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Abstract: The synthesis of several novel chiral phosphoramidite ligands (L1–L8) with C2 

symmetric, pseudo C2 symmetric secondary amines and chiral Brønsted acids 1a,b has 

been achieved. These chiral auxiliaries were obtained from commercially available  

D-mannitol, and secondary amines in moderate to excellent yields. Excellent 

diastereoselectivites of ten chiral auxiliaries were obtained. The chiral phosphoramidite 

ligands and chiral Brønsted acids were fully characterized by spectroscopic methods.  
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1. Introduction  

Asymmetric catalysis is one of the most cost-effective and environmentally friendly methods for the 

production of a large variety of enantiomerically enriched molecules [1,2]. An important area of 

research in asymmetric catalysis involves designing enantiopure ligands and transition metal catalysts 

which can lead to an efficient and selective transformation. Phosphoramidites (Figure 1) have recently 

attracted considerable interest as ligands in transition-metal catalyzed organic transformations [3–13]. 

Phosphoramidites are a versatile ligand class, which can serve as two-, four-, six- or eight-electron 

donors [14]. Privileged monodentate ligands are often based on chiral BINOL or TADDOL backbones 
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(Figure 1), which are combined with phosphorus (III) reagent and a carbon or heteroatom substituent 

in a modular way [15–24]. 

Figure 1. Chiral phosphoramidite ligands and Brønsted acid derived from BINOL or 

TADDOL backbone. 
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The modular assembly makes these ligands suitable for systematic screenings, and that makes 

general protocols for their rapid synthesis highly desirable. Originally described by Feringa [18], they 

are increasingly applied as ligands in transition-metal catalyzed organic transformations, such as 

enantioselective conjugate enone addition reactions [11,25,26], hydrogenations [3,5,6,8], allylic 

alkylations [9], hydrosilylations [27], vinylations [28], cycloadditions [29–31], Diels-Alder [32] and 

Heck reactions [33]. 

We have been developing a new class of chiral monodentate phosphoramidite ligands and chiral 

Brønsted acid derived from readily accessible enantiopure axially chiral DIOL units (Figure 1). One of 

the salient features of these novel monodentate phosphorus ligands is their fine-tuning capability 

through modifications of the R, and Ar groups. This feature is of critical importance because it allows 

a combinatorial approach to discover the most efficient ligand for a specific reaction or process. 
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2. Results and Discussion 

2.1. Synthesis of Phosphoramidite Ligands 

Our aim was to design and synthesize a library of chiral monophosphoramidite ligands decorated 

with electron-donating as well as electron-withdrawing groups in addition to sterically-demanding 

substituents. The general procedure is shown in Table 1. The starting optically-active DIOLs I used in 

these syntheses were prepared according to the literature [34]. The amines used were commercially 

available or were synthesized from (R)-α-methyl benzyl amine according to the literature [35]. 

Table 1. Results of synthesis of chiral phosphoramidite ligands. 

# Compound Ligand Ar δ P a Yield [%] b 

1 L1 

O

O

O

O

O

O

Ar

Ar

P N

 

127.2 55 

2 L2 

O

O

O

O

O

O
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Ar

P N

 

127.12 35 

3 L3 

O

O
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122.86 45 

4 L4 
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122.60 40 

5 L5 

 

134.65 31 
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Table 1. Cont. 

# Compound Ligand Ar δ P a Yield [%] b 

6 L6 

 

132.50 45 

7 L7 

 

135.01 50 

8 L8 

 

134.69 38 

a Determined by 31P NMR; b Isolated yield after column chromatography. 

The synthetic procedure started with the reaction of amine derivatives with purified PCl3 and Et3N 

as base in DCM at 0 °C. The resulting intermediate II was treated with one equivalent of DIOLs I. The 

ligands were obtained as white or pale yellow solids or oily products in moderate to good yields 

(Scheme 1). 

The ligands synthesized by this method are shown in Table 1. Ligands L1 and L2 were substituted 

with a diethyl amine group at phosphorus (Table 1, entries 1 and 2). The steric hindrance is even more 

pronounced in ligand L2, with tolyl instead of phenyl moieties in the DIOL I backbone. This might 

also account for the rather low chemical yield (35% as compared to 55%). The 1H, 13C and 31P NMR 

spectra were as expected for these ligands. 

Encouraged by these preliminary results, Ligands L3–L8 were efficiently synthesized in one step 

using the same methodology related Ligands L1 and L2. 

