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Abstract: High demands on low-voltage electronics have increased the need for zinc oxide 

(ZnO) varistors with fast response, highly non-linear current-voltage characteristics and 

energy absorption capabilities at low breakdown voltage. However, trade-off between 

breakdown voltage and grain size poses a critical bottle-neck in the production of  

low-voltage varistors. The present study highlights the synthesis mechanism for obtaining 

praseodymium oxide (Pr6O11) based ZnO varistor ceramics having breakdown voltages of 

2.8 to 13.3 V/mm through employment of direct modified citrate gel coating technique. 

Precursor powder and its ceramics were examined by means of TG/DTG, FTIR, XRD and 

FESEM analyses. The electrical properties as a function of Pr6O11 addition were analyzed 

on the basis of I-V characteristic measurement. The breakdown voltage could be adjusted 

from 0.01 to 0.06 V per grain boundary by controlling the amount of Pr6O11 from 0.2 to  

0.8 mol%, without alteration of the grain size. The non-linearity coefficient, α, varied from 

3.0 to 3.5 and the barrier height ranged from 0.56 to 0.64 eV. Breakdown voltage and α 

lowering with increasing Pr6O11 content were associated to reduction in the barrier height 

caused by variation in O vacancies at grain boundary. 
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1. Introduction 

Applications of low-voltage varistors for circuit protection are increasingly significant due to 

growing demands on low-voltage electronics. For instance, battery powered and mobile appliances 

require protection from transient voltage of between 4 to 20 V (dc voltage) while many communication 

devices need fast response protection from transient voltage of 22 –68.V [1–3]. These factors create 

needs for continuous development of ZnO varistor materials with fast response, highly non-linear 

current-voltage characteristics and energy absorption capabilities at low breakdown voltage. 

Meanwhile, trade-offs between breakdown voltage, Eb, and grain size, d, in conventional bismuth 

(Bi2O3) based ZnO ceramics poses a critical bottle-neck in production of low-voltage varistors. This is 

because the effective breakdown voltage of a varistor is proportionate to the number of grain 

boundaries per unit thickness and the inverse to grain size. Consequently, lowering the breakdown 

voltage in Bi2O3-ZnO varistor having average breakdown voltage per individual grain boundary, Vgb, 

of approximately 3.2–3.5 V is a great challenge [4–6]. 

Most existing preparation techniques rely strongly on ZnO grain manipulation processes. The most 

classical ways of making low-voltage varistors are through grain coarsening techniques by making 

varistor from crushed ceramics, prolonged sintering processes at higher temperatures and adding grain 

growth enhancers such as TiO2 [7]. Other ways include employment of seeding technique by using 

grown ZnO crystal seeds as precursor [8–10] and deposition technique to fabricate multilayered thin 

film varistors with interdigitated electrodes [11]. Grain coarsening and seeding techniques could be 

economically less feasible as they are energy intensive processes and suffer from inhomogeneous 

microstructure which leads to inconsistent current-voltage characteristics [8]. Multilayered thin film 

varistors obtained from deposition technique on the other hands, are lingered with structural integrity 

issues [11]. The present work has discovered that it is possible to obtain low-voltage varistors made of 

praseodymium (Pr6O11) based ZnO ceramics through employment of a solution coating technique 

known as direct modified citrate gel coating. The technique involves coating of additive precursor in 

citrate gel form onto fine ZnO particles and proceeds with calcination and sintering processes. Similar 

methods using different starting materials, medium and deposition sequences have been adopted 

previously in [12–14] for obtaining both low and high-voltage varistors but limited to Bi2O3–ZnO 

systems. Advantages of this preparation approach are for example: 

i) Offer direct chemical route to prepare metal oxide ceramics at reduced sintering temperature 

and time in comparison to conventional solid state route or several chemical techniques such as 

sol-gel and co-precipitation [12–15]. 

ii) Ability to control the homogeneity of solutions particularly during preparation of  

multi-components ceramic materials through prevention of side precipitation or  

sedimentation [14,15]. 

iii) Improve distribution of dopants and facilitate diffusion of additives on ZnO grains by 

encouraging contact during precursor preparation [14]. 

iv) Improve grain size consistency by controlling the formation of ultrafine grains and abnormal 

grain growth [13]. 
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Pr6O11 based ZnO ceramics are the materials of interest for this study. Based on the recent trend, 

Pr6O11 based ZnO ceramics have been actively researched to overcome drawbacks in existing Bi2O3 

based ZnO varistor materials such as Bi2O3 vaporization and formation of Bi-containing secondary 

phases when sintered at temperatures over 1000 °C [16–20]. Ramirez et al., [16] and  

Furtado et al., [17] demonstrated that Pr6O11 improved effective electrical current flow by restraining 

the formation of secondary phases and induced densification of varistor during fabrication.  

