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Abstract: Coarse-grained (CG) force fields have become promising tools for studies of 

protein behavior, but the balance of speed and accuracy is still a challenge in the research 

of protein coarse graining methodology. In this work, 20 CG beads have been designed 

based on the structures of amino acid residues, with which an amino acid can be 

represented by one or two beads, and a CG solvent model with five water molecules was 

adopted to ensure the consistence with the protein CG beads. The internal interactions in 

protein were classified according to the types of the interacting CG beads, and adequate 

potential functions were chosen and systematically parameterized to fit the energy 

distributions. The proposed CG force field has been tested on eight proteins, and each 

protein was simulated for 1000 ns. Even without any extra structure knowledge of the 

simulated proteins, the Cα root mean square deviations (RMSDs) with respect to their 

experimental structures are close to those of relatively short time all atom molecular 

dynamics simulations. However, our coarse grained force field will require further 

refinement to improve agreement with and persistence of native-like structures. In addition, 

the root mean square fluctuations (RMSFs) relative to the average structures derived from 

the simulations show that the conformational fluctuations of the proteins can be sampled. 
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1. Introduction 

Over the last 30 years, the Molecular Dynamics (MD) method has played an increasing important 

role in dynamic behavior simulation of biomolecule at the atomic level [1]. In numerous application 

areas such as structural biology, biophysics, biochemistry, enzymology, molecular biology and 

medicinal chemistry, etc., MD has become a major routine research tool. By means of MD  

simulation, biomolecular structure, kinetics, and thermodynamics can be investigated, for example, 

macromolecular stability, conformational and allosteric properties, the role of dynamics in enzyme 

activity, molecular recognition and the properties of complexes, ion and small molecule transport, 

protein association, protein folding, and protein hydration [2]. However, All-Atom Molecular 

Dynamics (AA-MD) is restricted severely by available computational capabilities because of the need 

of large amount of computing resources. In the 1970s, a small protein (bovine pancreatic trypsin 

inhibitor, composed of about 500 atoms) was first simulated, and lasted only about 10 picoseconds 

with AA-MD, limited by the computing power at that time [3]. With the development of modern 

computer technology, high performance computing and molecular dynamics method, the application of 

AA-MD has made great progresses in both space scale and time scale. Nowadays, AA-MD can 

simulate biomolecule system containing up to millions of atoms, with simulation time over 

microsecond level [4,5]. Despite this, AA-MD still cannot meet all the need of biomolecule research. 

Most dynamics and interactions within cells (e.g., protein-protein docking, rearrangement upon ligand 

binding, folding) occur on microsecond or even millisecond timescale, and usually involve large 

macromolecular aggregates. The simulation time of these processes is at least four to six orders of 

magnitude larger than the feasible time with AA-MD simulation, which has brought large barrier in the 

biomolecule simulation research. 

In the past few years, Coarse-Grained Molecular Dynamics (CG-MD) methods for biomolecule 

have gained increasing attention [6–11]. The basic thought of CG-MD is to treat several or more atoms 

as a virtual particle (i.e., so-called Coarse-Graining), so the huge quantity of degrees of freedom within 

complex biomolecule especially protein and the complexity of the corresponding force field will be 

decreased, therefore dramatically decreases the computational complexity of MD simulation. Various 

kinds of protein CG models and force fields have been introduced. Referenced to amino acid residue, 

protein CG models can be simply classified as multiple-point model [12–20], two-point model [21,22], 

one-point model [23–27] and much coarser multiple-residue model [28–30], and CG force fields 

varied from the simple harmonic potential to more realistic molecular force field. CG-MD has 

achieved plenty of research results, and has been applied in areas such as membrane [10,31,32],  

ion-channel [11,33], protein folding [34,35], and protein-protein interaction [36]. However, due to the 

limited speedup and reliability, the main available methods are difficult to be widely used in the 

simulation of large-scale biological systems to date, and the further development of CG-MD is still a 

challenge work for researchers. CG models need to be as simplified as possible in order to simulate 

more complicated biomolecules, while CG force field need to be as realistic as possible so that the 
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kinetic behavior under AA-MD can be accurately reproduced. Current coarse graining methodologies 

are still not as predictive as AA-MD, because of the intrinsic difficulty in modeling the complex and 

diverse intra-molecular interactions with few parameters. Developing CG models and accurate force 

field for protein have become of great importance for studying large biological systems in both time 

and space scale. 