The 31P NMR spectroscopic data for ligands L1–L8 are summarized in Table 1. It was found that 

all phosphoramidite ligands were obtained in excellent isomer purity based on 31P NMR. In some 

cases, it was observed that minor product isomers of phosphoramidites are evidenced by 31P NMR. 

Unfortunately, the resulting product oxidized either from aerobic oxidation of the desired 
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phosphoramidite ligands during isolation, or from oxidation of the intermediate 

dialkylaminophosphorous dichloride (Figure 2). The major and minor isomers of phosphoramidite 

ligands were not separable by column chromatography. Subsequently, for structure confirmation, the 

mass spectrum of the new product was recorded. X-ray crystal structure analysis is one possibility to 

determine the structure unambiguously. Several attempts were made to obtain suitable crystal for  

X-Ray measurements, but were unsuccessful due to the microcrystalline nature of the products. 

Figure 2. 31P NMR data of the mixture isomers of L2. 

 

Ligand L1 was obtained by a similar procedure with diethyl amine, using the DCM as the reaction 

solvent. Similarly, there are four isomers in the mixture, with one isomer dominating the others. The  
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set out. The phosphoramidites ligands L1–L8 are colorless liquids or white solids, which are readily 

soluble in common organic solvents (Scheme 1). They were fully characterized by 1H, 13C and 31P 

NMR spectroscopy, mass spectrometry as well as by elemental analysis. Compounds L1–L8 and their 

solutions must be kept under anhydrous conditions due to their sensitivity to moisture. 

Scheme 1. Synthesis of chiral monodentate phosphorus ligands L1–L8. 
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2.2. Synthesis of Chiral Brønsted Acids 

Chiral Brønsted acids have emerged as efficient enantioselective catalysts for a variety of organic 

transformations [35–39]. A critical factor in achieving high stereoselectivities in these transformations 

is the hydrogen bond formed between the donor site of the acid catalyst and the acceptor (basic) site of 

the electrophilic component, X-H…Y (X and Y are heteroatoms) [40–45]. In this regard, C-H…X  

(X = O or N) hydrogen bonding interactions have recently been identified as an important factor in 

some stereoselective transformations [46–49]. Thus, we decided to synthesize 1a–e and evaluate their 

utility as a recyclable asymmetric organocatalyst (Scheme 2). Thus, the synthesis of chiral Brønsted 

acids 1a–e was achieved from DIOL I according to procedures set out in the literature [50]. 

Subsequent reaction of 1a with POCl3 in pyridine at 90 °C, followed by treatment with water and 

acidification, afforded phosphoric acid 1a in an excellent overall yield (87%). It should be noted that 

this reaction is very sensitive to both the concentration of acid, and the time as well. Subsequently, for 

structure confirmation, a melting point 255 °C for phosphoric acid derivatives 1a was observed: the 

temperature for DIOL I (entry 1, Table 2, Ph) being 192 °C. The resulting chiral phosphoric acid 1a 

was fully characterized by 1H, 13C, and 31P NMR spectroscopy, mass spectrometry as well as by 

elemental analysis. The 31P NMR analysis revealed that only one major product at δ = −1.78 was 

obtained as depicted in Figure 3. 

Having identified the optimal reaction conditions, we next examined the scope and limitations of 

this reaction using various protecting benzylidine moieties with different substituents on the benzene 

rings; the results are summarized in Table 2. As is shown in Table 2, in the case of the  

electron-withdrawing group at the 4-position of the benzene ring of DIOL I, the reactions proceeded 

smoothly to give an excellent yield of 1b (up to 87%) along with excellent diastereoselectivites  

(Table 2, entry 2). In the case of electron donating group at 4- or at 2,4-positions of the benzene ring of 

DIOL I, no products were obtained (Table 2, entries 3 and 4).  
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Figure 3. 31P NMR data of the 1a,b. 
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Table 2. Results of synthesis of chiral Brønsted acids having aromatic groups in  

the auxiliary. 

# Compound 1 Ar δ P a Yield [%] b 

1 a C6H5 −1.78 87 
2 b p-CH3C6H4 −1.83 81 
3 c p-CH3OC6H4 - - 
4 e 2,4-diClC6H3 - - 

a Determined by 31P NMR; b Isolated yield after column chromatography; -: no product isolated. 

Scheme 2. Synthesis of chiral brønsted acids 1a,e. 

 

We are interested in exploring derivatives with alternative acidic and basic sites to further expand 

the utility of this fascinating type of organocatalyst [51]. Interestingly, when chiral of Brønsted acid 1a 

was used to prepare N-morpholino phosphoramidate 2, the reaction failed (Scheme 3). 

