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Abstract: A contingency of observed antimicrobial activities measured for several compounds 

vs. a series of bacteria was analyzed. A factor analysis revealed the existence of a certain 

probability distribution function of the antimicrobial activity. A quantitative structure-activity 

relationship analysis for the overall antimicrobial ability was conducted using the population 

statistics associated with identified probability distribution function. The antimicrobial activity 

proved to follow the Poisson distribution if just one factor varies (such as chemical compound 

or bacteria). The Poisson parameter estimating antimicrobial effect, giving both mean and 

variance of the antimicrobial activity, was used to develop structure-activity models describing 

the effect of compounds on bacteria and fungi species. Two approaches were employed to obtain 

the models, and for every approach, a model was selected, further investigated and found to be 

statistically significant. The best predictive model for antimicrobial effect on bacteria and fungi 

species was identified using graphical representation of observed vs. calculated values as well as 

several predictive power parameters. 

Keywords: oils compounds; antimicrobial effect; bacteria and fungi species; probability 

distribution function; quantitative structure-activity relationship (QSAR); multiple linear 
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1. Introduction 

Plant extracts, including oils, have been used as therapeutics from ancient times and have been 

reinvented more often in the last years. Important medical effects of plant extracts have been identified 

during the time (antioxidant, antimicrobial [1–4]) and some mechanisms of actions were  

investigated [5–8]. Research on plant extracts on specific symptoms and diseases is carried out all over 

the world [9–11]. New approaches are applied in drug industry in order to identify promising medicinal 

plant as source of new drugs and drug leads [12] even if pharmaceutical companies significantly 

decreased their activities in natural product discovery during the past few decades [13]. 

Quantitative Structure-Activity Relationships (QSARs) are mathematical models resulting from the 

application of different statistical approaches in correlation analyses of biologic activity and/or 

physical or chemical properties of active compounds with descriptors derived from structure and/or 

properties [14]. Traditional strategies based on animal models are nowadays replaced by in silico 

approaches by moving the experiments into virtual laboratories [15,16]. These in silico approaches are 

sustained by the increased power of computers and are widely used due to low costs (no costs for 

compounds synthesize), possibility to investigate not synthesized compounds as well as possibility to 

investigate huge amount of promising chemicals. Different QSAR approaches demonstrated their 

effectiveness in drug design [17,18] and in screening of active compounds [19,20], also with regards to 

natural products [21,22]. Several methods like MARCH-INSIDE [23,24], TOPS-MODE [25], and 

TOMO-COMD [26] have been used in QSAR investigation of anti-bacterial drugs [27,28] (including 

anti-fungi [29], anti-parasite [30], and anti-viral drugs [31]). The MARCH-INSIDE method was 

further integrated in the Bio-AIMS online platform and can be used as a prediction tool for new  

anti-microbial drugs or their protein targets [32]. 

Jirovetz et al. investigated the antimicrobial effects of a series of oils components, oils and mixtures 

on gram-positive and -negative bacteria (Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, 

Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus vulgaris, Salmonella sp.) and Candida 

albicans [33]. In the present research we focused on two major objectives based on the experimental 

observations of Jirovetz et al. [33]. The first objective was to identify the probability distribution 

function of the antimicrobial effects of compounds, oils and mixtures on above-presented bacteria and 

fungus species. Identification of the probability distribution function allows us to compute the 

population parameters, an overall estimator of the antimicrobial effect that comprises the antimicrobial 

potencies on different species in a single value. The second objective was to find the appropriate 

predictivity measures of quantitative structure-activity relationship using the context of the overall 

antimicrobial activity of 22 active compounds. 

2. Results 

2.1. Probability Distribution Analysis 

The antimicrobial effects at contingency of compounds, oils and mixtures on bacteria were 

investigated to identify the probability distribution function along bacteria series. The Uniform 

distribution was rejected at the beginning of the analysis due to unreasonable estimates of the 

population parameters. The remained three discrete distributions were compared based on several 
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agreements. The percentage of rejection according to Fisher's Chi-Square global statistics for each 

identified probability distribution function according to the class (as compounds, oils, mixtures) is 

shown in Figure 1 (detailed data can be found in Supplementary material). The following null 

hypothesis was tested using F-C-S statistic (F-C-S values in Figure 1): ―The parameters of the 

identified distribution follow for each series of compound/oil/mixture the Binomial/NegBinomial/ 

Poisson distribution‖. 

Figure 1. Results of probability distribution functions analysis. X: Compounds (1–21;  

1 = Citral, 2 = Geraniol, 3 = Geranyl formate, 4 = Geranyl acetate, 5 = Geranyl butyrate,  

6 = Geranyl tiglate, 7 = Neral, 8 = Nerol, 9 = Nerol acetate, 10 = Neryl butyrate,  

11 = Neryl propanoate, 12 = Citronellal, 13 = Citronellyl formate, 14 = Citronellyl acetate, 

15 = Citronellyl butyrate, 16 = Citronellyl isobutyrate, 17 = Citronellyl propionate,  

18 = Hydroxycitronellal, 19 = Rose oxide, 20 = Eugenol, 21 = Sulfametrole,  

32 = Citronellol), Oils (22–29; 22 = Citronella, 23 = Geranium Africa, 24 = Geranium 

Bourbon, 25 = Geranium China, 26 = Helichrysum, 27 = Palmarosa, 28 = Rose,  

29 = Verbena), Mixtures (30–31; 30 = Tetracycline hydrochloride, 31 = Ciproxin);  

Y: Binomial (♦), NegBino (■), Poisson (▲); ―Is Y the distribution of any X on bacteria and 

fungi species?‖. 
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pF-C-S(Y\X) Compounds Oils Mixtures 

Binomial 0.00 0.00 0.00 

NegBino 0.00 0.56 0.66 

Poisson 0.12 0.23 0.44 

Statistical parameters and estimates of the population properties under assumption of Poisson 

distribution are presented in Table 1. 