As a representative CG force field, MARTINI has gained the most attention, and has been 

successfully applied to the simulations of protein and membrane systems. However, MARTINI still 

needs secondary structure restraints to maintain the stability of the native structure during the 

simulation, and the parameterization process of CG force field is too complicated and needs much 

experience, which usually needs quite considerable effort. Therefore, simpler and more efficient 

methods are continuously being researched. We report in our recent work on the improvement of  

CG-MD methodology. Novel CG models for protein simulation are designed, with which a residue is 

composed of only one or two beads, so the computational efficiency of MD can be improved 

significantly. A force filed based on the models is developed, based on known protein structures and 

AA-MD simulation results. Then the protein CG models and the force field are applied in MD 

simulations of eight small to medium size proteins. Finally, the simulation results are given and 

compared with those of AA-MD simulations and experimental values, indicating the effectiveness of 

the proposed CG models and force field. 

2. Results 

2.1. Results of Bonded Potential Parameterization 

In the bonded interactions, all the backbone beads are assumed to be the same, so the bond types 

can be classified as B–B and B–Si. The statistical results of bond length distribution are shown in  

Figure 1. Figure 1A shows that the B–B bond length is distributed in a narrow area from 3.6 Å to 3.9 Å 

and centered on 3.8 Å, so 3.8 Å is adopted as the equilibrium stretching length Lbond in Equation 2 of 

B–B. Figure 1B shows the statistical results of distance distributions between 10 types of Si beads and 

their backbone beads. Each distribution shows a similar character with B–B, but the equilibrium length 

of B–Si bond is Si bead dependent. Table 1 summarizes the Lbond of each B–Si bond adopted in our 

force field. The stretching energy profile of bond is extracted from the distribution of bond length with 

Boltzmann conversion method, and fitting with Equation 2 to get the force constant. The B–B force 

constant adopts an approximate value 100,000 kJ nm−2 mol−1, and the B–Si force constants adopt a 

mean value 5,000 kJ nm−2 mol−1 in our force field. 

The angles in CG protein system can be classified into three types: B–B–B, B–B–Si and Si–B–B, and 

angle bending energy profiles calculated from the probability distributions of these angels are shown in 

Figure 2, in which distinct colors and patterns are used to distinguish different Si. Two minima at about 

90 and 120 degrees can be found in energy profile of B–B–B angle, which correspond to the α-helix 

and β-sheet secondary structure. A similar pattern of energy profiles is observed in Figure 2B,C, and 

only one set of parameters is used for B–B–Si (or Si–B–B) bending potential function. Due to the  

coarse-graining, we have to neglect some specific characters in the structure or energy distribution, and 

focus on the common characters behind the details. For fitting with Equation 3, the mean value smooth 
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technique is adopted to handle different profiles in B–B–Si (or Si–B–B), and the fitted potential 

function curves are also shown with solid curves in Figure 2. Gaussian parameters in Equation 3 

obtained from the fitting process are given in the Supplementary Materials. 

Figure 1. The bond length distribution of the B–B and B–Si. B denotes the backbone bead, 

and Si denotes the side-chain beads shown in distinct patterns. 

 

Table 1. The equilibrium length between ten side-chain beads and their backbone beads. 

Bond Length (nm) Bond Length (nm) 

B–SARG 0.406 B–SLYS 0.344 
B–SGLN 0.301 B–SMET 0.287 
B–SGLU 0.295 B–SPHE 0.333 
B–SHIS 0.307 B–STRP 0.381 
B–SILE 0.226 B–STYR 0.371 

Figure 2. The angle bending energy profiles of B–B–B, B–B–Si and Si–B–B and the fitted 

potential function curves (black curves). B denotes the backbone bead, and Si denotes the 

side-chain beads shown in distinct patterns and colors. 
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Figure 2. Cont. 

 

Similarly, the dihedral can be classified into four types: Si–B–B–Sj, Si–B–B–B, B–B–B–Si and  

B–B–B–B. Figure 3 gives the pseudo-dihedral torsion energy profiles of each type, e.g., Figure 3A 

shows the 100 energy profiles of Si–B–B–Sj. Each type is fitted with Equation 3, and the fitting results 

are also shown with solid curves in Figure 3. Gaussian parameters for torsion potential are also given 

in the Supplementary Materials. 