Scheme 3. N-Morpholino phosphoramidate as a new motif for asymmetric Brønsted  

acid catalysis. 

 

2.3. Applications 

Chiral dihydropyrimidinethiones (DHPMs) have found increasing applications in the synthesis of 

pharmaceutically-relevant substances exhibiting a wide range of important pharmacological properties. 

The Biginelli reaction, one of the most useful multicomponent reactions, offers an efficient way to 

access multi functionalized 3,4-dihydropyrimidin-2-(1H)-ones (DHPMs). Initial screening experiments 

were performed by applying a Biginelli reaction initiated with the condensation of an aldehyde with 

urea or thiourea in the presence of a Brønsted acid (Scheme 4). Utilizing 1 equiv. of  

4-chlorobenzaldehyde, 1.2 equiv. of thiourea, 3.0 equiv. of ethyl 3-oxobutanoate, and 10 mol% of 1a 
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in DCM and stirred at RT for 4 days. Formation of dihydropyrimidinethiones (DHPMs) was not 

observed. Although the reaction was carried out at elevated temperature at 70 °C for 6 days, no catalytic 

activity was observed. From these initial attempts, it is clear that there is no sign of catalytic activity of 

1a towards Biginelli reaction.  

Scheme 4. Biginelli reaction. 
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3. Experimental Section  

General: All the moisture and air sensitive reactions were carried out under an inert atmosphere of 

an argon-filled glove box and standard Schlenk-line techniques. All the chemicals were purchased 

from Aldrich, Sigma-Aldrich, Fluka etc., and were used without further purification, unless otherwise 

stated. Toluene was distilled using Na/benzophenone. CH2Cl2 was dried from CaH2. Silica gel  

(SiO2; 100–200 mesh) was used for Flash column chromatography. All melting points were measured 

on a Gallenkamp melting point apparatus in open glass capillaries and are uncorrected. IR Spectra 

were measured as KBr pellets on a Nicolet 6700 FT-IR spectrophotometer. The NMR spectra were 

recorded on a Jeol-400 NMR spectrometer. 1H NMR (400 MHz), 13C NMR (100 MHz) and 31P NMR 

were run in deuterated dimethylsulphoxide (DMSO-d6 or CDCl3). Chemical shifts (δ) are referred in 

terms of ppm and J-coupling constants are given in Hz. Mass spectra were recorded on a Jeol of  

JMS-600 H. Elemental analysis was carried out on a Perkin Elmer 2400 Elemental Analyzer; CHN 

mode. Optical rotations were measured on a Polarimeter, polax-2L. 

3.1. General Procedure for the Synthesis of C2 Symmetric and Pseudo C2 Symmetric Secondary 

Amines (Procedure A) [35] 

A mixture of the appropriately substituted ketone (10 mmol, 1.0 eq.) and amine derivatives  

(10 mmol, 1.0 eq.) in Ti(Oi-Pr)4 (30 mmol, 3.0 eq.) was stirred for 45 min. Pd/C (10%, 200 mg) was 

added and the mixture stirred under an atmosphere of hydrogen for 48 h. An aqueous solution of 

NaOH (1 M, 20 mL) was added and the mixture stirred for 45 min. Water (50 mL) was added and the 

mixture extracted with ethyl acetate (5 × 50 mL). The organic extracts were dried over MgSO4, filtered 

and concentrated to give the desired amine. If necessary, flash chromatography on silica gel (diethyl 
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ether in petroleum ether) could be used to separate diastereomers, though little, if any separation was 

observed by thin-layer chromatography so, GC analysis is necessary. 

3.2. (R)-Bis((R)-1-Phenylethyl) Amine  

Following Procedure A, (R)-bis((R)-1-phenylethyl) amine was obtained from acetophenone  

(1.20 gm, 10 mmol, 1.0 eq.) and (R)-α-methyl benzyl amine (1.21 gm, 10 mmol, 1.0 eq.) in Ti(Oi-Pr)4 

(9.0 mL, 30 mmol, 3.0 eq.) which was obtained as yellowish oil in quantitative yield. 
1H NMR (400 MHz, CDCl3, 21 °C): δ = 7.35–7.21 (m, 5 H, C6H5), 3.51 (q, J = 6.6 Hz, 1H, 

CHCH3), 2.2 (br, 1H, NH), 1.29 (d, J = 6.6 Hz, 3H, CHCH3). 

The other analytical data are in accordance with the literature [35]. 