Assuming the Poisson distribution (as the F-C-S value from Figure 1 allowed us to do), statistical 

parameter (λ) and population properties were computed for Citronellol (CID = 8842, with less than 5 

observations, not included in verification of the Poisson distribution assumption-see Supplementary 
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material) and the following results were obtained: λ = 14.5, Mode = 14, Mean = 14.500, Variance = 4.500, 

Standard Deviation = 3.808, Skewness = 0.263, Excess Kurtosis = 0.069, Median = 13.832. 

Table 1. Statistical parameters and population properties. 

 λ Mode Mean Var StDev Skew EKurt Median 

Compound (CID) 

Citral (638011) 14.125 14 14.125 14.125 3.758 0.266 0.071 13.457 

Geraniol (637566) 13.750 13 13.750 13.750 3.708 0.270 0.073 13.082 

Geranyl formate (5282109) 8.875 8 8.875 8.875 2.979 0.336 0.113 8.207 

Geranyl acetate (1549026) 8.200 8 8.200 8.200 2.864 0.349 0.122 7.531 

Geranyl butyrate (5355856) 8.714 8 8.714 8.714 2.952 0.339 0.115 8.046 

Geranyl tiglate (5367785) 11.625 11 11.625 11.625 3.410 0.293 0.086 10.957 

Neral (643779) 13.500 13 13.500 13.500 3.674 0.272 0.074 12.932 

Nerol (643820) 11.250 11 11.250 11.250 3.354 0.298 0.089 10.582 

Nerol acetate (1549025) 7.333 7 7.333 7.333 2.708 0.369 0.136 6.664 

Neryl butyrate (5352162) 10.714 10 10.714 10.714 3.273 0.306 0.093 10.046 

Neryl propanoate (5365982) 10.714 10 10.714 10.714 3.273 0.306 0.093 10.046 

Citronellal (7794) 14.600 14 14.600 14.600 3.821 0.262 0.068 13.932 

Citronellyl formate (7778) 12.143 12 12.143 12.143 3.485 0.287 0.082 11.475 

Citronellyl acetate (9017) 7.286 7 7.286 7.286 2.699 0.370 0.137 6.617 

Citronellyl butyrate (8835) 8.167 8 8.167 8.167 2.858 0.350 0.122 7.498 

Citronellyl isobutyrate (60985) 8.200 8 8.200 8.200 2.864 0.349 0.122 7.531 

Citronellyl propionate (8834) 14.333 14 14.333 14.333 3.786 0.264 0.070 13.665 

Hydroxycitronellal (7888) 18.750 18 18.750 18.750 4.330 0.231 0.053 18.083 

Rose oxide (27866) 12.800 12 12.800 12.800 3.578 0.280 0.078 12.132 

Eugenol (3314) 28.250 28 28.250 28.250 5.315 0.188 0.035 27.583 

Sulfametrole (64939) 19.200 19 19.200 19.200 4.382 0.228 0.052 18.533 

Oil 

Citronella  9.750 9 9.750 9.750 3.122 0.320 0.103 9.082 

Geranium Africa 13.250 13 13.250 13.250 3.640 0.275 0.075 12.582 

Geranium Bourbon 12.500 12 12.500 12.500 3.536 0.283 0.080 11.832 

Geranium China 13.625 13 13.625 13.625 3.691 0.271 0.073 12.957 

Helichrysum 10.667 10 10.667 10.667 3.266 0.306 0.094 9.999 

Palmarosa 11.625 11 11.625 11.625 3.410 0.293 0.086 10.957 

Rose 12.750 12 12.750 12.750 3.571 0.280 0.078 12.082 

Verbena 16.500 16 16.500 16.500 4.062 0.246 0.061 15.833 

Mixture 

Tetracycline hydrochloride 15.143 15 15.143 15.143 3.891 0.257 0.066 14.476 

Ciproxin 26.000 26 26.000 26.000 5.099 0.196 0.038 25.333 

λ = Parameter of Poisson distribution; Var = variance; StDev = standard deviation; Skew = skewness;  

EKurt = Excess Kurtosis. 
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2.2. QSAR Models 

Two requirements were imposed in identification of the proper transformation of Poisson parameter 

λ: the absence of outliers and the presence of normality at a significance level of 5%. The global F-C-S 

distribution statistic indicated that the Poisson parameter more likely follows a Log-normal distribution 

(statistics: K−S = 0.1315; pK−S = 0.7948; A−D = 0.3874; CritA−D5% = 2.5018 (critical values associated 

for Anderson-Darling test); C−Sdf = 2 = 0.9403; pC−S = 0.6249). 

The Eugenol compound was identified as outlier with Grubbs' test (Z = 3.178, Zcritical−5% = 2.7338). 

After natural logarithm transformation of the Poisson parameters, seen as an overall antimicrobial 

activity of investigated compounds, no other outlier was identified (the highest Z value was of 2.528; 

Zcritical−5% = 2.758) and the normality hypothesis of the ln(λ) values could not be rejected (p > 0.05). 

Further testing on ln(λ) under the normal distribution assumption gave no reason to reject the normality 

of the data in the training test (K−S = 0.14351, pK−S = 0.917; A−D = 0.37751, pA−D = 0.686;  

C−S = 0.62246, pC−S = 0.430; F−C−S = 1.307; pF−C−S = 0.727) nor in test set (K−S = 0.2301, pK−S = 0.779; 

A−D = 0.3860, pA−D = 0.679; F−C−S = 0.637; pF−C−S = 0.727). 

2.2.1. Based on DRAGON Descriptors 

Sulfametrole (CID = 64939) proved to be influential in the model obtained based on Dragon  

descriptors (training set, Figure 2). Both Dragon descriptors proved to be higher than expected  

(hi−piID = 0.5643, hi−R3m+ = 0.7602, where piID and R3m+ are Dragon descriptors) for  

Sulfametrole compound. 