Figure 3. The dihedral torsion energy profiles of (A) Si–B–B–Sj, (B) Si–B–B–B,  

(C) B–B–B–Si and (D) B–B–B–B and the fitted potential function curves (black curves).  

B denotes the backbone bead, and Si/Sj denotes the side-chain beads shown in distinct 

patterns and colors. 
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2.2. Results of Non-Bonded Potential Parameterization 

It is important to accurately describe the non-bonded interactions of 20 CG beads in order to study 

protein folding and protein-protein interactions. US as a sampling improving technique was used to  

get the PMF between two homologue CG beads, and PMF curve is fitted to Equation 5 for extracting 

the best van der Waals interaction potential parameters. Figure 4A gives the histograms of the 

configurations within the umbrella sampling windows, which indicates there is sufficient overlap 

between adjacent windows. Figure 4B gives the PMF against the distance of geometric center of two 

BALA beads, which have a minimum around 0.45 nm. However, when we made the statistical analyses 

of the distance distributions between two ALA amino acids on the above-mentioned protein structure 

database, the probability peak corresponding to the energy minimum was found around 0.55 nm. The 

reason for this inconsistency is that the CG bead is constrained by the surrounding beads while it is 

part of a protein, while is unrestricted in the US simulation. Most CG beads cannot be too close to each 

other in protein as in the US simulations, thus the short-range part of the PMF curve may not 

appropriate to model the non-bonded interactions in protein. However, the relatively long-distance 

interactions between CG beads are rarely affected by the environment in protein and can still be 

described by the PMF curves. Therefore, we made the statistical analyses of the distances for all  

20 homologue CG bead pairs to determine the parameter cij in Equation 5 when the van der Waals 

potential is equal to zero as listed in Table 2. Equation 5 was fitted to the PMF curve for determining 

the van der Waals well depth parameter with determined parameter cij. Figure 5 gives the fitted results 

of CG beads BGLY, BSER, SGLU and SILE. As in most cases, the position of the energy minimum 

determined by statistical cij is farther than that of the corresponding PMF curve, the fitting is only 

noticeable in the long-range part of the PMF, as shown in Figure 5 (BSER, SGLU and SILE). 

Figure 4. The histograms of the configurations within the umbrella sampling windows (A) 

and the potential of mean force against the distance of two ALA molecules (B). 
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Table 2. The finite distance cij when the van der Waals potential of two interacting beads is 

equal to zero. 

Interacting beads Distance cij (nm) Interacting beads Distance cij (nm) 

BALA–BALA 0.50 SARG–SARG 0.60 
BASN–BASN 0.60 SGLN–SGLN 0.45 
BASP–BASP 0.55 SGLU–SGLU 0.45 
BCYS–BCYS 0.50 SHIS–SHIS 0.45 
BGLY–BGLY 0.40 SILE–SILE 0.50 
BLEU–BLEU 0.55 SLYS–SLYS 0.45 
BPRO–BPRO 0.65 SMET–SMET 0.45 
BSER–BSER 0.50 SPHE–SPHE 0.45 
BTHR–BTHR 0.50 STRP–STRP 0.65 
BVAL–BVAL 0.50 STYR–STYR 0.55 

Figure 5. The potential of mean force between non-bonded homo pairs of coarse-grained 

(CG) beads (BGLY, BSER, SGLU and SILE) against their distance, derived from umbrella 

sampling method with all-atom simulation (solid curves), and the van der Waals potential 

by fitting the potential of mean force with the Lennard-Jones function (dash curves). 

 

2.3. Verification of the Force Field 

To verify our force field, several proteins solvated in water were coarse-grained and simulated  

for a relatively long time. During the simulations, the maintenance of experimental structures and  

other thermodynamic properties are deemed to be indications of the feasibility of force field for  

protein simulation. 
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The test protein group is composed of eight small to medium size proteins which are not included in 

the protein set used for bonded potential parameterization. These proteins have recently been used to 

examine the performance of a modified version of the CHARMM force fields [37], and part of  

them have been used to test the PACE CG force field [14], so they were chose to verify our force  

filed convenient for comparison. All the CG-MD simulations were based on the GROMACS 4.0.5  

package [38]. First, the protein was coarse-grained based on the proposed CG model, and topology 

files were generated with our developed scripts. Then the CG protein was solvated in CG water 

molecules, and the system was energy minimized with the proposed CG force field. Worthy of 

mention is that the GROMACS does not provide a Gaussian function type interface in its topology 

files, so user supplied tabulated functions were used for calculating the energy of angle bending and 

dihedral torsion. After the energy minimization, the CG system was equilibrated for 200 ps and then 

submitted for a 1000 ns simulation, using the canonical NPT ensemble at 300 K and 1 bar pressure, 

and the detail information for the eight simulated protein systems are listed in Table 3. 