Zhu et al., [18] claimed that Pr6O11 exhibited grain growth suppressing effect that controlled the 

overall development of grain during sintering. Thus, their studied varistor ceramics had more uniform 

and compact microstructures. Several series of high density and high stability Pr6O11 based ZnO 

varistor ceramic systems containing more than four combination of rare earth and transition metal 

oxides have been developed and reported in Nahm [19,20]. The proposed varistors exhibited 

comparable non-linearity properties to that of Bi2O3 based ZnO varistors with minimum number of 

additives. The non-linearity coefficient of the varistors could reach up to 60 with the general Vgb of  

2–3 V. However, most of the Pr6O11 based ZnO varistor systems that have been reported so far are 

developed towards high-voltage applications. The work by Horio et al., [21] is one of the very few 

attempts to extend the use of Pr6O11 based ZnO ceramics for low-voltage applications. They have 

successfully fabricated ZnO/Pr6O11 multilayered thin films having the non-linearity coefficient, α of 10 

and Eb of 20 V by the radio-frequency (RF) sputtering in Ar/O2 environment. Hence, further research 

is needed in order to take advantage of these potentially high non-linearity and high stability ceramic 

materials for satisfying low-voltage requirements. 

The purposes of this study are to develop Pr6O11 based ZnO varistors by modified citrate gel 

coating technique for low-voltage applications and comprehensively investigate synthesis mechanisms 

involved throughout the preparation steps. In this work, a single-doped system containing ZnO and 

varied Pr6O11 content has been prepared. The precursor powder was studied with various methods 

including ATR-FTIR spectroscopy, TG-DTG, XRD and FESEM analyses. Meanwhile, the varistor 

ceramics were characterized using XRD and FESEM. The electrical properties of the ceramics were 

discussed on the basis of I-V characteristic measurement. 

2. Results and Discussion 

2.1. Chemical, Thermal and Microstructure Analysis of Precursor Powder 

In agreement with the work by Lorenz et al., [14], Pr(III) acetate salt reacted with one of the three 

carboxylic groups in citric acid to produce Pr(III) citrate complexes according to the  

following reaction; 

 3H   OHCPr 3H  Pr )OH(C 3 3756
370-603-

756

o  



  C

 (1) 

The uncoordinated carboxylic chains chelated on the ZnO particles dispersing in the solution to 

form firmed citrate gel coating layer. The layer was thermally converted during calcination process at 

500 °C for 4 h and sintering process at 1200 °C for 1 h according to the following oxidation reaction. 
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Complete formation of Pr6O11 from PrCO3OH intermediate was achieved during sintering at  

1200 °C. The synthesis mechanism was confirmed by Attenuated Total Reflectance Fourier Transform 

Infrared Spectroscopy (ATR-FTIR), Thermogravimetry/Differential Thermogravimetry (TG/DTG) and 

X-ray Diffractometer (XRD) analyses. The morphology of precursor powder was observed under Field 

Emission Scanning Electron Microscopy (FESEM). 

2.1.1. ATR-FTIR 

IR spectra of both non-calcined precursor powder in Figure 1a and calcined powder in Figure 1b 

were compared to spectra of pure Pr6O11 (Figure 1c) as well as ZnO (Figure 1d). It was found that the 

non-calcined precursor powder contained ZnO and Pr complexes. The asymmetrical and symmetrical 

stretching vibrations of carboxyl (–COO) in Pr citrate complexes was respectively observed at 1386 

and 1590 cm−1. The result was consistent with [15]. The disappearance of several characteristic peaks 

in the region of 600–2500 cm−1 in the spectrum of calcined powder shown in Figure 1b were 

associated to elimination of carbonyl (C=O), carboxylate and alkyl groups at high temperature. The 

emergence of unidented carbonate group (-CO3) was supported by a new in-plane deformation 

vibration peak at 716 cm−1, asymmetrical stretching vibration peak at 1400 cm−1 and symmetrical 

vibration peak at 1794 cm−1 [22,23]. The presence of Pr-O lattice vibration mode at 655 cm−1 and other 

characteristic peaks of Pr6O11 (852, 1169 and 1519 cm−1) were also detected in the calcined powder 

spectrum [22]. Therefore, it is supported that Pr citrate gel layer coating the ZnO particles started to 

transform into Pr6O11 layer upon calcination. 