The overall correlation between Dragon descriptors obtained for whole data set (n = 21 compounds) 

was of 0.8461 (p < 0.0001). Moreover, a statistically significant correlation was obtained between ln(λ) 

and R3m+ descriptor (r = 0.4800, p = 0.0220). 

Figure 2. Williams plot (training set): Dragon descriptors. 
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The results of regression analysis with Dragon descriptors provided the equation presented in 

Equation(1) relating ln(λ) with compounds structure, after the withdrawal of Sulfametrole from the  

training set. 

Ŷ = 3.626(±0.496) − 0.045(±0.012)·piID + 18.569(±19.404)·R3m+ 

nTR = 12; R
2

TR = 0.8970; R
2

Adj−TR = 0.8741; FTR (p) = 39 (3.62 × 10
−5

); seTR = 0.1037; 

pintercept = 4.86 × 10
−8

; ppiID = 1.28 × 10
−5

; pR3m+ = 0.058; 

(1) 
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TpiID = TR3m+ = 0.776; VIFpiID = VIFR3m+ = 1.305; 

R(Y−piID)TR = −0.9183 (p-value = 2.50 × 10
−5

); R(Y−R3m+)TR = −0.2410 (p-value = 0.4505);  

R(piID−R3m+)TR = 0.4833 (p-value = 0.1114); 

R
2

loo = 0.8452; Floo (p) = 24 (2.35 × 10
−4

); seloo = 0.1276; 

nTS = 7; R
2

TS = 0.6518; FTS (p) = 11 (2.16 × 10
−2

); 

R(Y−piID)TS = −0.0869 (p-value = 0.8241); R(Y−R3m+)TS = −0.2410 (p-value = 0.0024);  

R(piID−R3m+)TS = 0.3469 (p-value = 0.3604) 

where Ŷ = ln(λ) estimated by Equation(1); R
2
 = determination coefficient; TR = training set;  

loo = leave-one-out analysis; TS = test set; Ext = external set; R
2

Adj = adjusted determination 

coefficient; F = F-value (from ANOVA table); p = p-value associated to F-value; se = standard error 

of estimate; Dragon descriptors: piID = conventional bond order ID number-walk and path counts;  

R3m+ = R maximal autocorrelation of lag 3/weighted by mass GETAWAY descriptors;  

T = Tolerance; VIF = Variance Inflation Factor; R = correlation coefficient. 

The abilities in estimation (training set) and prediction (test set) of the model from Equation(1) are 

presented in Figure 3. No statistically significant difference could be identified when the goodness-of-fit 

was compared in training set and test set for the model presented in Equation (1) (Z = 0.3590, p = 0.3598). 

Figure 3. Observed vs. calculated parameter: QSAR-Dragon (Equation (1), R
2
TS = determination 

coefficient in test set). 

 

2.2.2. Based on SAPF Descriptors 

No leverage was identified when the SAPF descriptors were investigated (Figure 4). 
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Figure 4. Williams plots (training set): SAPF descriptors. 
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The overall correlation between SAPF descriptors obtained for whole data set (n = 22 compounds) 

was of 0.4800 (p = 0.0238). Moreover, a statistically significant correlation was obtained between ln(λ) 

and LSSIIETD descriptor (r = −0.5249, p = 0.0122). 

The results of regression analysis with SAPF descriptors relating ln(λ) with compounds structure by 

using the entire training set is presented in Equation(2). 

Ŷ = 3.858(±0.502) + 0.398(±0.189)·QSMHIMGP-0.149(±0.048)·LSSIIETD 

nTR = 13; R
2

TR = 0.8286; R
2

Adj−TR = 0.7944; FTR (p) = 24 (1.48 × 10
−4

); seTR = 0.1419; 

pintercept = 9.66 × 10
−9

; pQSMHIMGP = 8.37 × 10
−4

; pLSSIIETD = 3.93 × 10
−5

; 

R(Y-QSMHIMGP)TR = −0.0122 (p-value = 0.9684); R(Y-LSSIIETD)TR = −0.6705  

(p-value = 0.0121); R(QSMHIMGP-LSSIIETD)TR = 0.6862 (p-value = 0.0096); 

TQSMHIMGP = TLSSIIETD = 0.529; VIFQSMHIMGP = VIFLSSIIETD = 1.890; 

R
2

loo = 0.6998; Floo (p) = 11 (2.90 × 10
−3

); seloo = 0.1910; 

nTS = 7; R
2

TS = 0.8624; FTS (p) = 24 (4.41 × 10
−3

); 

R(Y-QSMHIMGP)TS = 0.7511 (p-value = 0.0516); R(Y-LSSIIETD)TS = −0.3725  

(p-value = 0.4106); R(QSMHIMGP-LSSIIETD)TS = 0.2250 (p-value = 0.6276) 

(2) 

where Ŷ = ln(λ) estimated / predicted by Equation (2); R
2
 = determination coefficient; R = correlation 

coefficient; TR = training set; loo = leave-one-out analysis; TS = test set; R
2

Adj = adjusted 

determination coefficient; F = F-value (from ANOVA table); p = p-value associated to F-value;  

se = standard error of estimate; QSMHIMGP and LSSIIETD = SAPF descriptors; T = tolerance;  

VIP = Variance Inflation Factor.The abilities in estimation (training set) and prediction (test set) of the 

model from Equation (2) are presented in Figure 5. 

No statistically significant difference was identified when the goodness-of-fit in training and test 

sets were compared for the model presented in Equation (2) (Z-statistics = 0.3590, p = 0.3598). 

The search for the best fit between observed and linear regression model with two descriptors when 

the joined pool of SAPF and Dragon descriptors retrieved the same model as the one from Equation (2). 
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Figure 5. Observed vs. calculated parameter: QSAR-SAPF (Equation (2), R
2
TS = determination 

coefficient in test set). 