Table 3. The simulation information of eight protein systems. 

System PDB ID Number of residues Number of CG waters Number of CG beads 

Barstar 1BTA 89 939 1069 
CheY 1CYE 129 1196 1375 

Ubiquitin 1D3Z 76 1013 1124 
FKBP12 1FKS 107 1264 1417 
Barnase 1FW7 110 1157 1312 
RNase H 1RCH 155 1982 2207 
RNase A 2AAS 124 1126 1296 
protein G 3GB1 56 887 963 

Table 4 gives the simulation time and Cα RMSDs of eight proteins from their experimental 

structures derived from CG-MD simulations versus all-atom simulations. With the CG-MD 

methodology, eight proteins were all simulated for 1000 ns, and the average Cα RMSDs are varied 

from 0.316 to 0.415 nm, and the final RMSDs are between 0.323 and 0.431 nm. While with the  

all-atom simulation [37], eight proteins are simulated over 22–148 ns, and the average and final 

RMSDs is varied from 0.106 to 0.358 nm and 0.121 to 0.477 nm respectively. In general, the RMSDs 

with CG-MD are larger than those with AA-MD due to a longer simulation time and the roughness of 

our CG force field, but their values are comparable, and final RMSD of 1FKS is even lower. Thus, the 

experimental structures of proteins can be considered to be maintained with our CG force filed via 

long time MD simulations. Figure 6 gives the full trajectories of the Cα RMSDs of eight proteins. 

Most of the proteins reach their stable conformations within the first 100 ns and the Cα RMSDs are 

kept around 0.4 nm. In one case, the structure of 3GB1 is more stable and the Cα RMSDs are 

maintained around 0.32 nm, which mainly because few long loops are included in the native structure 

of the protein. It is noteworthy that the Cα RMSD trajectory of protein 2AAS has two distinct 

increases at around 460 and 800 ns. For analyzing the reason and investigating the conformation 

change during the simulation, the conformations of 2AAS at 0 ns, 250 ns, 450 ns, 480 ns, 750 ns and 

1000 ns are sampled and plotted in Figure 7. From observation of the conformations at these 6 time 

points, skeleton structure of 2AAS is kept stable during the 1000 ns simulation, which also proves the 
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native structure can be maintained with our CG force field. Comparing conformations at 450 ns and 

480 ns, loop1 which is composed of residues 20–25 went through a large conformation change as 

indicated in Figure 7, which correspond to the distinct increase of Cα RMSD trajectory around 460 ns. 

The conformation change of residues 58–61 (labeled as loop2 in Figure 7) between 750 and 1000 ns 

corresponds to the RMSD value change around 800 ns. Both loop1 and loop2 are flexible loop regions 

located at the solvent-exposed surface of the protein, so they are less stable than the secondary 

structure and the hydrophobic core of the protein during the simulation. 

Table 4. Resulting root mean square deviations from experimental structures of eight 

proteins during coarse-grained simulations compared with all-atom simulations (standard 

deviations are given in parentheses). 

PDB 

CG-MD AA-MD * 

Simulation 
length (ns) 

Avg. Ca 
RMSD (nm) 

Final Ca 
RMSD (nm) 

Simulation 
length (ns) 

Avg. Ca 
RMSD (nm) 

Final Ca 
RMSD (nm) 

1bta 1000 0.393(0.010) 0.396 142.9 0.134(0.016) 0.121 
1cye 1000 0.389(0.036) 0.422 124.7 0.143(0.020) 0.170 
1d3z 1000 0.394(0.020) 0.395 22.0 0.141(0.021) 0.128 
1fks 1000 0.379(0.021) 0.415 143.5 0.358(0.074) 0.477 
1fw7 1000 0.391(0.033) 0.408 148.0 0.171(0.015) 0.167 
1rch 1000 0.415(0.025) 0.431 121.5 0.278(0.017) 0.289 
2aas 1000 0.364(0.034) 0.400 148.3 0.249(0.043) 0.321 
3gb1 1000 0.316(0.015) 0.323 50.0 0.106(0.020) 0.143 

* The values of AA-MD are from reference 37. 