3.3. (R)-1-(Naphthalen-2-yl)-N-((R)-1-Phenylethyl) Ethanamine  

Following Procedure A, (R)-1-(Naphthalen-2-yl)-N-((R)-1-phenylethyl)ethanamine was obtained 

from 2-acetonaphthone (1.70 gm, 10 mmol, 1.0 eq.) and (R)-α-methyl benzyl amine (1.21 gm, 10 mmol, 

1.0 eq.) in Ti(Oi-Pr)4 (9.0 mL, 30 mmol, 3.0 eq.) which was obtained as yellowish oil in  

quantitative yield. 
1H NMR (400 MHz, CDCl3, 21 °C): δ = 7.88 (t, J = 9.1 Hz, 2H), 7.76 (d, J = 8.1 Hz, 1H), 7.69 (d,  

J = 6.9 Hz, 1H), 7.54–7.23 (m, 6H), 7.18–7.14 (m, 2H), 4.39 (q, J = 6.6 Hz, 1H), 3.59 (q, J = 6.6 Hz, 

1H), 1.37 (d, J = 6.6 Hz, 3H), 1.34 (d, J = 6.9 Hz, 3H). 

The other analytical data are in accordance with the literature [50]. 

3.4. General Procedure for the Preparation of Phosphoramidites (Procedure B) 

Triethylamine (7 mmol, 5.0 eq.) was added dropwise to a solution of phosphorus trichloride  

(1.4 mmol, 1.0 eq.) in dichloromethane (5 mL) at 0 °C. The solution was warmed to room temperature 

and the amine (1.4 mmol, 1.0 eq.) was added neat as either the free base or HCl salt. The mixture was 

stirred for 5 h, at which time DIOL I (1.4 mmol, 1.0 eq.) was added neat and the mixture stirred 

overnight. The suspension was concentrated and the ligand purified by flash chromatography on silica 

gel (dichloromethane in petroleum ether with 1% triethylamine) to give the ligand as an oily substance 

which solidifies on standing or as a foaming solid. 

3.5. (4aR,7aR,11aS,11bS)-N,N-Diethyl-2,10-Diphenylhexahydrobis([1,3]Dioxino)[5,4-d:4′,5′-

f][1,3,2]Dioxaphosphepin-6-amine (L1) 

Following Procedure B, L1 was obtained from Triethylamine (971 μL, 7 mmol, 5.0 eq.), 

phosphorus trichloride (123 μL, 1.4 mmol, 1.0 eq.), diethyl amine (102 mg, 143 μL, 1.4 mmol,  

1.0 eq.), and (2S,2′S,4R,4′R,5R,5′R)-2,2′-diphenyl-[4,4′-bi(1,3-dioxane)]-5,5′-diol (500 mg, 1.4 mmol, 

1.0 eq.) which was obtained as an oily product (355 mg, 0.77 mol, 55%); IR (KBr, cm1): νmax = 3436, 

1612, 1369; 1H NMR (400 MHz, CDCl3): δ = 7.49–7.34 (m, 5H, Ph), 5.54 (s, 1H, PhCH), 4.36 (q, 1H, 

OCH2), 4.24 (m, 1H, CHO), 3.94 (d, 1H, J = 8.8 Hz, OCH2), 3.81 (m, 1H, CHOP), 3.18 (m, 2H, 

CH2CH3), 1.10 (t, 3H, J = 7.3 Hz, CH3); 
13C NMR (100 MHz, CDCl3): δ = 137.3, 128.3, 126.2, 126.1, 
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100.7, 100.4, 82.8, 81.6, 38.6, 38.4; 31P NMR (130 MHz, CDCl3): δ = 127.2; MS (m/z): 460.47 [M + 1]+, 

47%; Anal. for C24H30NO6P; calcd: C, 62.74; H, 6.58; N, 3.05. Found: C, 62.50; H, 6.49; N, 3.00. 

3.6. (4aR,7aR,11aS,11bS)-N,N-Diethyl-2,10-di-p-Tolylhexahydrobis([1,3]Dioxino)[5,4-d:4′,5′-

f][1,3,2]Dioxaphosphepin-6-amine (L2) 

Following Procedure B, L2 was obtained from Triethylamine (971 μL, 7 mmol, 5.0 eq.), 

phosphorus trichloride (123 μL, 1.4 mmol, 1.0 eq.), diethyl amine (102 mg, 143 μL, 1.4 mmol, 1.0 eq.), 

and (2S,2′S,4R,4′R,5R,5′R)-2,2′-di-p-tolyl-[4,4'-bi(1,3-dioxane)]-5,5'-diol (541 mg, 1.4 mmol, 1.0 eq.) 

