by further breakdown of symmetry. Molecular spectra simply do not reveal the
structure or symmetry that molecules do not possess. Any symmetry argument that enters into the
interpretation of molecular spectra arises from structure due to interaction with electromagnetic fields in
the environment, becoming more pronounced in condensed phases, including solutions.

Three-dimensional structures inferred from NMR spectra and X-ray crystallography are purely
classical and confirms no more than chemical connectivity patterns. The frequent occurrence of
molecular rearrangements shows that these patterns are not necessarily invariant. It is of interest to
note that the complete molecular eigenstate, even of the Born–Oppenheimer Hamiltonian of complex
molecules, signifies spherical symmetry [36]. Structured molecules are therefore undefined also in
three-dimensional wave mechanics. What is popularly known as molecular structure and symmetry
are purely classical concepts. This means that the fashionable proclivity to relate chemical property
to molecular structure is a sterile pursuit. Apart from its structure, a classical molecule has no other
properties and a free molecule, which exhibits the full range of chemical properties, has no structure.

Molecular Shape

Before the ideas outlined here can be incorporated into a meaningful theory of chemistry it is
necessary to contemplate the nature of a non-classical four-dimensional molecule. For most chemists
this would imply a major paradigm shift; away from their traditional view of rigid three-dimensional
molecular quantum objects. The enormity of the proposed paradigm shift is underlined by statements
from leading theoreticians such as [37]:

There is no such thing as spacetime in the real world of physics ... It is an approximation
idea, an extremely good approximation under most circumstances, but always only
an approximation.

The first obstacle to overcome is the counter-intuitive notion of space-time entanglement that implies
a temporal component to space variables. Projection into three-dimensional space separates space and
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time coordinates to create the illusion of an object in isotropic three-dimensional motion. This means that
a hyperspherical object appears as a pulsating spheroid in three-dimensional space, if all environmental
effects are ignored. This model describes a molecule in intergalactic space. By analogy with Rydberg
atoms [38] it should behave as a Rydberg molecule, in which the distance scale between interacting
units is highly inflated. This implies an increase in atomic (and molecular) size, ionization radius
and interatomic distance, with concomitantly decreased dissociation energy and molecular stability.
Not surprisingly only the most stable diatomic molecules H2, CO, N2, etc., have been observed [39].
Macromolecules would simply fall apart in intergalactic space. In interstellar dark molecular clouds
(e.g., the horsehead nebula) with high concentrations of molecular material and dust, more complex
species like simple amino acids have been recorded.

To develop these ideas into useful computational models is not a straightforward exercise; for the time
being it is difficult to see how it could be developed beyond the classical model of pairwise interaction.
The only topic of immediate interest appears to be the spontaneous folding of macromolecules with
biological function into characteristic single conformations. As revealed by crystallographic analyses
the overall structure of proteins is remarkably compact, at about the same level as the crystals of small
organic molecules [40], which means that a sensible relationship between their function and classical
molecular structure could be established theoretically. However, the simulation of the reversible folding
and unfolding of protein molecules has been conspicuously unsuccessful.

Probably the most remarkable feature of protein folding is the observation [41] that the unfolding
transitions are well established to be generally two-state at equilibrium, with only the fully folded and
random unfolded states populated substantially. Partially-folded intermediates are relatively unstable.
As remarked by Thomas Creighton [40]:

... simple estimates of the number of conformations possible with even a small polypeptide
chain of, say, only 50 amino acid residues imply that an astronomical length of time, many
orders of magnitude longer than the age of the universe, would be required for all of them to
be sampled randomly. Consequently, the folding process must be directed in some way ...

In our biased opinion the curvature of space-time is one possible factor that could direct such specific
action. It is noted that in many proteins the primary polypeptide chain pursues a moderately straight
course across the entire breadth of the structure and then turns to the other side, without getting knotted
or entangled. Domains of uniform secondary structure (α−helix, β−sheet, etc.) may be predicted
from the primary sequence and embedded structural elements that cause reverse turns in the surface
of the protein ensure the eventual globular structure. However, since all biomolecules operate in
aqueous environments, the influence of space-time curvature on molecular shape is effectively masked
by hydrophobic interaction, which means that all non-polar amino-acid side chains are buried in the
interior of the globule, with polar groups exposed in the hydrophilic surface; in exact analogy with the
formation of micelles in soap solutions. The crucial consideration towards elucidation of protein folding
therefore is the distribution of amino acids with the alternation of polar and non-polar regions required
for the formation of globular micelles. The key to this is encoded in the primary amino-acid sequence,
as generated by the evolution of life. Similar conclusions, from the opposite point of view [42], are
summarized by the statement:
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Water is an integral part of biomolecular structural organization, and is central to the
assembly and three-dimensional shape of proteins and nucleic acids.