Figure 6. Resulting profiles of root mean square deviation of Cα carbons for eight proteins. 
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Figure 7. Snapshots of the 1000 ns coarse-grained molecular dynamics simulation for 

protein 2AAS at 0 ns (A), 250 ns (B), 450 ns (C), 480 ns (D), 750 ns (E) and 1000 ns (F). 

 

 

Another question that interested us is whether the conformational fluctuations of a protein can be 

reasonably simulated with our CG model and force field. In the PDB file of an NMR model, the  

B-factor column for each atom contains a measure how much that atom position varies throughout  

the models in the ensemble, which provides an experimentally detectable measure of equilibrium 

dynamics. Figure 8 gives the Root Mean Square Fluctuations (RMSFs) relative to the averaged 

structures for protein 1BTA, 1D3Z, 1FKS and 3GB1, which provide B-factors in their NMR 

structures. The RMSFs simulated with CG-MD are compared with B-factors via conversion equation 

RMSF2 = 3 × B/8/pi2, where B is the B-factor, which indicates the conformational stability degree. As 

shown in Figure 8, the RMSFs of protein 1D3Z and 3GB1 are consistent with the experimental values 

from a global perspective. However, at some locations of 1BTA and 1FKS, there are obvious 

inconsistencies between the simulated RMSFs and the experimental values: at residues 7–13, 15–20, 

25–26 and 35–36 of protein 1BTA, the RMSFs are higher than the experimental values, while at 

residues 33–34, 40–44 and 84–91 of protein 1FKS, the situation is reversed. Through the analysis of 

protein structure and simulation trajectory, the above mentioned locations of 1BTA are either loops 

with lower curvature or ends of alpha helixes, while the locations of 1FKS are loops with higher 

curvature. The main reason of these conflicts is that the loop structure is mainly stabilized by the 

bonded interactions, while the bonded potentials adopted in our CG force field is a fitting of statistical 

average values due to the simplification. Therefore, loops with higher curvature are constrained by the 

bonded potential more strictly than they should be, while the situation of loops with lower curvature  

is opposite. 
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Figure 8. Resulting profiles of the residue root mean square fluctuations (dash curves) 

relative to averaged conformations compared with NMR experiments (solid curves) for 

proteins 1BTA, 1D3Z, 1FKS and 3GB1. 

 

2.4. Efficiency of the Force Field 

The main goal of coarse-graining is to improve the computational efficiency. For comparing the 

computational efficiency, the above mentioned eight testing proteins were simulated for another 10 ns 

with the proposed CG-MD methodology, AA-MD and MARTINI respectively. All the simulations 

were performed in serial on an Intel Xeon processor (2.4 GHz). The proteins were firstly centered in a 

box, the edge of which is 1 nm far from the molecules, and then solvated with water solvent. In  

all-atom simulations, GROMOS87 force filed and SPC water model were adopted, and a 2 fs time-step 

was used. In our and MARTINI CG-MD simulations, the corresponding CG water models and a 16 fs 

time-step were used. The energy of all the systems were minimized first, then equilibrated for 200 ps 

and submitted for a 10 ns simulation, using the canonical NPT ensemble at 300 K and 1 bar pressure. 

The simulation time is listed in Table 5. With each simulation method, the simulation time is 

proportional to the protein size (as listed in Table 3). The simulation time with our coarse-graining 

methodology is slightly less than that with MARTINI, which is mainly due to a coarser protein and 

water model. Compared with AA-MD simulation, MARTINI and our CG-MD method can achieve 

about 75~100 speedup. When more complicated solvent model is adopted in AA-MD, such as TIP3P, 

the speedup will be more obvious. It seems that larger time-step adopted in the CG-MD is a direct 

factor relating to the speedup, but the profound reason is that the appropriate coarse-graining model 

can maintain the structure stability of the protein in a CG-MD simulation with a larger time-step. 