which was obtained as a foaming white solid (265 mg, 0.49 mol, 35%); m.p.: 65 °C; IR (KBr, cm1):  

νmax = 3435, 1610, 1345; 1H NMR (400 MHz, CDCl3): δ = 7.37–7.34 (m, 2H, Ph), 7.17–7.14 (m, 2H, 

Ph), 5.46 (s, 1H, PhCH), 4.33(q, 1H, OCH2), 4.22 (m, 1H, CHO), 3.89 (d, 1H, J = 8.8 Hz, OCH2), 3.76  

(m, 1H, CHOP), 3.21–3.16 (m, 2H, CH2CH3), 2.36 (s, 3H, C6H4CH3), 1.09 (t, 3H, J = 6.6 Hz, CH3); 
13C NMR (100 MHz, CDCl3): δ = 138.7, 134.6, 128.9, 126.1, 100.7, 100.5, 82.8, 81.5, 38.6, 21.3, 14.8; 
31P NMR (130 MHz, CDCl3): δ = 127.1; MS (m/z): 488.55 [M + 1]+, 40%; Anal. for C26H34NO6P; 

calcd: C, 64.05; H, 7.03; N, 2.87. Found: C, 64.00; H, 7.00; N, 2.95. 

3.7. 1-((4aR,7aR,11aS,11bS)-2,10-Diphenylhexahydrobis([1,3]dioxino)[5,4-d:4′,5′-

f][1,3,2]dioxaphosphepin-6-yl)piperidine (L3) 

Following Procedure B, L3 was obtained from Triethylamine (971 μL, 7 mmol, 5.0 eq.), 

phosphorus trichloride (123 μL, 1.4 mmol, 1.0 eq.), piperidine (121 mg, 1.4 mmol, 1.0 eq.), and 

(2S,2′S,4R,4′R,5R,5′R)-2,2′-diphenyl-[4,4′-bi(1,3-dioxane)]-5,5′-diol (500 mg, 1.4 mmol, 1.0 eq.) which 

was obtained as a foaming white solid (265 mg, 0.49 mol, 35%); m.p.: 110 °C; IR (KBr, cm1):  

νmax = 3444, 1607, 1350; 1H NMR (400 MHz, CDCl3): δ = 7.53–7.31 (m, 5H, Ph), 5.50 (s, 1H, PhCH), 

4.37 (q, 1H, OCH2), 4.24 (m, 1H, CHO), 3.91 (d, 1H, J = 8.8 Hz, OCH2), 3.79 (m, 1H, CHOP), 3.19 

(m, 2H, CH2CH2), 1.63 (m, 2H, CH2CH2CH2), 1.49 (m, 2H, CH2CH2CH2); 
13C NMR (100 MHz, 

CDCl3): δ = 137.7, 129.0, 128.3, 126.2, 100.9, 82.8, 82.1, 76.7, 45.6, 27.2, 25.2; 31P NMR (130 MHz, 

CDCl3): δ = 122.86; MS (m/z): 472.18 [M + 1]+, 30%; Anal. for C25H30NO6P; calcd: C, 63.69; H, 6.41; 

N, 2.97. Found: C, 63.55; H, 6.35; N, 2.90. 

3.8. 1-((4aR,7aR,11aS,11bS)-2,10-Di-p-Tolylhexahydrobis([1,3]dioxino)[5,4-d:4′,5′-

f][1,3,2]dioxaphosphepin-6-yl)piperidine (L4) 

Following Procedure B, L4 was obtained from Triethylamine (971 μL, 7 mmol, 5.0 eq.), 

phosphorus trichloride (123 μL, 1.4 mmol, 1.0 eq.), piperidine (121 mg, 1.4 mmol, 1.0 eq.), and 

(2S,2′S,4R,4′R,5R,5′R)-2,2′-di-p-tolyl-[4,4′-bi(1,3-dioxane)]-5,5′-diol (541 mg, 1.4 mmol, 1.0 eq.) 

which was obtained as a foaming white solid (150 mg, 0.30 mol, 40%); m.p.: 100 °C; IR (KBr, cm1):  

νmax = 3443, 1600, 1339; 1H NMR (400 MHz, CDCl3): δ = 7.38–7.33 (dd, 2H, Ph), 7.18–7.16 (dd, 2H, 

Ph), 5.45 (s, 1H, PhCH), 4.37(q, 1H, OCH2), 4.24 (m, 1H, CHO), 3.80 (d, 1H, J = 8.8 Hz, OCH2), 3.73 

