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Abstract: The current study described the synthesis and the in vivo acute oral toxicity 

evaluations in Sprague Dawley rats. The compounds were characterized by elemental 

analyses, LC-MS, FTIR, 1H NMR, 13C NMR and UV-visible spectroscopy. In the acute 

toxicity study, a single administration of the compounds was performed orally to the rats at 

the single doses of 2000 mg/kg and they were then monitored for possible side effects, 

mortality or behavioral changes up to 14 days. The serum level of aspartate (AST), alanine 

aminotransferases (ALT), alkaline phosphate (ALP), triglyceride, high density lipoprotein 

(HDL), immunoglobulins (GAM) and the C-reactive proteins did not significantly change. 

The hematological indices white blood cells (WBC), haematocrit (HCT), red blood cells 

(RBC), mean corpuscular volume (MCV), mean corpuscular haemoglobin concentration 

(MCHC), and mean corpuscular hemoglobin (MCH) were within the normal range. The 

renal function indices examined were also within the reference range. Generally, the 

compounds exhibited low toxic effects as required for further in vivo therapeutic studies. 
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1. Introduction  

Zinc has been shown to play an important role in wound healing, proper functioning of mucosal 

cells, reduction of reactive oxygen species (ROS) [1] and as a cofactor for metallo-enzymes [2]. Zinc 

deficiency or excess can lead to many metabolic disorders such as growth retardation, decreased 

spermatogenesis, dysgeusia, anosmia and anemia to meat, eggs, liver and oysters. Several studies were 

performed to determine the mechanisms for zinc balance and the effects of zinc excess on iron 

metabolism [3] with much emphasis on small molecular weight metal binding proteins [4]. Despite the 

biological importance of zinc, the safety of its compounds in many dietary supplements has remained 

an issue of debate. However, the interaction of zinc ions with certain Schiff base ligands has been 

studied due to their relevance in bio inorganic chemistry. For example, they form carbon-nitrogen 

bonds [5], which make them important intermediates in a number of enzymatic reactions [6–8]. 

Polydentate ligands, on the other hand, have been reported to exhibit potential activities in removing 

the undesirable effect of metal ion by deactivating either the carcinogenic metal or the enzyme 

required in order to protect the cells. The activities of various ligands were reported to have increased 

upon coordination with the metal ions; therefore, studies on novel metal-based compounds with 

therapeutic potential became an area of intense investigation in biomedical and inorganic chemistry [9–12]. 

However, metal ions are generally toxic at a high-dose level; therefore, to study the therapeutic 

potential of novel metal-based compounds; the acute toxicity level must first be evaluated. Moreover, 

the compounds containing piperazine moiety were reported to have shown various biological activities 

in many studies [13,14] and, specifically, the Schiff bases derived from piperazine compounds have 

been described to demonstrate various biological activities; for example, anthelmintic [15], 

antimicrobial [16,17], acetylcholinesterase inhibition [18], melanocortin-4-receptor (MC4-R) [19,20], 

drug designer [21] anti-PAF [22,23], anti-HIV [24,25] and anti-obesity [26] activities. However, the 

literature reveals no report on their toxicity class. This, therefore, prompted the present study to 

synthesize, characterize and evaluate for the first time the acute oral toxicity of some novel zinc(II) 

complexes derived from some 1-(2-salicylaldiminoethyl) piperazine Schiff bases. 

2. Result and Discussion 

2.1. Chemistry 

The reaction of 2-(piperazin-1-yl)ethanamine with some selected aldehydes resulted in the formation 

of the corresponding 1-(2-salicylaldiminoethyl)piperazines Schiff bases. The prepared Schiff bases 

(Scheme 1) were used to synthesize the novel complexes of zinc (II) chloride (Scheme 2). The 

compounds exhibited MS, NMR, IR and UV-Visible spectra consistent with the proposed structures 

which allowed the synthesized compounds to be recognized as 2-((2-(piperazin-1-yl)ethylimino) 

methyl)phenol-dichlorido-Zn-(II). [Zn(LSP)Cl2], 4-chloro-2-((2-(piperazin-1-yl)ethylimino)methyl) 

phenol-dichlorido-Zn-(II). [Zn(LCS)Cl2], 4-bromo-2-((2-(piperazin-1-yl)ethylimino)methyl)phenol-

dichlorido-Zn-(II). [Zn(LBS)Cl2], respectively. 
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Scheme 1. Reaction pathway for the Schiff bases. 
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Scheme 2. Reaction pathway for zinc complexes. 
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The IR spectra of the complexes displayed band regions at the wavelengths of 1,628, 1,624, and 