The average Cα RMSDs of all the simulations are also given in Table 5. The values of AA-MD here 

slightly differ with those provided in Table 4, which are got with a modified CHARMM force field 

and with a longer simulation period. With our simulations, the average RMSDs of AA-MD range from 

0.128 to 0.259, which indicates AA-MD is most stable among these three simulation methodologies. 

The RMSDs with the proposed CG-MD methodology is lower than MARTINI for all eight proteins. 

Despite the fact that 10 ns is a relatively short simulation period, the results show that the proposed 

CG-MD methodology a comparable even better ability of native structure maintenance compared with 
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the popular MARTINI CG force field. It should be noticed, the information of secondary structure is 

required in the simulations with MARTINI, while not required with the proposed method. It indicates 

that interactions in the CG protein structure can be balanced even without any extra structure restraints, 

and this makes the proposed model more suitable for simulating random or extended structures. 

Table 5. The efficiency of 10 ns simulations of eight proteins with three different 

simulation methodologies. 

PDB 

The proposed CG-MD MARTINI AA-MD 

Simulation 
time  
(s) 

Avg. Ca 
RMSD 
(nm) 

Avg. Ca 
RMSD in 

vacuum (nm) 

Simulation 
time  
(s) 

Avg. Ca 
RMSD 
(nm) 

Simulation 
time  
(s) 

Avg. Ca 
RMSD  
(nm) 

1bta 3501 0.210 0.637 4002 0.341 313062 0.148 
1cye 4309 0.292 0.440 4972 0.503 398432 0.148 
1d3z 4032 0.283 0.416 4261 0.426 334203 0.185 
1fks 4484 0.324 0.505 5242 0.378 436792 0.220 
1fw7 4391 0.247 0.574 4902 0.400 388712 0.171 
1rch 7330 0.337 0.681 7845 0.357 650507 0.234 
2aas 4424 0.284 0.689 4801 0.421 387623 0.259 
3gb1 3432 0.275 0.501 3721 0.339 274854 0.128 

In addition, for evaluating the role of the CG solvent in the simulations, the testing proteins were 

also simulated in vacuum, and the average Cα RMSDs of the simulations are shown in Table 5. The 

RMSDs in vacuum range from 0.416 to 0.689, and are significantly higher than those of the 

simulations with CG solvent. The reason for this obvious difference is that the initial structures of the 

simulations are the native structures of proteins which are maintained in a solvent environment. The 

maintenance of the native structure is determined largely by the balance of the interactions among 

different amino acid residues with each other and with the aqueous solution surrounding the protein, 

and the solvent influences the conformation by competing with intramolecular interactions. The 

bonded potential in this work is derived from a statistical analysis of a representative protein set, so the 

solvent effect is incorporated in an implicit way. However, the van der Waals interactions are 

determined via simulations in vacuum, so the solvent effect is not incorporated in the potential. 

Therefore, the RMSD values to the initial structures in the simulations will be larger when the CG 

solvents are absent. 

3. Materials and Methods 

3.1. The Coarse-Grained Protein Models 

With our CG protein models, each amino acid is modeled by one or two beads according to their 

sizes. In total, 20 types of CG beads were designed for 20 amino acids as shown in Figure 9, which can 

be classified into two broad categories: backbone bead and side-chain bead. The backbone and  

side-chain beads can be denoted as Bi (i = ALA, ASN, ASP, CYS, GLY, LEU, PRO, SER, THR, VAL) 

and Si (i = ARG, GLN, GLU, HIS, ILE, LYS, MET, PHE, TRP, TYR), respectively. Some amino 

acids are modeled only by one backbone bead due to their small side-chains, while others are modeled 
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by one uniform backbone bead (Glycine bead BGLY) and one distinct side-chain bead. All the CG beads 

are idealized as a sphere, and center of the backbone bead is located at the alpha-carbon atom, while 

the center of the side-chain bead is located at the geometric center of all its heavy atoms. 

Figure 9. The coarse-grained models of 20 protein amino acids. 

 

3.2. The Coarse-Grained Force Field 

With the above mentioned protein CG models, the structure and internal interactions of a protein 

can be simplified as shown in Figure 10. The CG force field can be formulated as Equation 1: 

 (1)

where Ubond, Uangle and Utorsion are the stretching potential energy of a virtual bond, the potential energy 

of a virtual angle bending and the potential function of a dihedral angle about a rotating bond, 

respectively, which describe the bonded interactions between CG beads. Uvdw and Uelec describe the 

non-bonded interactions, which are the energy of van der Waals interactions and electrostatic 

interactions respectively. 