(m, 1H, CHOP), 3.19 (m, 2H, CH2CH2), 2.32 (s, 3H, CH3), 1.63 (m, 2H, CH2CH2CH2), 1.49 (m, 2H, 

CH2CH2CH2); 
13C NMR (100 MHz, CDCl3): δ = 138.9, 133.3, 128.9, 126.1, 100.9, 82.8, 81.5, 77.4, 



Int. J. Mol. Sci. 2012, 13             

 

 

2738

28.6, 21.3; 31P NMR (130 MHz, CDCl3): δ = 122.86; MS (m/z): 500.21 [M + 1]+, 75%; Anal. for 

C27H34NO6P; calcd: C, 64.92; H, 6.86; N, 2.80. Found: C, 65.02; H, 6.75; N, 2.65. 

3.9. (4aR,7aR,11aS,11bS)-2,10-Diphenyl-N,N-bis((S)-1-phenylethyl)hexahydrobis([1,3]dioxino) 

[5,4-d:4′,5′-f][1,3,2]dioxaphosphepin-6-amine (L5) 

Following Procedure B, L5 was obtained from Triethylamine (971 μL, 7.0 mmol, 5.0 eq.), 

phosphorus trichloride (123 μL, 1.4 mmol, 1.0 eq.), (R)-bis((R)-1-phenylethyl) amine (315 mg,  

1.4 mmol, 1.0 eq.), and (2S,2′S,4R,4′R,5R,5′R)-2,2′-diphenyl-[4,4′-bi(1,3-dioxane)]-5,5′-diol (500 mg, 

1.4 mmol, 1.0 eq.) which was obtained as a foaming white solid (200 mg, 0.44 mmol, 31%); m.p.: 103 °C; 

IR (KBr, cm1): νmax = 3423, 1625, 1310; 1H NMR (400 MHz, CDCl3): δ = 7.53–7.34 (m, 10H, Ph), 

5.50 (s, 1H, PhCH), 4.65 (m, 1H, CHCH3), 4.25(q, 1H, OCH2), 3.97 (m, 1H, CHO), 3.91 (d, 1H,  

J = 8.8 Hz, OCH2), 3.80 (m, 1H, CHOP), 1.21 (d, 3H, J = 8.8 Hz, CH3); 
13C NMR (100 MHz, CDCl3):  

δ = 137.0, 128.3, 126.2, 100.8, 82.5, 80.6, 69.5, 31.0, 29.7; 31P NMR (130 MHz, CDCl3): δ = 134.65; 

MS (m/z): 612.24 [M + 1]+, 64%; Anal. for C36H38NO6P; calcd: C, 70.69; H, 6.26; N, 2.29.  

Found: C, 70.69; H, 6.45; N, 2.33. 

3.10. (4aR,7aR,11aS,11bS)-N,N-Bis((S)-1-Phenylethyl)-2,10-di-p-

tolylhexahydrobis([1,3]dioxino)[5,4-d:4′,5′-f][1,3,2]dioxaphosphepin-6-amine (L6) 

Following Procedure B, L6 was obtained from Triethylamine (971 μL, 7.0 mmol, 5.0 eq.), 

phosphorus trichloride (123 μL, 1.4 mmol, 1.0 eq.), (R)-bis((R)-1-phenylethyl) amine (315 mg,  

1.4 mmol, 1.0 eq.), and (2S,2′S,4R,4′R,5R,5′R)-2,2′-di-p-tolyl-[4,4′-bi(1,3-dioxane)]-5,5′-diol (541 mg, 

1.4 mmol, 1.0 eq.) which was obtained as a foaming white solid (400 mg, 0.62 mmol, 45%);  

m.p.: 80–82 °C; IR (KBr, cm1): νmax = 3441, 1618, 1343; 1H NMR (400 MHz, CDCl3): δ = 7.43–7.04 

(m, 9H, Ph), 5.52 (s, 1H, PhCH), 4.61 (m, 1H, CHO), 4.42(q, 1H, OCH2), 4.25(q, 1H, OCH2), 4.04 (m, 

1H, CHCH3), 3.80 (m, 1H, CHOP), 2.33(s, 3H, CH3), 1.21 (d, 3H, J = 8.8 Hz, CH3); 
13C NMR (100 

MHz, CDCl3): δ = 143.0, 139.5, 134.5, 128.9, 127.9, 127.8, 126.7, 100.7, 82.9, 81.7, 29.7, 21.3; 31P 

NMR (130 MHz, CDCl3): δ = 132.5; MS (m/z): 640.22 [M + 1]+, 55%; Anal. for C38H42NO6P;  

calcd: C, 71.35; H, 6.62; N, 2.19. Found: C, 71.29; H, 6.50; N, 2.13. 