 

2.2.3. Models Comparison 

Parameters defined in Material and Method section were used to compare the QSAR-Dragon model 

with QSAR-SAPF model. The residuals, defined as the difference between observed value and 

calculated value based on identified models, are presented in Table 2. The values of the parameters 

used in models assessment analysis were presented in Table 3. 

Two compounds were randomly chosen as external set. The predictions that were closest to the 

observed values were obtained by QSAR-SAPF model (Equation (2); Table 2). 

Steiger’s test was used to identify if there are any statistically significant differences in terms of 

correlation coefficient between the models from Equation (1) and the model from Equation (2). The 

lowest p-value was obtained when the correlation coefficient in training sets was compared (Z-statistics = 

−1.4511, p = 0.0734). This suggests that the models are close to being statistically different. 

Table 2. QSAR Residuals: Dragon vs. SAPF. 

Set CID Y ŶDragon ResDragon ŶSAPF ResSAPF 

Training 1549025 1.9924 2.0070 −0.0146 2.0761 −0.0836 

Training 8835 2.1001 2.0564 0.0437 2.1461 −0.0460 

Training 60985 2.1041 2.0768 0.0273 2.0553 0.0488 

Training 5282109 2.1832 2.2596 −0.0764 2.3267 −0.1435 

Training 643820 2.4204 2.6106 −0.1902 2.7127 −0.2923 

Training 7778 2.4968 2.4132 0.0835 2.2816 0.2151 

Training 27866 2.5494 2.5905 −0.0411 2.4957 0.0538 

Training 637566 2.6210 2.6106 0.0104 2.7127 −0.0917 

Training 638011 2.6479 2.7061 −0.0582 2.6042 0.0437 

Training 8842 2.6741 2.6435 0.0307 2.5713 0.1029 

Training 7794 2.6810 2.6929 −0.0118 2.6430 0.0380 

Training 7888 2.9312 2.7346 0.1966 2.8638 0.0674 

Training 64939 2.9549   2.8674 0.0875 

Test 1549026 2.1041 2.0070 0.0971 2.2012 −0.0971 

Test 5355856 2.1650 1.9271 0.2379 2.2830 −0.1180 

Test 5352162 2.3716 1.9271 0.4445 2.7847 −0.4132 
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Table 2. Cont. 

Test 5367785 2.4532 1.8661 0.5870 2.4642 −0.0111 

Test 643779 2.6027 2.7061 −0.1034 2.6006 0.0021 

Test 8834 2.6626 2.4108 0.2518 2.6207 0.0418 

Test 3314 3.3411 2.7843 0.5568 3.3685 −0.0274 

External 9017 1.9859 2.1432 −0.1572 2.0053 −0.0194 

External 5365982 2.3716 2.2688 0.1028 2.2889 0.0827 

CID = compound identification number; Y = observed ln(λ) value; Ŷ = estimated/predicted value;  

Res = residuals; Dragon = model from Equation(1); SAPF = model from Equation(2). 

Table 3. Results of comparison: QSAR-Dragon model vs. QSAR-SAPF model. 

Parameter (Abbreviation) Dragon–Equation(1)–n = 21 SAPF–Equation(2)–n = 22 

Root-mean-square error (RMSE) 0.2314 0.1357 

Mean absolute error (MAE) 0.1582 0.0967 

Mean Absolute Percentage Error (MAPE) 0.0628 0.0403 

Standard error of prediction (SEP) 0.2371 0.0628 

Relative error of prediction (REP%) 9.2964 5.4523 

Predictive Power of the Model 
2

F1
Q  0.2121 *

 
0.8436 * 

2

F2
Q  0.2041 * 0.8421 * 

2

F3
Q  n.a. 0.7742 * 

ρc-TR 0.9457 
a
 0.9063 

c
 

ρc-TS 0.4885 
b
 0.9219 

d
 

Fisher’s Predictive Power TS EX 
e 

TS + EX 
f 

TS EX TS + EX 

n 7 2 9 7 2 9 

t-value 3.1148 −0.2095 2.5071 −1.5344 0.6198 −1.2830 

p-value 0.0104 0.4343 0.0230 0.0879 0.3234 0.1234 

* = test set include also external compounds; ρc = concordance correlation coefficient; TR = training set;  

TS = test set; 
a
 accuracy = 0.9985, precision = 0.9471; 

b
 accuracy = 0.7357, precision = 0.6639;  

c
 accuracy = 0.9956, precision = 0.9103; 

d
 accuracy = 0.9867, precision = 0.9344; 

e
 = external set  

(two compounds); 
f
 = training and external sets. 

3. Discussion 

The antimicrobial effects of chemical compounds on bacteria and fungi species were analyzed with 

regards to probability distribution function. In addition, a structure-activity relationship analysis able to 

describe the effect of chemical compounds on the entire population of bacteria and fungi species was 

successfully conducted. 

The analysis of Figure 1 revealed that for compounds series there is at least one sample with no fit 

(0.00 probability of agreement) for both Binomial and Negative Binomial distributions. Poisson 

distribution always had the probability of agreement above 0.05 (the hypothesis of Poisson distribution 

cannot be rejected at 5% significance level), being the only discrete distribution from investigated ones 

that showed this behavior. Furthermore, the pF-C-S value provided a global agreement of 12% for "Is 

Poisson the distribution of any compound on bacteria and fungi species?‖, enough to assure us that the 
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Poisson distribution is the true distribution of compounds’ antimicrobial activities on the studied 

bacteria and fungi species. The situation is somehow reversed for oils and mixtures; if the Poisson 

distribution is the only one not rejected for compounds, then the Negative Binomial distribution also 

cannot be rejected for oils and mixtures. A deeper investigation on factors influencing antimicrobial 

activities may reveal that the negative binomial distribution should be rejected for the whole data 

presented in Table 4. The reason for this fact should be foundd in the distribution of the compounds 

series activities on a given bacteria (columns data in Table 4). 

