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Abstract: Coumarins are secondary metabolites that are widely distributed within the plant 

kingdom, some of which have been extensively studied for their antioxidant properties. 

The antioxidant activity of coumarins assayed in the present study was measured by 

different methods, namely the 1,1-diphenyl-2-picryl-hydrazyl (DPPH•) method, cyclic 

voltammetry and the antioxidant capacity against peroxyl radicals (ACAP) method. The 

7,8-dihydroxy-4-methylcoumarin (LaSOM 78), 5-carboxy-7,8-dihydroxy-4-methylcoumarin 

(LaSOM 79), and 6,7-dihydroxycoumarin (Esculetin) compounds proved to be the most 

active, showing the highest capacity to deplete the DPPH radicals, the highest antioxidant 

capacity against peroxyl radicals, and the lowest values of potential oxidation. 
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1. Introduction 

Coumarins are naturally occurring compounds, widely distributed throughout the plant kingdom. 

Some of them are physiologically active and have recently been extensively studied for their 

antioxidant properties. In fact, several studies have shown that coumarins elicit antitumoral [1,2],  

anti-inflammatory [3,4] and neuroprotective effects [5,6], and that the inhibition of oxidative stress is a 

contributing factor in each of these biological effects. Indeed, coumarins have been reported to affect 

the formation and scavenging of reactive oxygen species (ROS) and influence free radical-mediated 

oxidative damage, thus the development of new synthesized coumarin molecules is promising, 

especially regarding their antioxidant activities. In this context, the antioxidant capacity of coumarins 

with different chemical substitutions has been previously investigated by free radical-scavenging 

assays, including 1,1-diphenyl-2-picrylhydrazyl (DPPH•) radical [7], in order to evaluate their 

antioxidant behavior.  

In addition to chemical assays such as the DPPH• radical, a proper determination of the antioxidant 

potential of new compounds is usually carried out by confirmation with further techniques. In this 

scenario, voltammetric methods represent an attractive analytical option for the rapid screening of 

large quantities of compounds in the search for novel antioxidants. However, cyclic voltammetry in 

comparison to several established techniques has not found widespread use, despite the fact that some 

studies have recommended the use of this technique as an instrumental tool in evaluating the total 

antioxidant capacity of natural products [8–11]. Nevertheless, it remains necessary to utilize cyclic 

voltammetry along with well-established techniques in order to understand the antioxidant behavior of 

synthetic compounds. Moreover, fluorometry has also been used in the analysis of potential 

antioxidant compounds, as represented by the antioxidant capacity against peroxyl radicals (ACAP), 

which is another relevant method that has been described to evaluate the antioxidant competence of 

samples against peroxyl radicals [12]. 

The adoption of chemical, electrochemical and fluorometric methods provides a thorough approach 

in the investigation of antioxidant properties of coumarins and allows a comparison among them, 

especially in the optimization of unconventional techniques such as cyclic voltammetry. Therefore, 

this report sought to investigate the radical scavenging capacities using the DPPH• spectrophotometric 

assay, the cyclic voltammetric (CV) characterization, and the antioxidant capacity against peroxyl 

radicals (ACAP) of nine coumarins obtained from synthesis and also commercially available coumarins. 

2. Results and Discussion 

Several recent studies have shown the ability of coumarins to reduce ROS production and 

consequently the damage to lipids, protein and DNA found in various biological processes, for 

instance in cancer [13,14] and inflammatory conditions [4,15]. In light of these studies, there is clearly 

a current interest in developing molecules with high antioxidant activity as potential drug candidates to 

be adopted against these pathologies, and coumarins stand out as promising antioxidants with 
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pharmacological interest [16,17]. In our study, one of the assays employed was the evaluation of 

antioxidant activity toward the radical DPPH•. Prior to the quantitative studies of DPPH• bleaching by 

coumarins, a preliminary test was carried out using the DPPH-TLC method. When the plates with 

coumarins were sprayed with a DPPH• solution (0.2%), 7,8-dihydroxy-4-methylcoumarin (LaSOM 78), 

5-carboxy-7,8-dihydroxy-4-methylcoumarin (LaSOM 79), and 6,7-dihydroxycoumarin (Esculetin) 

showed a pronounced DPPH• bleaching capacity. 

Considering these results, the antioxidant activity of these three coumarins was quantitatively 

evaluated following the DPPH• absorbance. When the coumarins (1.76 to 42.97 µM) were added to a 

DPPH• solution (60 μM), a fast bleaching of DPPH• was observed (Figure 1). The kinetic profile 

shows that these coumarins were able to bleach DPPH• in a concentration-dependent manner, in which 

the 5-carboxy-7,8-dihydroxy-4-methylcoumarin represented the coumarin with the highest antioxidant 

capacity against this radical.  