1631 cm−1 for [Zn(LSP)Cl2], [Zn(LCS)Cl2] and [Zn(LBS)Cl2], respectively, which could be due to the 

characteristic iminic frequency [27,28]. These bands appeared at 1636 cm−1, 1631 cm−1 and 1616 cm−1 

in the spectra of the free Schiff bases of the above-mentioned complexes correspondingly. In addition, 

the coordination of imine nitrogen to the zinc was further ascertained by the appearance of signal at the 

band regions 486 cm−1, 581 cm−1 and 578 cm−1 in the spectra of the corresponding complexes due to 

Zn-N bond [29] which is supported by the zinc-phenolate (Zn-O) [30] signals at 569 cm−1, 645 cm−1 
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and 631 cm−1 respectively. The proton NMR is also consistent with the IR spectral data, where the 

imine-zinc coordination was observed at 7.92 ppm, 8.02 ppm and 8.05 ppm in the spectra of 

[Zn(LSP)Cl2], [Zn(LCS)Cl2] and [Zn(LBS)Cl2], respectively. These signals initiated from 7.28 ppm, 

7.53 ppm and 7.68 ppm in the spectra of the free Schiff bases of the corresponding complexes. This 

supposition was supported by the 13C NMR spectra which showed imine carbon at 162.6 ppm,  

164.2 ppm and 165.2 ppm respectively due to complexation. The phenolate carbon atoms also 

appeared at 161.5 ppm, 159.5 ppm and 158.4 ppm in the respective order of the complexes mentioned 

above [31]. To further elucidate the structure of the complexes, UV-visible spectra were recorded 

using DMSO. The spectra of the complexes exhibited two absorption band maxima each at 279 nm, 

204 nm and 267 nm for [Zn(LSP)Cl2], [Zn(LCS)Cl2] and [Zn(LBS)Cl2] respectively. This could be 

afforded to the π-π* electronic transitions [32,33] the phenolic ring. The other absorptions noticeable 

to 351 nm, 362 nm and 382 nm can be due to ligand to metal charge transfer [34,35]. 

2.2. Acute Toxicity Study 

The analysis of the toxicity level of chemical compounds is the most important step required for 

further biological studies [36]. The toxicity level of the zinc complexes derived from  

1-(2-salicylaldiminoethyl)piperazines were evaluated at the maximum dose of 2000 mg/kg/body 

weight. The compounds were administered orally to the 24 h fasted rats and monitored closely after 

every 30 min up to 8 h of post treatment. It was observed that the compounds did not cause any gross 

behavioral alterations like convulsion, dizziness or respiratory distress. No mortality was recorded for 

the period of 14 days, which indicate that the lethal dose of the compounds is above 2000 mg/kg body 

weight in rats and that the compounds can be considered to be less harm at this dose. 

2.3. Body and Organ Weight Changes 

The animals treated with the zinc complexes for two weeks had manifested an increase in body 

weight slightly above the animals in the control group (Figure 1). The target organs such as liver and 

kidney of both the control and the treatment group did not exhibit any change in color or texture, and 

the weight of these organs was not significantly (P < 0.05) affected by the zinc complexes (Figure 2). 

This also demonstrated the less toxic effect [37] of the compounds. 
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Figure 1. Effects of zinc complexes on the body weights. 

 

Figure 2. Effects of zinc complexes on the organ weights. 
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Table 1. Effect of zinc complexes on the renal functions. 

Indices Normal [Zn(LSP)Cl2] [Zn(LCS)Cl2] [Zn(LBS)Cl2] 
Sodium 139.5 ± 2.6 139.2 ± 2.4 138.2 ± 2.7 138.5 ± 2.9 

Potassium 5.05 ± 0.8 5.50 ± 0.6 4.70 ± 0.9 5.100 ± 0.7 
Chloride 103.8 ± 1.3 104.6 ± 2.3 105.1 ± 1.2 102.3 ± 1.7 

CO2 23.9 ± 2.1 22.2 ± 2.6 21.3 ± 3.2 23.10 ± 3.3 
Anion gap 17.4 ± 1.2 18.5 ± 0.7 16.5 ± 3.1 18.50 ± 3.5 

Urea 6.10 ± 1.3 7.40 ± 0.6 7.60 ± 1.7 9.300 ± 2.6 
Creatinine 42.5 ± 1.9 28.4 ± 17 40.8 ± 1.9 50.50 ± 1.9 

Table 2. Effects of zinc complexes on the liver functions. 