Thus, it was already proven [34] that Negative Binomial distribution occurs when both column and 

row data are shaped by Poisson distribution, which is not our case since only rows (a compound 

activity) are shaped by Poisson distribution (see Figure 1). Moreover, rows data from Table 4 are more 

likely to be Negative Binomial distributed, suggesting that at least two factors coexist in the 

compounds’ structure and influence their activity. 

Table 4. Compounds, oils and mixtures: inhibition zones (mm). 

 SA EF EC PV PA Ss KP CA n 

Compound (CID) 

1 Citral (638011) 15 23 11 9 10 8 9 28 8 

2 Geraniol (637566) 15 12 15 12 11 10 10 25 8 

3 Geranyl formate (5282109) 10 9 7 8 8 7 7 15 8 

4 Geranyl acetate (1549026) 10 8 7 NIO NIO 7 NIO 9 5 

5 Geranyl butyrate (5355856) 10 11 7 NIO 9 7 7 10 7 

6 Geranyl tiglate (5367785) 17 10 11 9 8 8 15 15 8 

7 Neral (643779) 15 20 10 6 12 10 10 25 8 

8 Nerol (643820) 11 8 10 10 10 7 7 27 8 

9 Nerol acetate (1549025) 8 NIO 7 7 7 8 7 NIO 6 

10 Neryl butyrate (5352162) 25 8 8 8 NIO 8 8 10 7 

11 Neryl propanoate (5365982) 17 10 NIO 7 8 9 10 14 7 

12 Citronellal (7794) 25 18 NIO 9 NIO 7 14 NIO 5 

13 Citronellyl formate (7778) 18 20 10 8 9 7 NIO 13 7 

14 Citronellyl acetate (9017) 10 6 NIO 6 7 6 7 9 7 

15 Citronellyl butyrate (8835) 8 8 NIO NIO 8 7 8 10 6 

16 Citronellyl isobutyrate (60985) 8 10 9 7 NIO NIO 7 NIO 5 

17 Citronellyl propionate (8834) 15 20 NIO NIO 10 15 11 15 6 

18 Hydroxycitronellal (7888) 20 20 23 16 17 15 14 25 8 

19 Rose oxide (27866) 8 10 NIO 11 7 NIO NIO 28 5 

20 Eugenol (3314) 30 30 28 28 25 25 28 32 8 

21 Sulfametrole (64939) 27 27 11 23 NIO 8 NIO NIO 5 

32 Citronellol (8842) 25 18 NIO 8 NIO 7 NIO NIO 4 

Oil 

22 Citronella  10 10 7 10 7 7 7 20 8 

23 Geranium Africa 16 12 10 10 10 9 11 28 8 

24 Geranium Bourbon 13 12 8 12 10 10 10 25 8 

25 Geranium China 20 13 14 9 9 9 10 25 8 
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Table 4. Cont. 

26 Helichrysum 20 13 8 NIO 9 NIO 7 7 6 

27 Palmarosa 8 13 12 9 11 10 10 20 8 

28 Rose 20 15 10 10 8 9 10 20 8 

29 Verbena 27 25 10 13 10 12 10 25 8 

Mixture 

30 

Tetracycline 

hydrochloride 15 22 11 13 15 10 20 NIO 7 

31 Ciproxin 35 33 22 25 32 10 25 NIO 7 

SA = Staphylococcus aureus; EF = Enterococcus faecalis; EC = Escherichia coli; PV = Proteus vulgaris;  

PA = Pseudomonas aeruginosa; SS = Salmonella sp.; KP = Klebsiella pneumoniae; CA = Candida albicans; 

n = sample size; NIO = No Inhibition Observed. 

The analysis of distribution on bacteria and fungi species revealed the following: 

 Compounds series: 

o Without any exception, the antimicrobial effects of all investigated compounds proved to 

follow Poisson distribution. Moreover, the hypothesis that any compound has a Poisson 

distribution of antimicrobial activity on bacteria population could not be rejected by F-C-S 

statistics (F-C-S statistics = 28.79, p = 0.12, Figure 1). Starting with this result, the Poisson λ 

parameter has been obtained to reflect what happen in the population, this parameter being 

an estimate for both central tendency and variability of antibacterial effects. The analysis of 

the obtained Poisson parameters showed to follow more likely a log-normal distribution and 

a logarithm transformation was applied on these values before quantitative structure-activity 

relationship search. This transformation was applied to avoid the presence of outliers and to 

assure the normality assumption needed for linear regression analysis [35,36]. 

o Negative binomial distribution was rejected by 55% of compounds while Binomial 

distribution was rejected in 70% of cases. Negative binomial distribution, also known as the 

Pascal distribution or Pólya distribution, is a twin of Poisson distribution [37,38] widely used 

in analysis of count data [39,40]. The negative binomial distribution could be obtained by 

superposition of a continuous distribution over Poisson distribution (Fisher showed the 

convolution between Chi-Square and Poisson distribution [41]). Other authors showed that 

the negative binomial distribution might derive from a convolution between the Gamma 

distribution (Chi-Square distribution is a particular case of Gamma distribution) and Poisson 

distribution [42,43]. Whenever the separation of factors is possible, it is also possible to 

separate the convolutions of distributions [44], and this separation give the possibility to 

analyze separately the factors. The results presented by Jäntschi et al. [44] sustained and/or 

are sustained by convolution of Poisson distribution with a continuous distribution in regards 

of both factors (bacteria and chemical compounds) in the expression of antimicrobial activity. 

The results showed that antimicrobial activity follow a negative binomial distribution under 

the influence of both factors (bacteria and chemical compound) and Poison distribution under 

the influence of the bacteria factor [44]. Furthermore, the negative binomial distribution 

might be obtained by convolution of log-normal with Gamma distribution; although a high 
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number of observations are needed (n > 250) in order to statistically assure the difference 

between Log-normal and Gamma distributions [45]. 