Figure 1. Kinetics profiles of DPPH• bleaching by coumarins: LaSOM 79 (A),  

LaSOM 78 (B) and Esculetin (C). 

 

The kinetic profiles of DPPH• bleaching induced by the coumarins showed a biphasic decay. A fast 

absorbance decrease is observed in the first seconds, which over longer reaction times, then followed 

by a considerably slower process (Figure 2). These profiles imply the presence of two or more reactive 
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centers of different reactivity [18]. This multiplicity of reactive centers can be taken into account by 

fitting the decay to a bi-exponential function (Equation (1)). The percentage of DPPH• consumption 

was calculated according to Equation 2. 

Figure 2. Comparison among the DPPH• consumption (consumption of 50 s) of  

LaSOM 79 (A), LaSOM 78 (B) and Esculetin (C). The results are expressed as  

mean ± standard deviation. 

 

In general, these results demonstrate that Esculetin shows a higher radical consumption in the first 

50 s of reaction, indicating that this sample has high reactivity with the DPPH• radical. Although  

5-carboxy-7,8-dihydroxy-4-methylcoumarin presents the higher capacity of bleaching the DPPH• 

radicals, Esculetin seems to be the most reactive among the tested compounds.  

IC50 values were obtained by linear regression and showed a good coefficient of determination  

(r2 ≥ 0.9375). Table 1 shows the IC50 values of the tested coumarins when compared to Quercetin. 

A study of the electrochemical properties of the coumarins was performed by cyclic voltammetry, 

in which an Esculetin-like redox response was observed for the active compounds LaSOM 79 and 

LaSOM 78 (Figure 3). Except for Quercetin and LaSOM79, which present a second irreversible 

oxidation peak at 0.45 and 0.67 V vs. Fc/Fc+, respectively, one irreversible oxidation is observed in the 

range of 0.22 to 0.49 V vs. Fc/Fc+ for the active coumarins (Quercetin, Esculetin, LaSOM 78 and 

LaSOM 79), and in the range of 0.70 to 0.85 V vs. Fc/Fc+ for the inactive ones (LaSOM 77, LaSOM 

80, LaSOM 83, LaSOM 86 and Unbelliferone). The peak potentials and IC50 values from the 

antioxidant activity evaluation are summarized in Table 1. According with these data, the radical 
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scavenging capacity of Quercetin, Esculetin, LaSOM 78 and LaSOM 79 seems to be related with their 

low oxidation potentials, which are on average 0.36 V lower than those of the inactive coumarins. This 

significant difference in Epa values between the two groups of compounds may be associated with the 

distinct structural features. The highest Epa value was found for 7-hydroxy-4-methylcoumarin (LaSOM 

77) and Umbelliferone, which have a single hydroxyl group in the benzyl ring. Moreover, the 

coumarins that present no free hydroxyl groups in the ring (LaSOM 83, LaSOM 80, LaSOM 86) also 

present high Epa values. In contrast, the presence of two hydroxyl groups on the benzyl ring (as in 

Esculetin, LaSOM 78, and LaSOM 79) makes the coumarins easier to oxidize; therefore, the value of 

Epa is reduced. Overall, the preliminary results indicate that coumarins with Epa values of up to 0.5 V 

vs. Fc/Fc+ present antioxidant activity, while those with higher oxidation potentials proved to  

be inactive.  

Table 1. Radical scavenging potential and anodic potentials of tested compounds.  

IC50: half maximal inhibitory concentration, obtained from DPPH assay; Epa: anodic 

potential, obtained from cyclic voltammetry vs. Fc/Fc+. 

Compounds IC50 (µM) Epa 1 (V) Epa 2 (V) 
LaSOM 79 17.49 0.44 0.67 
LaSOM 78 33.46 0.49 - 
Esculetin 25.18 0.48 - 
Quercetin 29.41 0.22 0.45 
LaSOM 77 - 0.85 - 
LaSOM 83  0.76 - 
Umbelliferone - 0.83 - 
LaSOM 80 - 0.72 - 
LaSOM 86 - 0.70 - 

Figure 3. Cyclic voltammograms of Esculetin, LaSOM 79 and LaSOM 78. 

 

In addition to the previous tests, further analyses were carried out to determine the antioxidant 

capacity against peroxyl radicals, which provides more specific information concerning the type of 
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radicals scavenged by the coumarins. Figure 4 shows the results from the fluorometric analysis of the 

tested compounds. Note that, with this methodology, it was possible to confirm the high antioxidant 

capacity of the synthesized molecules of LaSOM 78, LaSOM 79, and Esculetin. In this manner, the 

data obtained in our studies show a profile regarding the antioxidant properties of coumarins, referring 

not only to low reduction potential radicals such as DPPH• (+ 0.25 V) [19], but also to peroxyl 

radicals, which present a much higher reduction potential (+ 0.71 to + 1.44 V) [20]. 