3.3. The Bonded Potential and Parameterization 

The virtual stretching interaction between two bonded CG beads can be described as a  

harmonic potential: 

21
( )

2bond bond bondU K l L   (2)

bond angle torsion vdw elecU U U U U U    
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where Kbond and Lbond are the force constant and the equilibrium stretching length of a bond, 

respectively, which will be determined by fitting the energy distribution of the virtual bond. Due to the 

coarse-graining, Uangle and Utorsion curves become more complex and irregular when compared with 

those of AA force field, and they are described with Gaussian distribution function: 

2
/

1

-
exp[-( ) ]

N
i

angle torsion i
i i

x b
U a

c

   (3)

where N, ai, bi and ci are Gaussian parameters need to be determined in the parameterization process. 

Figure 10. The coarse-grained protein model: I and II denote the backbone-backbone bead 

and backbone-side-chain bead bond stretching interaction respectively, θ denotes the 

virtual angle, and τ is the virtual dihedral angel. 

 

For correctly parameterize the bonded potential, we adopted a reduced and non-redundant set of 

protein structures used for fold recognition [39]. This set includes about 3600 structures chosen from 

the Protein Database Bank (PDB) [40], and the Root Mean Square Deviation (RMSD) of each 

structure is at least 6 Å to the rest of the structures in the set to avoid structure redundancy. Statistical 

analyses were performed against this protein set, and the resulting probability distributions were used 

to calculate Potential of Mean Force (PMF) via Boltzmann conversion method [13,41,42]: 

ln( )i B iU k T P   (4)

where kB is the Boltzmann constant, T is the temperature, and Pi = ni/nref is the probability of a 

property at value i, in which the reference number nref is the total number of the investigated internal 

coordinate obtained from the statistics of the above mentioned protein set. 

3.4. The Non-Bonded Potential and Parameterization 

Modeling the non-bonded potential is a key problem of constructing CG-MD force filed. As in a 

classical AA force field, we assume that the non-bonded interaction can be subdivided into two 

categories, i.e., van der Waals interaction and electrostatic interaction. They can be formulated as sums 

of pairwise potential energy: 
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where cij is the van der Waals interaction parameter, rij is the distance between CG beads i and j, and 

Qi and Qj are the charges of i and j. The strength of the van der Waals interaction is determined by the 

value of well depth εij which depends on the types of the interacting CG beads and can be determined 

in the force field parameterization process for all the 20 types of CG beads. In the proposed force field, 

the electrostatic interaction is taken into account through distributed point charges, and four CG beads 

are treated as charged: backbone bead BASP and side-chain bead SGLU are one unit negatively charged, 

and side-chain beads SARG and SLYS are one unit positively charged. The electrostatic interaction 

between charged beads is calculated via Equation 6 with the relative dielectric constant εr = 1. 

In the coarse-graining, a group of atoms are treated as a single bead, and the relative positions of 

these atoms are fixed, but in reality, their relative positions vary in all the time. PMF is defined as the 

potential that gives an average force over all the configurations of a given system, and is used here to 

characterize the non-bonded interactions between CG beads. Umbrella Sampling (US) method [43] 

based on AA-MD was applied on the AA molecules of 20 CG beads to get the van der Waals well 

depth parameter when one molecule interacts with itself, and Lorentz-Berthelot mixing rules were 

applied for getting the interaction parameters between different CG beads: 
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To perform the US simulations, backbone beads are simulated with corresponding AA amino acids, 

and side-chain beads are replaced by analogous compounds, as listed in Table 6. The simulations were 

performed with GROMACS 4.0.5 package, using fully flexible molecules in vacuum and the canonical 

NVT ensemble, and with vanishing charge in order to capture the purely non-electrostatic interaction. 

The GROMOS87 force filed was applied to the molecules, and the temperature is kept at 300 K by 

coupling to a Berendsen thermostat. Two identical AA molecules of a CG bead were placed  

together and equilibrated for 2000 ps, then two molecules were pulled from their equilibrium position 

to 15 angstroms along a reaction coordinate via umbrella pulling with a constant pulling rate  

0.001 nm ps−1. The snapshots were saved every 1 ps, and the pulling distance was divided into 

subspaces every 0.5 angstrom. At last, US simulation was applied in every subspace for 10 ns, and the 

Weighted Histogram Analysis Method (WHAM) [44] was applied to accurately integrate the PMF of 

the non-bonded interaction between two homologue AA molecules. 