 Oils and mixture series: 

o Negative Binomial distribution cannot be rejected for oils. Moreover, Negative Binomial 

distribution for oils had a higher likelihood than Poisson distribution (pF-C-S for Negative 

Binomial: 0.56; pF-C-S for Poisson: 0.23) while the Binomial distribution was rejected. 

o Negative Binomial distribution cannot be rejected for mixtures either. Moreover, Negative 

Binomial distribution for mixtures had also higher likelihood than Poisson distribution (pF-C-S for 

Negative Binomial = 0.66; pF-C-S for Poisson = 0.44) while the Binomial distribution was rejected. 

o The above-presented facts suggest that in the case of oils and mixtures, the factors of the 

antibacterial activity are not completely separated when oil/mixture name are taken as factor; 

this appears to be because the Negative Binomial distribution often occurs when a 

convolution/superposition of Poisson distributions characterize the observed data [46]. 

Overall, any investigated compound, oil and mixture proved to have an antimicrobial effect that 

follows the Poisson distribution on studied bacteria and fungi species. The λ Poisson parameter, varied 

from 7.286 (Nerol acetate) to 28.250 (Eugenol) and represents the mean and variance of inhibition 

zone of compound/oil/mixture on investigated species. The obtained parameter of Poisson distribution 

proved able to characterize the overall antimicrobial activity (both mean and variance equals to 

Poisson parameter λ, Table 1) of the compounds on the investigated bacteria population. 

The structure-activity relationships between compounds’ structure and the overall antimicrobial effect 

on bacteria population, as well as the suitability of a pool of descriptors (SAPF and Dragon approaches) 

for the overall antimicrobial activity estimation and prediction were furthermore investigated. 

QSAR model with two descriptors that proved abilities in estimation and prediction was identified 

for each approach after the split of compounds in training (13 compounds), test (7 compounds) and 

external (2 compounds) sets. Normal distribution of the observations was assured through natural 

logarithm transformation (p > 0.05) to allow investigation of structure (of compounds)-activity (overall 

antimicrobial activity) relationships using multiple linear regression. 

The analysis of QSAR-Dragon model revealed the following: 

 One compound proved to be influential in the model (CID = 64939, Figure 2). This compound 

obtained the value of leverage for both Dragon descriptors higher than the accepted threshold 

(0.41). This compound, which belongs to the training set, was withdrawn, and a model based 

on 12 compounds in training set was obtained, Equation(1). 

 Two descriptors were able to describe the linear relation between overall antimicrobial activities 

of investigated compounds. One descriptor belongs to the walk and path counts and relates the 

conventional bond order ID number while the second descriptor relates the maximal 

autocorrelation of lag 3 divided by mass (R3m+). According with associated coefficients, the 

R3m+ had a higher contribution in the model compared with piID descriptor, but its contribution 

is to the significance level threshold (5.8% compared to imposed 5% significance level). 

 QSAR-Dragon model proved to be statistically significant (F = 39, p = 3.62 × 10
−5

). A low 

value of root mean square error was obtained in leave-one-out analysis (0.1276). The 

contribution of R3m+ descriptor to the model is questionable since the significance associated 
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to its coefficient is very close to 0.05 but since it has a real contribution in the r
2
 value its 

significance of 5.8% was accepted. Moreover, the R3m+ proved not significantly correlate with 

Poisson parameter (r = −0.2410). 

 Multicollianearity is not present in the model since the tolerance value 0.1 < T < 1 and the 

variance inflation factors (VIF) < 10 even if a significant correlation coefficient was obtained 

between Dragon descriptors. 

 The model proved its abilities in estimation (R
2

TR = 0.897) as well as in prediction (internal 

validity of the model in leave-one-out analysis, R
2

loo = 0.845 and external validation in test set 

R
2

TS = 0.652) with a difference in the goodness-of-fit from 0.052 (training vs. interval 

validation - leave one out analysis) to 0.245 (training vs. external validation-test set). However, 

the difference of 0.245 proved not statistically significant (p > 0.05). 

 Unfortunately, external abilities in prediction were away from the expected abilities. The trend 

is significant far from the expected line-Figure 3. 

 The abilities in estimation (training set) proved not statistically significant from the abilities in 

prediction (test set) since a probability of 0.3598 was obtained in comparison. 

The analysis of QSAR-SAPF model revealed the following: 

 The values of SAPF descriptors associated to compounds proved that no compound had 

significant influence on the model (all leverage values where lower than threshold −0.41, Figure 4). 

 SAPF model proved statistically significant (F = 24, p = 1.48 × 10
−4

). The contribution of both 

descriptors to the model proved statistically significant (p-values associated to coefficients <0.05).  

 According to descriptors from Equation(2), the global model of antibacterial activity is related to 

both molecular geometry and topology: one descriptor identified a relation between the geometry 

of compounds and the overall antimicrobial activity while the second descriptor identified a 

relation with compounds’ topology. Moreover, the atomic mass and electronegativity proved to 

be related to the overall antimicrobial activity by the same split ratio in the expression of the  

model descriptors. 

 Multicollianearity was not identified in the QSAR-SAPF model, even if a statistically significant 

correlation coefficient between descriptors exists (the tolerance values were higher than 0.1 and 

smaller than 1 and the variance inflation factors (VIF) had values smaller than 10). 

 The model proved its abilities in estimation (R
2
TR = 0.829) as well as in prediction (internal 

validity of the model in leave-one-out analysis, R
2

loo = 0.700 and external validation in test set 

R
2
TS = 0.862) with a difference in the goodness-of-fit from −0.034 (training vs. external 

validation - test set) to 0.129 (training vs. interval validation-leave one out analysis). Moreover, 

none of these differences were statistically significant (p > 0.05). 

 External abilities in prediction proved to be close to expected abilities for QSAR-SAPF model (Figure 5). 