Figure 4. Antioxidant capacity against peroxyl radicals of the tested coumarins LaSOM 79, 

LaSOM 78, and Esculetin as standard compound. Results are representative of three 

different experiments and mean ± SD are expressed. 

0 50 100
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50 μM
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Moreover, these results indicate the capacity of the coumarin molecules to scavenge peroxyl 

radicals. We provide not only information about the extent of antioxidant capacity elicited by the 

coumarins, but also indicate that the peroxyl radicals represent a kind of reactive species against which 

the coumarins are able to act. Also, our findings are in agreement with a previous study [19] that 

indicated a good antioxidant activity of 4-methylcoumarins against peroxyl radicals produced from 

2,2'-azobis(2-amidinopropane)-hydrochloride (AAPH), which undergoes a similar thermal 

decomposition to the ABAP used in the present study.  

Taken together, our results indicate that the activity of our synthesized coumarins are correlated 

with the number of hydroxyl groups, which in turn indicated that the chemical structure and the 

number of hydroxyl groups within the moiety group are directly correlated with the effects of ROS 

suppression. The hydroxyl group showed a great influence, while the methyl group presented the 

lowest influence. In addition, it could be observed that the presence of the carboxyl group strongly 

improves the antioxidant activity. 

3. Experimental Section  

3.1. Test Compounds  

The tested coumarins (Figure 5) were synthesized by the well-known Pechmann condensation 

technique, as described in prior literature [21]. The Microwave Pechmann reaction of resorcinol with 

ethyl acetoacetate in the presence of catalytic amounts of concentrated HCl led to  

7-hydroxy-4-methyl-2H-chromen-2-one (LaSOM 77). The same conditions led to the formation of 



Int. J. Mol. Sci. 2012, 13 7266 

 

 

LaSOM 78 (7,8-dihydroxy-4-methylcoumarin) and LaSOM 79 (5-carboxy-7,8-dihydroxy-4-

methylcoumarin) from pyrogallol and gallic acid, respectively. In order to explore the influence of the 

substitution at the 7- position of coumarins in the antioxidant activity, LaSOM 77 was submitted to 

reactions with a variety of electrophiles to give 7-O-substituted coumarins (unpublished data). 

Commercially available coumarins, Umbelliferone and Esculetin, were also tested. Quercetin was used 

as a positive control and was prepared in the same concentration range as the tested coumarins.  

Figure 5. Structures of the tested coumarins. LaSOM 79 (1), LaSOM 78 (2), Esculetin (3), 

LaSOM 77 (4), LaSOM 83 (5), Umbelliferone (6), LaSOM 80 (7), LaSOM 86 (8) and 

Quercetin (9). 

 

3.2. DPPH Bioautographic Assay 

The assay known as bioautographic DPPH• was first performed as a screening method based on thin 

layer chromatography (TLC) bioautography [22]. This technique allows for the evaluation of the 

antioxidant activity of samples due to their capacity to neutralize the stable free radical DPPH•. For 

this assay, all coumarins and Quercetin were solubilized in an acetone:methanol solution (1:1).  

DPPH Spectrophotometric Assay  

The quantitative evaluation of antioxidant activity against the DPPH• radical was performed by the 

spectrophotometric measurement of DPPH• consumption in the presence of antioxidants [23]. Briefly, 

aliquots of test samples in acetone:methanol (1:1, v/v) in different concentrations were added to an 

ethanolic DPPH• solution (molar absorption coefficient 517 nm: 11500 M−1·cm−1). Measurements 

started immediately after mixing the solutions. The absorbance decrease of DPPH• was evaluated after 

50 or 600 s and monitored at λ = 517 nm and 25 °C with measurements every 5 s, followed by 

measurements at 10 s intervals when the reaction is in their plateau state, with a total reaction time of 

600 s for all samples. For the evaluation of the antioxidant capacity, experimental data (kinetics 

profiles of DPPH• decay) were adjusted to a bi-exponential equation (Equation (1)). DPPH• and 

coumarin solutions were prepared daily. The experiments were performed in triplicate, and the results 
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were expressed as the average of A/Ao. IC50 values were calculated for each sample and denote the 

concentration of samples required to scavenge 50% of DPPH• radicals. Ethanol was used as a blank, 

and Quercetin was employed as a reference compound. 

Abst = yo + A1 exp(−t/T1) + A2 exp(−t/T2) (1) 

The activity of the tested compounds was characterized by: 

(A1 + A2) = total bleaching capacity.  

(Abs0 − Abs50) = consumption of DPPH• at a short reaction time (50 s). This takes into account only 

fast processes. 

(Abs0 − Abs600 s) = consumption of DPPH• over a long reaction time (600 s). This takes into account 

fast and slow processes. 

The percentage of DPPH• consumption was calculated according to Equation (2) and compared 

among the different samples.  