Figure 1. IR spectra of (a) ZnO powder coated with Pr citrate gel before calcination and (b) 

ZnO powder coated with Pr citrate gel after calcination in comparison to (c) Pr6O11 and  

(d) ZnO. 
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2.1.2. TG/DTG 

TG/DTG curves in Figure 2 depict the decomposition profile of pure Pr citrate gel powder and 

coated ZnO precursor powder. Based on Figure 2a, the pure Pr citrate gel powder decomposed in four 

major steps as signified by derivative weight loss peaks at 71, 180, 300 and 383 °C, respectively. The 

first decomposition stage within the range of 32–139 °C was associated to the removal of physically 

trapped moisture. The subsequent process occurring between 140–266 °C was assigned to the rapid 

decomposition of excess citric acid. The citrates of Pr gel started to degrade within the temperature 

range of 266–334 °C to form stable phase of intermediate carbonates and/or oxides. Gradual and 

continuous weight loss beyond 334 °C was caused by slow decomposition of carbonates to oxides and 

overlapping decomposition of citrates in the previous stage. Figure 2b shows decomposition of coated 

ZnO precursor powder occurring in two stages respectively at 89 °C and 364 °C. The first stage was 

associated to simultaneous evaporation of moisture and excess citric acid. Meanwhile, the later was 

attributed to concurrent release of citrate anion and decomposition of carbonates. Decomposition trend 

of Pr citrate gel observed in this study was comparable to other metal citrate complexes reported in [22,23]. 

Figure 2. TG/DTG curves of (a) pure Pr citrate gel and (b) Pr citrate gel coated ZnO 

heated in air at heating rate of 10 °C/min. 

(a) (b) 

2.1.3. XRD 

XRD analysis of the calcination product in Figure 3 identified the presence of Pr carbonate 

hydroxide (PrCO3OH) phase (ICSD Reference code 00-026-1349) and traces of Pr6O11 phase (ICSD 

Reference code 00-042-1121) coexisting with hexagonal wurtzite ZnO phase (ICSD Reference code 



Int. J. Mol. Sci. 2012, 13 5283 

 

 

01-075-0576). In comparison, initial powder consisted of mostly ZnO phase. Therefore, the phase 

analysis suggested that precursor powder after calcination contained mixture of ZnO, PrCO3OH and 

Pr6O11 phases. 

Figure 3. XRD patterns of (a) Pr citrate gel coated-ZnO before calcination and (b) Pr 

citrate gel coated-ZnO after calcination at 500 °C for 4 h. 

 

2.1.4. FESEM 

Figure 4 shows the morphology of precursor powder after calcination. The exterior of ZnO were 

adequately covered with layer of nano-scaled particles mostly PrCO3OH and Pr6O11 phases as 

confirmed in XRD analysis. The observation suggested that effective mixing of varistor precursor 

components has been achieved through optimal distribution of additive prior to sintering process. This 

technique simplified the process to achieve homogeneous mixture in comparison to typical demanding 

and time-consuming mechanical ball milling steps. 

TG/DTG, ATR-FTIR, XRD and FESEM analyses suggested that ZnO particles have been 

successfully coated with Pr citrate gel. The gel was transformed to intermediate phase of Pr carbonates 

through calcination process. Partial cystallization of Pr oxide was also taken place during the 

calcination process. 
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Figure 4. FESEM micrographs of precursor powder containing calcined ZnO and Pr 

dopant at (a) 50,000 and (b) 100,000 times magnification. 

(a) (b) 

2.2. Microstructure and Electrical Characteristics of Sintered Ceramics 

2.2.1. XRD 

Figure 5 shows the XRD patterns of sintered ceramic sample comprising different Pr6O11 contents. 

The patterns confirmed the presence of dominant ZnO phase (ICSD Reference code  

01-075-0576) with hexagonal wurtzite structure and cubic Pr6O11 phase (ICSD Reference code  

00-042-1121) in all samples with no evidence of secondary phases. Traces of Pr2O3 (ICSD Reference 

code 00-022-0880) phase identified in samples were probably formed as a result of redox reaction in 

Pr6O11 at high temperature. Disappearance of peaks assigning to PrCO3OH phase suggested the 

complete conversion of Pr citrate gel layer on ZnO into Pr6O11. 

Figure 5. XRD patterns of sintered ZnO varistor ceramics with Pr6O11 content. 

 

2.2.2. FESEM 

FESEM micrograph in Figure 6 represents the microstructure of sintered ceramic surface for ZnO 

varistor with 0.8 mol % Pr6O11. The bright spots on the ceramic surface indicated the area with heavier 
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element like Pr. Spectra obtained from Energy Dispersive X-ray Spectroscopy (EDAX) line scan 

across two neighboring grains indicated that the concentration of Pr was increasing towards the grain 

boundary. Otherwise, the concentration of Zn and O were decreasing. This observation proposed that 

preferential distribution of Pr at grain boundaries was achieved and such microstructures are intended 

for formation of Schottky barrier that is responsible for the non-linearity behavior. 