The comparison of the identified models revealed the following: 

 Dragon model has slightly better abilities in estimation compared to SAPF model, but these 

abilities proved not statistically significant. The determination coefficient obtained both in 

training set and in leave-one-out analysis was higher compared to SAPF model with 0.068 and 

respectively 0.145. Moreover, the abilities of prediction seem to be better for SAPF model 
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compared to Dragon model (a difference of 0.211, not statistically significant p < 0.05). This 

observation is also sustained by the lowest value of residuals in training set for Dragon model and 

in two compounds from training set and all compounds from test set for SAPF model (Table 2). 

 The SAPF model systematically obtained smallest values of parameters presented in Table 3: best 

explaining the variability in the observation; smallest typical errors; smallest standard error of 

prediction as well as smallest relative error of prediction. The highest difference is observed with 

regards to standard error of prediction that is almost 4 times higher for Dragon model compared 

to SAPF model. 

 The analysis of predictive power of the models demonstrated that SAPF model had significantly 

higher power of prediction (Table 3). According to the obtained results, the Q
2
 values for Dragon 

model are smaller than 0.6, being considered unacceptable while all Q
2
 values for SAPF model 

are higher than 0.77. These results show that the Dragon model can be rejected from a statistical 

point of view, taking also into consideration that the relative error of prediction is almost 2 times 

higher compared to SAPF model. 

 Furthermore, the mean of residuals for training, external and external + test set proved not 

statistically different by zero when the SAPF model was analyzed. The Fisher’s predictive power 

identified statistically difference by zero of the residuals obtained by Dragon model in both 

training and test sets (9 compounds) (p < 0.05, Table 3). 

 The model with a higher concordance between observed and estimated/predicted could be considered 

the best model. The analysis of concordance correlation coefficient revealed a substantial strength of 

agreement for training set but a very poor agreement in test set for Dragon model. A moderate 

strength of agreement was obtained by SAPF model in both training and test sets (Table 3). 

 Steiger’s test was not able to identify any statistically significant differences between Dragon 

and SAPF model regarding goodness-of-fit neither in training set nor in external set. 

It can be concluded based on the facts presented above that the SAPF model is a reliable, valid 

(internally as well as externally) and stable model useful in characterization of overall antimicrobial 

activity on investigated compounds, both in terms of estimation and prediction. 

The aim and objectives of the research have been achieved. The antimicrobial effect proved to 

follow the Poisson distribution and its parameter was furthermore used to identify those descriptors 

from Dragon and SAPF pools able to characterize the link between compounds and overall 

antimicrobial activity. Two newly developed models were found statistically valid. However, which of 

these QSAR models is better? The analysis of applicability domain of the models obtained in training 

sets was able to identify based on the values of descriptors one structurally influential compound in 

training set for Dragon model. According to the obtained results, one compound was withdrawn from 

further analysis in Dragon modeling. Dragon model was created based on 12 compounds in training set 

while the SAPF model was created based on 13 compounds in training set. Graphical representation of 

observed vs. calculated values based on identified models as well as the predictive power parameters 

showed that the best model to be applied on new chemicals is the SAPF model. 
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4. Experimental Section 

4.1. Compounds, Oils and Mixtures 

The antimicrobial effects of twenty-two compounds, eight oils and two mixtures on gram-positive 

and -negative bacteria (Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas 

aeruginosa, Klebsiella pneumoniae, Proteus vulgaris, Salmonella sp.) and on one fungus (Candida 

albicans), expressed as inhibition zone (mm, Agar diffusion disc method [33]), were included in the 

analysis (Table 4). The PubChem database was used to retrieve the compounds structure and 

associated CIDs (Compound IDentification numbers); the data are presented in Table 4. 

4.2. Distribution Analysis 

Since all inhibition zones expressed in mm are integer numbers, a search for a discrete distribution 

was conducted having as alternatives Uniform, Binomial, Negative Binomial and Poisson distributions 

(other alternatives were excluded due to lack of fit with observed data). Kolmogorov-Smirnov (K-S) [47] 

and Anderson-Darling (A-D) [48] statistics were used to measure the departure between observations 

and a certain probability distribution function (PDF). Fisher’s method combining independent tests for 

significance (Fisher’s Chi-Square, abbreviated as F-C-S [49]) was used to obtain a global probability 

of agreement between the distribution and the observed samples. 

The whole pool (matrix) of data was prior analyzed and none of the above distribution functions 

give an acceptable (higher than 5%) agreement with the observations. This fact could be explained by 

the heterogeneity of the chemicals/oils/mixtures. 

In order to obtain the PDF of antimicrobial effects of compounds, oils and mixtures on bacteria and 

fungus population, rows of experimental values were analyzed as independent samples. A number of 

five observations in sample qualified the sample for estimation of the distribution parameters, and the 

analysis was conducted using maximum likelihood estimation (MLE) [34] procedure. The measure of 

the agreement was expressed using the probability of F-C-S test. Also the following hypothesis was 

tested: a certain PDF can be accepted for populations of all samples regardless of PDF parameters 

values. The identified PDF was further used to estimate the population parameter(s) for sample(s) 

without enough data (e.g., Citronellol, see Table 4). 

Population statistics of the identified PDF can be seen as an estimator of overall antimicrobial 

activity of the investigated compound on the bacteria and fungi population. The series of the 

population statistics for all investigated compounds was furthermore subject of a structure-activity 

relationship search intended to relate the overall antimicrobial effect with compounds’ structure. 

4.3. Molecular Descriptors Calculation 

The molecular modeling study was conducted at PM3 semi-empirical level of theory [50] on 

chemical compounds series. 

A series of home-made programs were used to perform the following tasks: ▪ automate transformation 

the *.sdf or *.mol files as *.hin files; ▪ prepare the compounds for modeling (run HyperChem v.8.0 [51] 

with HyperChem scripts in order to obtain molecular models) [52]; ▪ calculate the molecular descriptors 
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(SAPF approach) for all compounds (calculate all descriptors; select a relevant subset of descriptors);  

▪ split the set randomly in training (for model development, ~2/3 compounds in training set) and two test 

sets (for model validation); ▪ search for multiple linear regression (search for two descriptors linear 

models) in training set; ▪ validate the model obtained in training set on test sets. 