Indices Normal [Zn(LSP)Cl2] [Zn(LCS)Cl2] [Zn(LBS)Cl2] 
Total protein 70.5 ± 3.6 87.3 ± 4.9 75.5 ± 3.2 81.8 ± 2.6 

Albumin 59.5 ± 2.4 68.6 ± 4.1 62.5 ± 3.2 69.3 ± 0.5 
Globulin 59.5 ± 3.4 69.5 ± 4.9 61.9 ± 2.2 65.3 ± 2.4 

Alk. Phosphate 59.30 ± 11.3 81.30 ± 10.8 82.3 ± 11.3 92.80+12.5 
ALT 49.8 ± 7.2 61.0 ± 3.6 57.8 ± 3.4 55.3 ± 4.9 
AST 259.8 ± 12.7 292.3 ± 10.6 278.5 ± 9.8 281.5 ± 12.6 

Total bilirubin 6.25 ± 0.5 7.50 ± 0.7 6.88 ± 0.8 7.32 ± 0.8 
C.bilurubin 3.61 ± 0.9 5.83 ± 1.3 3.85 ± 1.4 4.22 ± 2.1 
Triglyceride 0.45 ± 0.1 0.60 ± 0.4 0.30 ± 0.05 0.80 ± 0.8 

Total cholesterol 2.20 ± 0.3 3.70 ± 0.5 3.30 ± 0.1 3.6 0± 0.4 
HDL 1.53 ± 0.4 1.47 ± 0.2 1.39 ± 0.4 1.50 ± 0.6 

The hematological profile of the rats treated with zinc complexes did not significantly differ in the 

red blood cell (RBC), mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH). 

Furthermore, the values of the biomarkers like hematocrit (HCT), RDW and platelet in the treated rats 

are comparable with those in the normal rats, except the biomarker MCHC which showed inconsistent 

results in the treatment groups. However, for ZnLCS and ZnLBS, the values obtained are within the 

physiological ranges [41] for rats (Table 3). The value obtained for MCHC in the rats treated with the 

complex ZnLSP is below that of the normal rats and there is no interpretation from the literature for this. 

Table 3. Effects of zinc complexes on the hematological indices. 

Indices Normal [Zn(LSP)Cl2] [Zn(LCS)Cl2] [Zn(LBS)Cl2] 
HGB 151.3 ± 11.0 162.3 ± 11.8 158.3 ± 12.2 163.3 ± 13.5 
HCT 0.540 ± 0.21 0.980 ± 0.03 0.830 ± 0.01 0.920 ± 0.04 
RBC 7.90 ± 0.4 8.10 ± 0.3 8.60 ± 0.3 8.80 ± 0.7 
MCV 65.2 ± 2.4 69.3 ± 1.5 67.9 ± 1.8 76.9 ± 1.8 
MCH 17.9 ± 0.9 18.1 ± 0.3 18.9 ± 0.6 18.6 ± 0.5 

MCHC 291.2 ± 2.3 260.5 ± 4.4 302.3 ± 5.6 269.3 ± 4.5 
RDW 15.8 ± 1.4 17.5 ± 1.2 16.6 ± 1.5 17.9 ± 2.1 
WBC 10.7 ± 3.1 11.3 ± 0.4 12.9 ± 4.4 12.4 ± 1.8 

Platelet 654.3 ± 9.5 846.6 ± 8.5 689.3 ± 9.7 708.3 ± 9.4 
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The acute phase immunoglobulins’ G, A and M, the complements 3 and 4, and the level of  

C-reactive protein did not significantly differ between the normal, and the treated rats in both gender. 

This indicates that the complexes did not interfere with the immune system of the treated rats [42] 

(Table 4). 

Table 4. Effects of zinc complexes on the immunological indices. 

Indices Normal [Zn(LSP)Cl2] [Zn(LCS)Cl2] [Zn(LBS)Cl2] 
ImmunoglobulinG 933.4 ± 2.3 933.8 ± 4.2 933.5 ± 3.6 933.9 ± 4.8 
Immunoglobulin A 97.5 ± 2.2 89.6 ± 3.7 98.7 ± 4.4 99.2 ± 4.3 
Immunoglobulin M 43.9 ± 7.9 42.3 ± 3.5 52.7 ± 8.3 63.5 ± 9.6 

Complement 3 96.8 ± 2.3 96.2 ± 1.2 96.6 ±3.2 96.9 ±1.7 
Complement 4 29.8 ±2.1 52.9 ±3.2 57.2 ± 4.2 57.9 ± 4.2 

C-reactive Protein 0.42 ± 0.3 0.34 ± 0.5 0.45 ± 0.2 0.53 ± 0.2 

3. Experimental 

3.1 Chemistry 

2-(piperazin-1-yl)ethanamine, salicylaldehyde, 5-chlorosalicylaldehyde, and 5-bromosalicylaldehyde 

were used without further purification. Methanol, absolute ethanol, dimethylsulfoxide (DMSO) and all 

other solvents were of analytical grade. Spectroscopic grade DMSO-d6 was used for 1H and 13C NMR. 