Figure 6. FESEM micrograph of the polished surface for sintered ceramic containing  

0.8 mol % Pr6O11 and its corresponding EDAX line scan across two adjacent grains. 

 

2.2.3. I-V Characteristics 

Table 1 shows the microstructure and non-linearity characteristic parameters of sintered ceramics. 

Pr6O11 doped ZnO varistors obtained from citrate gel coating technique had compact microstructures 

and were composed of fine grains. The average relative densities of ceramics exceeded 95% of 

theroretical density of bulk ZnO (5.61 g/cm3) while the average grain size was in the range of 4.5 to 

5.2.μm. The result is consistent with [19,20]. I-V measurement revealed that α1 calculated from slope 

at low current region (10–100 mA/cm2) was in the range of 1.8–3.1. However, the α2 value measured 

at high current region (100–200 mA/cm2) ranged from 3.0 to 3.5. Both α1 and α2 values decreased with 

Pr6O11 content. Marginal drop observed in α2 value with respect to Pr6O11 content was attributed to the 

shifting in voltage at onset of non-linearity. Varistor containing less amount of Pr6O11 exhibited  

non-linear characteristic at relatively lower onset voltage than the varistor with high Pr6O11 content. 

The Eb varies between 2.8–13.3 V and the value drastically decreased with the Pr6O11 content. With an 

average grain size of approximately 5.0 µm, the corresponding Vgb dropped from 0.06 to 0.01 V as the 

Pr6O11 content was increased from 0.2 to 0.8 mol %. The range of Vgb was relatively lower than the 

general Vgb (2–3 V) for high-voltage Pr6O11 based ZnO varistor reported in [19,20], but in a good 

agreement with Vgb range for several low-voltage varistor systems developed in [24,25]. The decreasing 

trend in interface barrier height, φB was also noted. The value dropped from 0.64 to 0.56. Meanwhile, 
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the JL value is greatly dependent on the density of ceramic. Ceramic with higher density exhibited 

lower JL. Reduction in α and Eb with Pr6O11 content could be attributed to formation of O vacancies at 

grain boundaries. It has been well accepted that the oxygen species can increase the density of 

interface states at grain boundary, thus improve Schottky barrier height [24,26]. The present case 

suggested that accumulation of excessive Pr depleted the O species and/or promoted the formation of 

O vacancies in the grain boundary. As a result, the density of interface states reduced and eventually 

diminished the interface barrier height. This is consistent with the suppression of barrier height at 

higher Pr6O11 content and the low O concentration at grain boundary region as observed in EDAX line 

scanning in Figure 4. In addition, similar observation was reported in the investigation of ZnO/Pr6O11 

thin film interface [21]. It was envisioned that oxygen atom could diffuse from Pr6O11 layer into ZnO 

surface during deposition process. 

Table 1. Microstructure and I-V characteristic parameters for Pr6O11 based ZnO varistor 

prepared from citrate gel coating technique. 

Pr6O11 (mol %) ρrel (%) d (μm) α1 α2 Eb (V/mm) Vgb (V) JL (μA/cm2) φB (eV)

0.2 98.8  5.2 3.1 3.3 13.3 0.06 695 0.64 
0.4 95.0 5.0 2.4 3.5 4.9 0.03 766 0.60 
0.8 98.6 4.5 1.8  3.0 2.8 0.01 698  0.56 

According to this electrical analysis, it seems that the Eb value could be adjusted by controlling the 

amount of Pr6O11 in the ceramics. Pr6O11 has served as the grain boundary activator in these single 

doped varistor systems. In order to obtain higher non-linearity, additional doping with Cr2O3, MnO2 or 

CoO is required. The contribution of donor concentration and interface states at grain boundary to  

non-linearity behaviour of low-voltage Pr6O11 based ZnO varistors should be established by further 

detailed studies. 

3. Experimental Section 

3.1. Materials  

Raw materials were prepared according to the nominal composition of (100 − x) mol % ZnO +  

x mol % Pr6O11 where x = 0.2, 0.4 and 0.8. Reagent grade praseodymium (III) acetate hydrate  

(Pr(CH2COOH)3·xH2O) with the purity of 99.9% (Alfa Aesar) was used as metal salt precursor and 

citric acid anhydrous (C6H8O7) with the purity of 99.5% (Fluka) was selected as the complexing agent. 