The molecular descriptors for the chemical compounds were calculated using a home-made 

software that implemented Structural Atomic Property Family [53,54] (SAPF approach, methodology 

of calculation depicted in Figure 6) and the Dragon software [55] (all Dragon descriptors). 

The SAPF approach is a method that cumulates atomic properties at the molecular level. The 

approach used a localization of the molecular center using a metric, an atomic property (C = cardinality 

(number of heavy atoms), H = Hydrogen bonds (number of Hydrogen atoms), M = atomic mass (relative 

units), E = electronegativity (on Pauling scale [56]), and A = electron affinity), a power of a distance as 

well as of an atomic property in the expression of descriptor in regard to atomic effect, a modality of 

accumulation of atomic properties at the molecular level, and a linearization operation (see Figure 6). 

Figure 6. SAPF descriptors (v = value, ln = natural logarithm, V = vector, T = topology,  

G = geometry, x, y, z = geometric atomic coordinates, i = atom, refD = modality to 

calculate coordinates—from average, refP = modality to calculate coordinates—from 

property center formula, t = topological atomic coordinate. 

 SAPF Descriptor 
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4.4. Identification and Characterization of Linear Regression Models 

Linear regression models (additive models) were used for search of structure-activity relationship 

between overall antimicrobial effects as dependent variable and structural descriptors (from SAPF 

approach and Dragon software) as independent variables. 

Kolmogorov-Smirnov, Anderson-Darling, and Chi-Square statistics [57] as well as Grubbs test for 

outliers [58] were used to decide which transformation should be applied to assure the normality of 

observations (in our case the parameter of the probability distribution function) [50,51]. 

Regression analysis was employed to select the candidate models and the following criteria were used: 

highest goodness-of-fit, smallest number of descriptors and absence of collinearity between descriptors 

[37,38]. 
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A complete randomization approach was applied to split of compounds in training (~2/3 

compounds, 13 compounds), test (7 compounds: geranyl acetate, geranyl butyrate, geranyl tiglate, 

neral, neryl butyrate, neryl propanoate, citronellyl acetate, citronellyl propionate, and eugenol) and 

external (2 compounds: citronellyl acetate and neryl propanoate) sets. 

Training set was used to identify the model, test set to validate the model and external set to assess 

the model external predictive power. The predictive power of identified models is sustained by an 

applied strategy; the models were not obtained on measured data which are subject of measurements 

errors. Instead, the QSAR models were constructed with population estimates (represented by Poisson 

parameter) that are less affected by errors. Thus, the QSAR models reflect the behavior of the 

compound on bacteria and fungi not the behavior of compound on a certain bacteria/fungus. 

In order to assess the applicability domain of the obtained models, two approaches were involved 

on the full model with identified descriptors in the training sets [59]: leverage and identification of 

response outliers. A standardized measure of the distance between the descriptor values for the i
th

 

observation and the means of the descriptor-values for all observations was computed to identify the 

leverage in descriptors (leverage value, hi). Whenever hi > 3·(k + 1)/n (where k = number of 

independent variables in the model, n = sample size) compound was considered influential in the 

model [60] and was excluded from further analysis of the model. The response outliers were defined as 

compounds with absolute standardized residuals higher than 2.5. Leverage values (hi) vs. standardized 

residuals for compounds in training set was plotted to identify response outliers as well as independent 

variables with leverage values higher than threshold value (see Figures 2 and 3). 

The model diagnostics was carried out using statistical parameters presented in Table 5. 

Table 5. Statistical parameters used to assess QSAR models. 

Parameter (Abbreviation) Formula [ref] Remarks 

Root-mean-square error (RMSE) 
 

n

ŷy
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n

1i
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ii 


  
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variation in the errors exist 
Mean absolute error (MAE) 

n
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Standard error of prediction (SEP) 
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Concordance analysis (ρc) 
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(0.95; 0.99) substantial; 

(0.90; 0.95) moderate;  

<0.90 poor 
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Table 5. Cont. 

Predictive Power of the Model 
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accurate if the predictive  

power of the model is > 0.6 [66] 
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)yŷ(
1Q  [63] 

Prediction power relative to 

mean value of observable in 

training set 













TS

TS

2 n

1i

2

TSi

n

1i

2

ii2

F

)yy(

)yŷ(
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Overall prediction weighted 

by test set sample size 

relative to observable 

weighted by mean of 

observed value in training 

set weighted by sample size 

in training set 

Predictive Power: Fisher’s approach 
TSTS

TS

n/)res(StDev

0res
t


  [67] 

p = TDIST(abs(t), nTS-1,1) 

Evaluate if the mean of 

residual is statistically 

different by the expected 

value (0)  

yi = observed ln(λ) for i
th

 compound; 
iŷ = estimated / predicted ln(λ) by model from Equation(1), 

respectively Equation(2); n = sample size; y  = arithmetic mean of the observed ln(λ); ŷ  = arithmetic mean 

of estimated/predicted ln(λ); ρc = concordance correlation coefficient; TR = training set; TS = test set; res = 

arithmetic mean of residuals; res = residuals; StDev = standard deviation; abs = absolute value. 

The comparison of the models was performed using Steiger’s Z (association assumption between 

data) and Fisher’s Z (independence assumption of the data) statistics [68]. 

5. Conclusions 

Antimicrobial activity of investigated oils, compounds and mixtures on the series of bacteria and 

fungi were shown to follow the Poisson distribution. 

Two newly developed QSAR models, with Dragon and with SAPF descriptors, were found to be 

statistically significant internally. Even if the Dragon model proved to have higher goodness-of-fit, the 

model proved unacceptable in terms of prediction power. The SAPF model proved acceptable, with its 

prediction power being reliable, valid and stable in external validation analysis, with good overall 

performances in test set and test and external sets. 
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