All the chemicals used were purchased from Sigma Aldrich (Kuala Lumpur, Malaysia) and used 

without further purification. Mass spectra were determined using ABI 4800 Maldi TOF/TOF mass 

spectrophotometer (BIDMC Genomics, Proteomics and Bioinformatics Core, Boston, MA, USA)  

(LC-MS, ESI, 125.0 V); IR spectra was recorded at the wavelength range from 4000–400 cm−1 using a 

Perkin Elmer 783 spectrophotometer; NMR spectra was obtained on a ECA400 FT-NMR 

spectrophotometer using TMS as internal standard, UV-visible spectra was recorded on an UV-1650PC 

model UV-visible spectrophotometer. 

3.2. Schiff Bases 

The Schiff bases (LSP, LCS and LBS) were prepared according to the reported general  

procedure [43] described below with some modifications. 

To the ethanolic solution (25 mL) of (2-piperazin-1-yl)ethanamine (2.58 g, 20 mmol), salicylaldehyde 

(2.44 g, 20 mmol) taken in ethanol (25 mL) was added with stirring. The resulting solution was 

refluxed for three hours, cooled and concentrated to give a red gel. The gel became hygroscopic solid 

after seven days under vacuum. The solid product is then dissolved in methanol by heating to 55 °C. 

While hot, few drops of diethyl ether were added and yellow solid appeared which was collected by 

filtration. Recrystallization was performed in ethanol-water mixture. The same procedure was followed 

in the preparation of LCS and LBS Schiff bases.  



Int. J. Mol. Sci. 2012, 13             

 

 

1400

3.3. Complexes 

3.3.1. 2-((2-(piperazin-1-yl)ethylimino)methyl)phenol-dichlorido-Zn-(II): [Zn(LSP)Cl2] 

Stoichiometric amount of Zinc (II) chloride (0.14 g, 1 mmol) in methanol (25 mL), was added to an 

equimolar quantity of the appropriate Schiff base (1 mmol) dissolved in the same solvent (25 mL) at 

room temperature and followed with few drops of potassium hydroxide. A yellow precipitate was 

produced upon stirring. The precipitate filtered, washed with distilled water and dried in the vacuum 

for further analysis. The same method was applied in the synthesis of [Zn(LCS)Cl2] and [Zn(LBS)Cl2]. 

C13H18Cl2N3ZnO: yield; (0.15 g 40.6%). Anal. Cal. C, 66.9; H, 8.21; N, 18.01. Found: C, 65.82;  

H, 7.76; N, 17.97%. m/z: 369.03, 367.04, 371.01. IR (KBr disc, 4000–400 cm−1) selected bands:  

ν (N–H), 3442; ν (C–H) alip., 2825; ν (C=N), 1628; ν (C–C) arom., 1468; ν (C–N), 1152; ν (C–H) 

arom.768; ν (M–O), 569; ν (M–N), 486. 1H NMR (400 MHz, DMSO-d6) δ ppm: 7.92 (s, 1H, –C=N–); 

2.66–3.45 (t, 2H, Caliph); 
13C NMR (100 MHz, DMSO-d6) δ ppm: 46.5 (CH2); 34.51 (CH2); 36.5 

(CH2); 39.4 (CH2); 122.8 (armC); 161.5 (CO); 162.6 (C=N); 117.6 (armC); 125.7 (armC). UV-vis 

(DMSO), λmax (ε, mol−1·L cm−1): 279 nm (2647.49, π-π*), 351 nm (2811.20, LMCT). 