Consumption 50 s = Abs0 − Abs50/ε DPPH
• (2) 

where Abs0 is the absorbance at t = 0 s, Abs50 is the absorbance before 50 s of reaction, and ε DPPH
• is 

the molar absorption coefficient of DPPH•. 

3.3. Cyclic Voltammetry  

Cyclic voltammetry experiments were recorded using a BAS Epsilon potentiostat-galvanostat with 

a regular three component cell: a glassy carbon used as a working electrode, Ag/AgCl reference 

electrode for organic media, and a platinum wire as a counter electrode. The compounds were 

dissolved in anhydrous dimethylsulfoxide (DMSO, Sigma-Aldrich) with 0.1 mol⋅L−1 of TBAClO4 

(Sigma-Aldrich, electrochemical grade), in a concentration of 2 mg·mL−1, and purged with ultrapure 

argon before each measurement. The potential was cycled from −2.5 V to 1.0 V and back to −2.5 V vs. 

Fc/Fc+, at a scanning rate of 100 mV/s. Ferrocene was added at the end of each experiment as an 

internal standard (E1/2 = 0.40 V vs. NHE) [24]. 

3.4. Antioxidant Capacity against Peroxyl Radicals  

The assay to evaluate the total antioxidant capacity against peroxyl radicals (ACAP) is based on 

that described by Amado et al. [12], with the following modifications. Peroxyl radicals are generated 

by thermal decomposition at 37 °C of 2,2'-azobis(2-methylpropionamidine) dihydrochloride (ABAP, 

Sigma-Aldrich) in the analyzed samples, resulting in the emission of a fluorescent signal caused by the 

reaction between ROS and 2',7'-diclorodihidrofluorescein (H2DCF), which had previously been 

deacetylated in an alkaline solution (see below).  

Briefly, 10 μL of the diluted samples at 5 and 50 μM were pipetted into a white 96-well microplate, 

six wells per sample. The blanks were prepared by transferring the same volume of solvent to the 

microplate for each of the solvents necessary to dissolve the samples, according to their solubility. 

Esculetin, LaSOM 78, and LaSOM 79 were solubilized in ethanol, while all the other coumarins were 

solubilized in DMSO. Blanks were prepared with and without ABAP, as well as with and without 

H2DCF. The reaction buffer (127.5 μL), containing 30 mM HEPES (pH 7.2), 200 mM KCl, and  
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1 mM MgCl2, was added to the samples. After, 7.5 μL of 10 mM ABAP was added to three wells of 

each sample, while the same volume of ultrapure water (Milli-Q) was added to the remaining wells. 

Immediately before the microplate reading, 10 μL of H2DCF was added to the wells at a final 

concentration of 40 μM. 2',7'-dichlorodihydrofluorescein diacetate (H2DCF-DA, Invitrogen) was 

previously cleaved by alkaline hydrolysis for 30 min, resulting in the deacetylated product H2DCF. 

The microplates were then put into Victor2 D, Perkin Elmer fluorescence microplate reader (Waltham, 

MA, USA) programmed to maintain the temperature at 37 °C in order to induce ABAP thermolysis, 

thus producing peroxyl radicals. Next, the H2DCF nonfluorescent compound is oxidized by ROS into 

the DCF fluorescent compound, which is detected at 485 and 520 nm, as the excitation and emission 

wavelengths, respectively, for 90 min, with readings every 5 min. 

Total fluorescence production was calculated according to Equation 3, and the results were 

expressed in percentage (w/ and w/o meaning with and without, respectively). 

ACAP(%) = (∆Blank − ∆Sample)/ ∆Blank × 100 (3) 

in which ∆Blank = NF Blank w/ ABAP − NF Blank w/o ABAP; ∆Sample = NF Sample w/ ABAP − 

NF Sample w/o ABAP; NF (Net Fluorescence) = AF w/ H2DCF − AF w/o H2DCF; AF = Average 

Fluorescence, calculated from each triplicate. 

3.5. Statistical Analysis  

The experiments were performed in triplicate. DPPH results are given as A/Ao. One-way analysis of 

variance (ANOVA) was used to compare more than two means. A difference was considered 

statistically significant when p ≤ 0.05. 

4. Conclusions  

As a result of the different techniques employed in this study, we were able to demonstrate that  

5-carboxy-7,8-dihydroxy-4-methylcoumarin (LaSOM 79), 7,8-dihydroxy-4-methylcoumarin (LaSOM 78), 

and 6,7-dihydroxycoumarin (Esculetin), whose structures present two hydroxyl moieties on the 

benzene rings, proved to be the three most effective antioxidant coumarins in all the techniques 

employed. These active compounds exhibited a low potential range, due to an increase in electron 

density on the aromatic ring, which provided a reduction of DPPH• and peroxyl radicals. 
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