ZnO powder with the particle size of less than 1 µm and 99.9% purity (Sigma Aldrich) was selected as 

the host material. 

3.2. Preparation of Precursor Powder and Ceramics 

Uniform coating of Pr citrate gel on ZnO particles was obtained by immersing ZnO powder in bath 

solution containing citric acid and Pr(III) acetate in deionized water medium for 1 hour retention time 

at 70–80 °C. Molar ratio of citric acid to Pr acetate was fixed at 3:1 and vigorous stirring was required 

to improve contact. The mixing process was prolonged for 4 h at 100 °C or until liquid in the mixture 
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dried up. The cake obtained at the end of process was pulverized, sieved and dried at 110 °C for 19 h 

to produce powder with particle size of less than 100 µm. The dried powder was then calcined at  

500 °C for 4 h at heating rate of 3 °C/min. The calcined powder comprising 1.75 wt% polyvinyl 

alcohol binder was pressed into pellets with 5.0 mm radius and 1.3 mm thickness using Specac 

Hydraulic Press machine. The pellet was finally sintered at 1200 °C for 1 h in a box furnace (CMTS 

Model HTS 1400). 

3.3. Characterizations 

TG/DTG analysis was performed using TGA/DSC-1 Mettler Toledo for examining the thermal 

decomposition profile of precursor powder. Sample was heated from 30–900 °C in air at 10 °C/min. 

ATR-FTIR spectroscopy (Thermo Nicolet) was utilized to observe the chemical changes on precursor 

powder before and after calcination process. As-received sample was pressed against germanium 

crystal plate and analyzed. Phase analysis was conducted on both calcined and sintered samples using 

XRD (PANalytical (Philips) X’pert Pro PW3040/60) with CuKα source. Sample was radiated with  

Ni-filtered CuKα radiation (λ = 1.5428) within the 2θ scan range of 20–80°. Surface morphology and 

elemental analyses of precursor powder and sintered samples were studied under FESEM (JEOL  

JSM-7200) integrated with EDAX. Sample to view was mounted on Al stub using carbon paint and 

sputter-coated with gold. Current-voltage (I-V) characteristics measurement was carried out on varistor 

pellets painted with conductive Ag electrode using source measure unit (Keithley 236). Sample was 

applied with dc voltage from 0 to 100 V in step size of 2.5 V. The non-linearity coefficient, α was 

determined as d(log J)/d(log E) where J is the current density and E is the electrical field (V/mm). Two 

α values were determined at different J regions. α1 was measured at low current region which was 

within the range of 10–100 mA/cm2. α2 was measured at high current region, within 100–200 mA/cm2. 

The breakdown voltage, Eb was determined as the corresponding E at J = 1 mA/cm2 and the leakage 

current density, JL was determined as the corresponding J at E = 0.8Eb.Voltage per grain boundary,  

Vgb was calculated as Eb(d/D) where d is the average grain size calculated based on line intercept 

method, D is the thickness of the varistor. The interface barrier height, φB, was estimated according to 

the following expression: 
1 2

2 exp
 

  
 

BE
J AT

T

 


 (4)

where J is the current density, E is the field strength, κ is the Boltzmann constant, A is the 

Richardson’s constant (30 Acm−2K−2) for ZnO, T is the absolute temperature, β is a constant and is 

related to the relation as φB ~ (rω)−1, where r is grains per unit length and ω is the barrier width. This 

method has been applied in [27,28]. 

4. Conclusions 

Low-voltage Pr6O11 doped ZnO varistor ceramics have been successfully prepared by direct 

modified citrate gel coating technique. Pr citrate gel coating layer was transformed to PrCO3OH 

intermediate and finally converted to nano-scaled Pr6O11 in two steps of oxidation reaction. Uniform 

coating of Pr6O11 on ZnO powder was achieved after calcining at 500 °C for 4 h. The ceramics 
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obtained after sintering at 1200 °C for 1 h had simple microstructure, high density (95.0–98.8%) and a 

grain size in the range of 4.5–5.2 µm. Preferential segregation of Pr dopants at grain boundaries was 

improved. Electrical analysis on the Pr6O11 doped ZnO varistor ceramics demonstrated that the varistor 

exhibited Eb in the range of 2.8 to 13.3 V. Depending on the Pr6O11 content, the Vgb decreased from 

0.06 to 0.01 V with insignificant alteration in the grain size. The α value in high current region  

(100–200 mA/cm2) ranged from 3.0 to 3.5 and the interface barrier height ranged from 0.56 to 0.64 eV. 

Eb and α lowering with increasing Pr6O11 content were associated with reduction in the barrier height 

caused by variation in O vacancies at grain boundary. 
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