3.11. (4aR,7aR,11aS,11bS)-N-((S)-1-(Naphthalen-2-yl)ethyl)-2,10-diphenyl-N-((S)-1-

Phenylethyl)hexahydrobis([1,3]dioxino)[5,4-d:4',5'-f][1,3,2]dioxaphosphepin-6-amine (L7) 

Following Procedure B, L7 was obtained from triethylamine (971 μL, 7.0 mmol, 5.0 eq.), phosphorus 

trichloride (123 μL, 1.4 mmol, 1.0 eq.), (R)-1-(naphthalen-2-yl)-N-((R)-1-phenylethyl) ethanamine  

(315 mg, 1.4 mmol, 1.0 eq.), and (2S,2′S,4R,4′R,5R,5′R)-2,2′-diphenyl-[4,4′-bi(1,3-dioxane)]-5,5′-diol 

(500 mg, 1.4 mmol, 1.0 eq.) which was obtained as a foaming white solid (463 mg, 0.7 mmol, 50%); 

m.p.: 98 °C; IR (KBr, cm1): νmax = 3435, 1632, 1299; 1H NMR (400 MHz, CDCl3): δ = 7.88–7.35 (m, 

12H, Ph), 5.53 (s, 1H, PhCH), 4.57 (m, 1H, CHCH3), 4.25(q, 1H, OCH2), 4.11 (m, 1H, CHO), 4.00 (d, 

1H, J = 8.8 Hz, OCH2), 3.79 (m, 1H, CHOP), 1.31 (d, 3H, J = 8.8 Hz, CH3), 1.21 (d, 3H, J = 8.8 Hz, 

CH3) ; 
13C NMR (100 MHz, CDCl3): δ = 137.5, 129.1, 128.3, 126.2, 126.1, 100.8, 82.5, 80.7, 69.7, 
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61.8,53.2, 21.3; 31P NMR (130 MHz, CDCl3): δ = 135.01; MS (m/z): 662.26 [M + 1]+, 35%; Anal. for 

C40H40NO6P; calcd: C, 72.60; H, 6.09; N, 2.12. Found: C, 72.48; H, 6.00; N, 2.08. 

3.12. (4aR,7aR,11aS,11bS)-N-((S)-1-(Naphthalen-2-yl)ethyl)-N-((S)-1-phenylethyl)-2,10-di-p-

tolylhexahydrobis([1,3]dioxino)[5,4-d:4',5'-f][1,3,2]dioxaphosphepin-6-amine (L8) 

Following Procedure B, L8 was obtained from Triethylamine (971 μL, 7.0 mmol, 5.0 eq.), 

phosphorus trichloride (123 μL, 1.4 mmol, 1.0 eq.), (R)-1-(naphthalen-2-yl)-N-((R)-1-phenylethyl) 

ethanamine (315 mg, 1.4 mmol, 1.0 eq.), and (2S,2′S,4R,4′R,5R,5′R)-2,2′-di-p-tolyl-[4,4′-bi(1,3-

dioxane)]-5,5′-diol (541 mg, 1.4 mmol, 1.0 eq.) which was obtained as a foaming white solid (366 mg, 

0.53 mmol, 38%); m.p.: 85 °C; IR (KBr, cm1): νmax = 3436, 1615, 1378; 1H NMR (400 MHz, CDCl3):  

δ = 7.88–7.16 (m, 12H, Ph), 5.47 (s, 1H, PhCH), 4.50 (m, 1H, CHCH3), 4.39(q, 1H, OCH2), 4.24 (m, 

1H, CHO), 4.10 (d, 1H, J = 8.8 Hz, OCH2), 3.80 (m, 1H, CHOP), 2.36 (s, 3H, CH3), 1.31 (d, 3H,  

J = 8.8 Hz, CH3), 1.25 (d, 3H, J = 8.8 Hz, CH3); 
13C NMR (100 MHz, CDCl3): δ = 137.5, 129.1, 128.3, 

126.2, 126.1, 100.8, 82.5, 80.7, 69.7, 61.8,53.2, 21.5, 21.3; 31P NMR (130 MHz, CDCl3): δ = 134.69; 

MS (m/z): 690.29 [M + 1]+, 70%; Anal. for C42H44NO6P; calcd: C, 73.13; H, 6.43; N, 2.03.  

