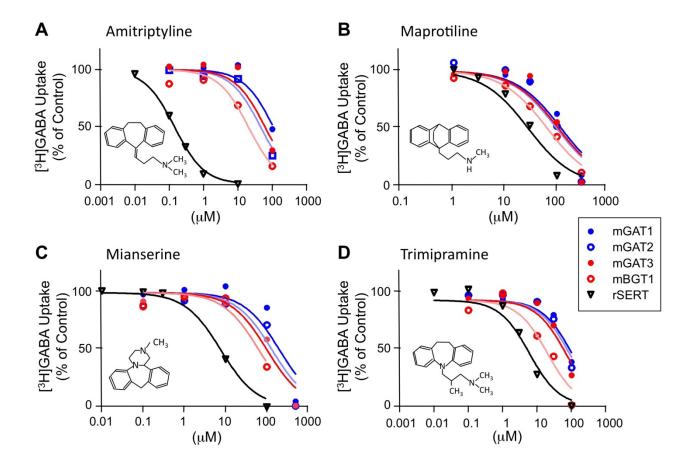
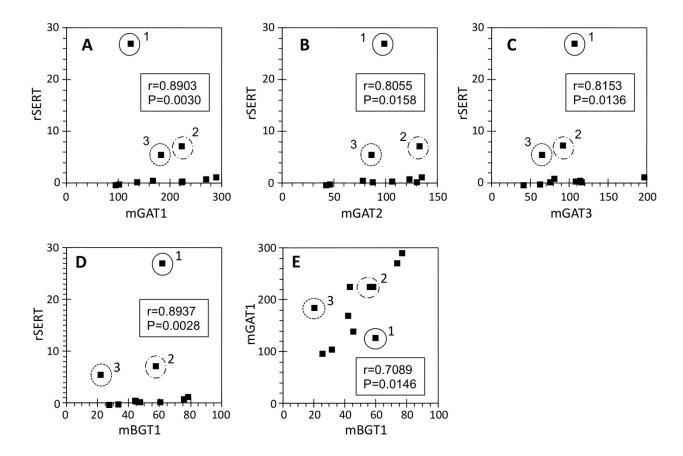
Supplementary Information

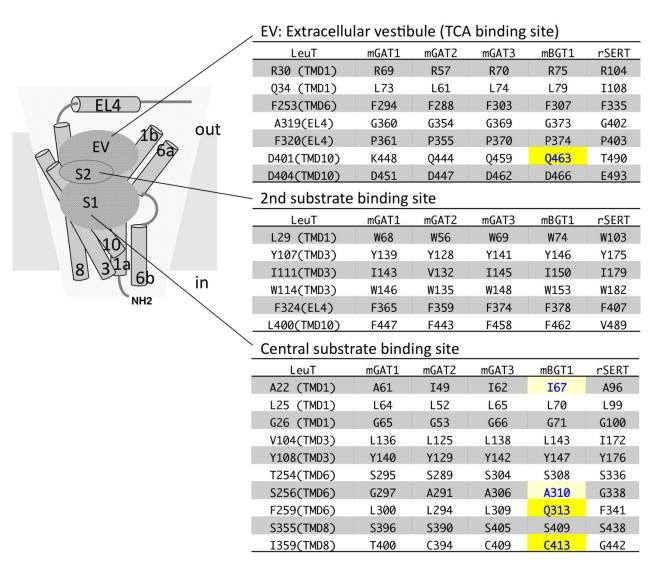
Supplementary Table S1	. Classification	of the GABA transporters.
------------------------	------------------	---------------------------


		BGT1	GAT1	GAT2	GAT3
alternate	Human	hBGT1	hGAT1	hGAT2	hGAT3
	Mouse	mGAT2	mGAT1	mGAT4	mGAT3
	Rat		rGAT-A		rGAT-B
gene ID Accession 1	ıumber#	SLC6A12 BC019211	SLC6A1 BC059080	SLC6A13 AK149557	SLC6A11 AK140423
Substrates		GABA, Betaine	GABA,	GABA,	GABA,
Inhibitors		NNC05-2090, EF1502	Nipecotate Tiagabine, SKF89976A,	β-Alanine SNAP-5114	β-Alanine SNAP-5114, NNC05-2090
			EF1502, NNC05-2090		

^{*}Accession number for cDNA used in the present study.


Supplementary Table S2. IC₅₀ (μM) of the GABA uptake inhibitors (substrates) in inhibiting [³H]GABA uptake by CHO cells stably expressing mouse GABA transporter subtypes. Cells in 48-well culture plate were incubated with 10 nM [³H]GABA for 10 min in the presence or absence of inhibitors. Uptake of [³H]GABA was determined in duplicate or triplicate from single experiment, and IC₅₀ was calculated using Prism5. Specific uptake of [³H]GABA by mGAT1, mGAT2, mGAT3 and mBGT1 in the absence of inhibitors was 8992.5, 2776.5, 2594.3 and 273.0 dpm/well, respectively.

Inhibitors	mGAT1	mGAT2	mGAT3	mBGT1
GABA	6.4	13	4.6	115
Nipecotic acid	9.7	113	86	7098
β-Alanine	>300	25	18	>1000
Betaine	>10000	>10000	>10000	693


Supplementary Figure S1. Inhibition of the GABA and serotonin transporters by antidepressants. Effects of amitryptiline (A), maprotilline (B), mianserine (C) and trimipramine (D) on uptake of [³H]GABA and [³H]5-HT was examined in the CHO cells stably expressing mouse GAT subtypes and rat SERT. Uptake assays were performed in 48-well plates for mGATs and 24-well plates for rSERT. Each panel shows a typical result from single experiment performed in duplicate or triplicate, and data were expressed as % of control (uptake in the absence of drugs tested). Control uptake by mGAT1, mGAT2, mGAT3, mBGT1 and rSERT was 7395.4, 2933.7, 15845.9, 466.7 and 12655.4 dpm/well, respectively.

Supplementary Figure S2. Correlation analyses of the potency of antidepressants in inhibiting the GABA and serotonin transporters. IC₅₀ values (μ M) of the inhibitory potencies of 11 antidepressants including maprotiline (circled and numbered 1), mianserine (circled and numbered 2) and trimipramine (circled and numbered 3) were analyzed for rSERT vs. mGAT1 (A), rSERT vs. mGAT2 (B), rSERT vs. mGAT3 (C), rSERT vs. mBGT1 (D), and mGAT1 vs. mBGT1 (E). Values in each panel represent Pearson's correlation coefficient (r) and calculated P. r and P in panels A \sim D represent those calculated by excluding maprotiline, mianserine and trimipramine. When values for those antidepressants were included, r decreased and no significance was observed (r) 0.05). Correlation between GAT subtypes was significant even if values for those antidepressants were included. Values in r represent r and r when calculated by including maprotiline, mianserine and trimipramine.

Supplementary Figure S3. Comparison of the amino acid sequences between mGATs, rat SERT and LeuT at the regions predicted for antidepressant- and substrate-binding site. Candidate amino acids for extracellular vestibule (EV) tricyclic antidepressant (TCA)-binding site, central substrate-binding site (S1) and second substrate-binding site (S2) between mGAT1, mGAT2, mGAT3, mBGT1 and rSERT are aligned with those of LeuT, a bacterial homolog of Na⁺- and Cl⁻-dependent neurotransmitter transporter. Amino acid residues of mBGT1 different from mGAT1 were indicated in bold letter and highlighted.

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).