3.3.2. 4-chloro-2-((2-(piperazin-1-yl)ethylimino)methyl)phenol-dichlorido-Zn(II): [Zn(LCS)Cl2]  

C13H17N3Cl3O2Zn: yield; (0.19 g, 47%). Anal. Cal. C, 58.31; H, 6.78; N, 15.69. Found: C, 57.97;  

H, 5.94; N, 15.27. m/z: 402.98, 400.98, 404.97. IR (KBr disc, 4000–400 cm−1) selected bands:  

ν (N–H), 3459; ν (C–H) alp., 2966; ν (C=N), 1624; ν (C-C) arom., 1466; ν (C–N), 1172; ν (C–H) 

arom.704; ν (M–O), 645; ν (M–N), 581. 1H NMR (400 MHz, DMSO-d6) δ ppm: 8.02 (s, 1H, –C=N–); 

2.56–3.48 (t, 2H, Caliph); 
13C NMR (100 MHz, DMSO-d6) δ ppm: 45.6 (s, 1 CH2); 34.8 (s, 1 CH2); 

34.9 (s, 1 CH2); 123.2 (s, 1 armCH2); 159.5 (s, 1 CO); 164.2 (s, 1 C=N); 116.2 (s, 1 armCH2); 123.6  

(s, 1 CH2). UV-vis (DMSO), λmax (ε, mol−1 L·cm−1): 204 nm (937.9, π-π*), 326 nm (3989.7, LMCT) 

3.3.3. 4-bromo-2-((2-(piperazin-1-yl)ethylimino)methyl)phenol-dichlorido-Zn-(II): [Zn(LBS)Cl2]  

C13H17N3BrCl2O2Zn: yield; (0.32g 71.3%). Anal. Cal. C, 34.89; H, 3.83; N, 9.39. Found: C, 34.82; 

H, 3.66; N, 8. 98. m/z: 446.93, 448.93, 450.92. IR (KBr disc, 4000–400 cm−1) selected bands:  

ν (N–H), 3448; ν (C–H) alp., 2966; ν (C=N), 1631; ν (C–C) arom., 1466; ν (C–N), 1169; ν (C–H) 

arom. ) 686; ν (M–O), 631; ν (M–N), 578. 1H NMR (400 MHz, DMSO-d6) δ ppm: 8.05 (s, 1H, –C=N–); 

2.52–3.43 (t, 2H, Caliph); 
13C NMR (100 MHz, DMSO-d6) δ ppm: 46.6 (s, 1 CH2); 34.7 (s, 1 CH2); 

35.1 (s, 1 CH2); 122.1 (s, 1 CH2); 158.4 (s, 1 CO); 165.2 (s, 1 C=N); 114.4 (s, 1 CH2); 124.5  

(s, 1 CH2). UV-vis (DMSO), λmax (ε, mol−1·L cm−1): 267 nm (1939.17, π-π*), 382 nm (1564.26, LMCT) 

3.4. Animals 

Adult Sprague Dawley rats of 8–9 weeks old weighed 180–200 g were obtained from Animal 

House, Faculty of Medicine, University of Malaya (Kuala Lumpur, Malaysia). The animals were 

housed in animal room at temperatures 22 ± 3 °C and 12 h dark period. After one-week 

acclimatization, rats were distributed into four groups of ten rats each (five males and five females, 

labeled as control and treated) and maintained on standard pellet food and purified drinking water. All 
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animals received human care according to the criteria outlined in the “Guide for the Care and Use of 

Laboratory Animals” prepared by the National Academy of Sciences and published by the National 

Institute of Health. 

3.5. Acute Toxicity Test 

Acute toxicity evaluations were carried out on rats according to the reported method with some 

modifications [44]. Sprague Dawley rats of both genders were divided into experimental and control 

groups (10 rats per group of five males and five females each). The study was executed at a single oral 

dose of 2000 mg/kg body weight, in 5 mL/kg volume. The control group was treated with distilled 

water. The experimental group was fasted for 24 h before the administration of the compound but 

allowed access to distilled water. The animals were further denied access to food for 2 h of post 

treatment in order to examine the possible adverse effects of the compounds such as behavioral 

adjustments, autonomous released of mucus, dizziness restlessness or mortality.  

3.6. Statistical Analysis 

The results were analyzed using one-way analysis of variance (ANOVA) and expressed as  

mean ± SEM. Probability values of P < 0.05 was considered statistically significant. 

4. Conclusion 

In conclusion, the results of this study showed that the zinc complexes derived from the Schiff 

bases 2-(2-(piperazin-1-yl)ethylimino)methyl)phenol, 4-chloro-2-(2-(piperazin-1-yl)ethylimino)methyl) 

phenol and 4-bromo- 2-(2-(piperazin-1-yl)ethylimino)methyl) phenol have fewer toxic effects based 

on the insignificant changes observed in the behavioral, hematological, immunological and 

biochemical parameters. However, a decrease in the activity of liver and some hematological indices 

was noted, which require further study to fully ascertain the safety of the compounds at high doses. 
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