Found: C, 73.40; H, 6.27; N, 2.05. 

3.13. General Procedure for the Preparation of Chiral Brønsted Acid (Procedure C) [20] 

To a solution of DIOL I (0.5 g, 1.29 mmol) in dry pyridine (10 mL) was slowly added phosphoryl 

chloride (178 μL, 1.94 mmol, 1.5 equiv.) at room temperature and the mixture was heated to reflux for 

2 h. The reaction mixture was then allowed to cool to room temperature. Distilled water (0.83 mL) was 

added, and then the mixture was heated to 95 °C for 30 min and cooled again to room temperature. 

Pyridine was removed in vacuo, and 6 M HCl was added to the mixture. The mixture was extracted 

with CH2Cl2, and the combined organic extracts were again washed with 6 M HCl solution 3 times, 

and dried over anhydrous Na2SO4, and concentrated in vacuo. The crude residue was purified by 

column chromatography on SiO2 (hexane:AcOEt = 3:1→CH2Cl2:MeOH = 4:1, v:v) to give the  

desired compound. 

3.14. (4aR,7aR,11aS,11bS)-6-Hydroxy-2,10-diphenylhexahydrobis([1,3]dioxino)[5,4-d:4',5'-

f][1,3,2]Dioxaphosphepine 6-Oxide (1a) 

Following Procedure C, 1a was obtained from (2S,2′S,4R,4′R,5R,5′R)-2,2′-diphenyl-[4,4′-bi(1,3-

dioxane)]-5,5′-diol as a white solid (471 mg, 1.12 mmol, 87%); m.p.: 270 °C; IR (KBr, cm1):  

νmax = 3450, 1610, 1355, 1200;  24α D  = +77° (c = 1.0 g/dL, DMSO); 1H NMR (400 MHz, CDCl3):  

δ = 7.41–7.35 (m, 5H, Ph), 5.65 (s, 1H, PhCH), 4.60(brs, 1H, OH), 4.28(q, 1H, J = 11.0 Hz, OCH2), 

4.17 (m, 1H, OCH), 4.04 (d, 1H, J = 8.8 Hz, OCH2), 3.79 (t, 1H, J = 10.2 Hz, CHOP); 13C NMR  

(100 MHz, CDCl3): δ = 137.7, 129.5, 128.7, 126.8, 100.4, 80.6, 68.4, 68.3, 65.7; 31P NMR (130 MHz, 

CDCl3): δ = −1.78; MS (m/z): 421.10 [M + 1]+, 85%; Anal. for C20H21O8P; calcd: C, 57.15; H, 5.04. 

Found: C, 57.20; H, 5.00. 
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3.15. (4aR,7aR,11aS,11bS)-6-Hydroxy-2,10-di-p-tolylhexahydrobis([1,3]dioxino)[5,4-d:4',5'-

f][1,3,2]Dioxaphosphepine 6-Oxide (1b) 

Following Procedure C, 1b was obtained from (2S,2′S,4R,4′R,5R,5′R)-2,2′-di-p-tolyl-[4,4′-bi(1,3-

dioxane)]-5,5′-diol as a white solid (470 mg, 1.04 mmol, 81%); m.p.: 255 °C; IR (KBr, cm1):  

νmax = 3451, 1612, 1369, 1210;  24α D  = +58° (c = 1.0 g/dL, DMSO); 1H NMR (400 MHz, CDCl3):  

δ = 7.27 (d, 2H, J = 8.0 Hz, Ph), 7.16 (d, 2H, J = 8.0 Hz, Ph), 5.58 (s, 1H, PhCH), 4.60 (brs, 1H, OH), 

4.25 (q, 1H, J = 11.0 Hz, OCH2), 4.13 (m, 1H, OCH), 4.04 (dd, 1H, J = 8.8 Hz, OCH2), 3.79 (t, 1H,  

J = 10.2 Hz, CHOP), 2.27 (s, 3H, CH3); 
13C NMR (100 MHz, CDCl3): δ = 138.8, 134.9, 129.1, 126.7, 

100.5, 80.6, 68.4, 65.7, 21.3; 31P NMR (130 MHz, CDCl3): δ = −1.83; MS (m/z): 449.13 [M + 1]+, 

76%; Anal. for C22H25O8P; calcd: C, 58.93; H, 5.62. Found: C, 58.73; H, 5.55. 

4. Conclusions 

We have designed chiral phosphoramidites L1–L8 and Brønsted acid 1a,b as a new motif for 

asymmetric catalysis. The potentially broad utility of this motif will be further explored in  

our laboratory. 
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