7. Conclusions

We have to conclude that the shape and symmetry of free molecules cannot be related to space-time
topology. Molecules, small enough to persist in free space, are too small to develop a characteristic
shape and macromolecules, large enough to exhibit three-dimensional structure, adopt their characteristic
shape in response to interaction in condensed phases. It is only in those cases where such molecules
are incorporated as building blocks in biological growth structures that the familiar Fibonacci patterns,
characteristic of space-time topology, become noticeable [10,29]. The question of a robust structure for
medium-sized molecules remains an open one and constitutes a serious lacuna in the interpretation of
atomic and molecular spectra.

Appendix

A. Projective Geometry

Any mathematical proof proceeds by way of deductive reasoning, which means that any fallacious
conclusion or self-contradiction can be traced back to some fallacious axiomatic assumption. In
Euclidean geometry one deals with one-dimensional straight lines and flat two-dimensional planes. A
straight line is axiomatically created at the intersection of two flat planes, whereas the intersection of
two straight lines defines a zero-dimensional point. By another axiom it is assumed that parallel straight
lines or planes do not intersect. Certain straight lines or zero-dimensional points remain undefined by
this reasoning, unless one of the axioms is abandoned. This dilemma was appreciated by Euclid, but no
obvious resolution could be reached at the time.

With the advent of non-Euclidean geometries came the realization that, by giving up the axiom of
parallel lines and planes a more general geometry, without exceptions could be formulated. The chosen
remedy is to assume that two lines, which appear to be parallel, when extended indefinitely, intersect at
infinity. As the two lines can be extended in opposite directions they must obviously intersect twice, at
plus and minus infinity, which again contradicts the axiom that two straight lines intersect in a single
point. The only way to avoid this conclusion is by assuming the two points of intersection to coincide
and define a single point at infinity. This basic assumption of projective geometry can clearly not be
satisfied in a Euclidean plane, even when extended indefinitely. The two points can only be brought into
coincidence in a curved, so-called non-Euclidean plane. Since the argument is valid for parallel lines in
all directions the implied curved surface, which defines projective topology, cannot be mapped in three
dimensions without intersecting itself.

For better visualization of the situation consider the equivalent of straight lines between two points in
the surface of a sphere, which is defined as a segment of the great circle that connects the points. Now
there is another anomaly—two great circles intersect twice, at antipodal points. To avoid this problem
the two points are identified as one to produce a geometrical construct with the same projective topology
as before, known as a projective plane.
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The projective plane is hard to visualize because it cannot be defined in three dimensions without
intersecting itself. An artists impression of a model, known as Boy’s surface, as a visualization of the
projective plane is shown schematically in Figure A1a. A more familiar visualization is provided by a
Möbius strip, which is a segment sliced from the projective surface. Figure A1b shows two Möbius bands
in the surface of a sphere, intersecting at the north pole. Adding more of the same, all intersecting in the
same way, the entire spherical surface will eventually be covered on both sides by a single continuous
surface that defines the projective plane. Like a single Möbius band the projective surface is created by
a twist, known as an involution.

Figure A1. (a) Drawing of Boy’s surface [43]; (b) Intersecting Möbius bands.

S

N

Although the projective plane cannot be embedded in three dimensions it is the most likely topology
for a closed four-dimensional universe. Human beings are conditioned evolutionary to interpret the world
in terms of three-dimensional Euclidean space, which may be considered as tangent to the underlying
four-dimensional curved space-time. Those readers who are interested in the origins of projective
geometry are referred to Stillwell’s [44] elementary discussion of Kepler’s seminal views on conic
sections as projections of the circle. It is instructive to note that analysis of the group structure of the
hypersphere S3 [45] defines, not only projective space, but also quaternion multiplication and spherical
rotation, referred to as the “plate trick”.
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