Table 6. The corresponding analogous compounds of side-chain beads. 

Side-chain bead Analogous compound Side-chain bead Analogous compound 
SARG n-propylguanidine SLYS n-butylamine 
SGLN propionamide SMET methyl propyl sulfide 
SGLU propionic acid SPHE toluene 
SHIS 4-methylimidazole STRP 3-methylindole 
SILE n-butane STYR p-cresol 
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3.5. Coarse-Grained Water Model and Parameterization 

In protein simulation, quite often most of the computational cost is spent on calculating water-water 

intermolecular interactions rather than solute-water or solute-solute interactions, so the water  

coarse-graining will remarkably improve the efficiency of MD simulation. An appropriate water model 

should be constructed in the CG protein-solvent system, and the CG water model should be consistent 

with the protein CG models both in volume and mass, so the interactions between protein and solvent 

can be accurately reproduced. For determining the appropriate coarse-graining methodology of water 

molecules, we took a simulation of pure water with GROMACS 4.0.5 package with TIP3P water 

model, using GROMOS87 force field and the canonical NPT ensemble. The system was coupled to a 

temperature bath at 300 K and a barostat at 1 bar pressure, and was simulated for 1 ns. Statistical 

analysis with the simulation results showed that the average volume of five water molecules is about 

140 Å3 and the mass is 90 amu, which is consistent with the average volume 120 Å3 and average mass 

95 amu of the proposed CG protein beads. Therefore, the CG solvent model composed of five water 

molecules is adopted. The CG water bead is treated as neutral according to its total charge, so the 

interactions between CG water beads and other CG beads are mainly through van der Waals force. In 

order to determine the parameters of the van der Waals function for the CG water bead, every five 

nearest water molecules were clustered into a group with K-means algorithm, and the nearest distances 

between a group and the adjacent groups were calculated. According to the distribution probability, 

0.51 nm is adopted for the parameter cij in Equation 5. Using identical settings with the previous  

AA-MD water simulation, CG water system was simulated with different εij. For determining the best 

well depth parameter, the bulk density of the CG water system as a function of time was calculated and 

compared with the density variation of AA-MD. According to the comparison, εij = 6 kJ mol−1 is the 

best value for reproducing the bulk phase density of water, and is adopted in our CG force field. 

4. Conclusions 

In this work, 20 CG beads for protein were constructed according to the characters of 20 amino 

acids, and a residue is composed of only one or two CG beads. Correspondingly, with the K-means 

method, a five-water coarse-grained solvent model was adopted to suit the CG protein model. A force 

field was developed for the CG protein and solvent model. For all the bonded interactions in protein, 

CG beads are divided into two types. All the combinations with these two types of the bonded 

interactions were analyzed on a known protein structure subset, and the resulting energy distributions 

were fitted to various potential functions to formulate the bonded interactions in CG-MD. The 

umbrella sampling method was used on the AA molecules of the CG beads to get the PMF of  

non-bonded interactions between CG beads, and the PMF was fitted to a Lennard-Jones function 

potential to describe the non-bonded interactions in CG-MD. 

The CG model and force field were tested on eight small to medium size proteins. With the results 

analysis of the simulations, without any extra information of the simulated protein structure, the 

skeleton structure of the protein can be maintained during a long time equilibrium dynamics simulation 

with the proposed coarse-graining methodology. Comparison of the efficiency shows that the proposed 

CG-MD can make a 75~100 computing speedup relative to AA-MD, which is also higher than the 
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popular MARTINI model. Meanwhile, the native structure of the proteins can be well preserved during 

the simulations. In addition, RMSFs of Cα atoms during the simulation show our CG-MD method can 

reasonably sampling the conformational fluctuations within a protein from a global perspective. 

However, the simulation results also indicate that the fluctuation of loop structures with a low 

curvature in protein may be overestimated in some proteins compared with experimental values, and 

the situation is converse when the loop structures have a high curvature because the simplification in 

the CG-MD. Further work is needed to investigate and carefully treat the loop structures in protein 

coarse-graining methodology. 
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