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Abstract: Macroporous polyacrylamide-grafted-chitosan scaffolds for neural tissue 

engineering were fabricated with varied synthetic and viscosity profiles. A novel approach 

and mechanism was utilized for polyacrylamide grafting onto chitosan using potassium 

persulfate (KPS) mediated degradation of both polymers under a thermally controlled 

environment. Commercially available high molecular mass polyacrylamide was used 

instead of the acrylamide monomer for graft copolymerization. This grafting strategy 

yielded an enhanced grafting efficiency (GE = 92%), grafting ratio (GR = 263%), intrinsic 

viscosity (IV = 5.231 dL/g) and viscometric average molecular mass (MW = 1.63 × 106 Da) 

compared with known acrylamide that has a GE = 83%, GR = 178%, IV = 3.901 dL/g  

and MW = 1.22 × 106 Da. Image processing analysis of SEM images of the newly grafted 
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neurodurable scaffold was undertaken based on the polymer-pore threshold. Attenuated 

Total Reflectance-FTIR spectral analyses in conjugation with DSC were used for the 

characterization and comparison of the newly grafted copolymers. Static Lattice Atomistic 

Simulations were employed to investigate and elucidate the copolymeric assembly and 

reaction mechanism by exploring the spatial disposition of chitosan and polyacrylamide 

with respect to the reactional profile of potassium persulfate. Interestingly, potassium 

persulfate, a peroxide, was found to play a dual role initially degrading the polymers—“polymer 

slicing”—thereby initiating the formation of free radicals and subsequently leading to synthesis 

of the high molecular mass polyacrylamide-grafted-chitosan (PAAm-g-CHT)—“polymer 

complexation”. Furthermore, the applicability of the uniquely grafted scaffold for neural 

tissue engineering was evaluated via PC12 neuronal cell seeding. The novel PAAm-g-CHT 

exhibited superior neurocompatibility in terms of cell infiltration owing to the anisotropic 

porous architecture, high molecular mass mediated robustness, superior hydrophilicity as 

well as surface charge due to the acrylic chains. Additionally, these results suggested that 

the porous PAAm-g-CHT scaffold may act as a potential neural cell carrier. 

Keywords: neural tissue engineering; polymer composite; polyacrylamidated chitosan; 

potassium persulphate; polymer grafting; neurodurable scaffold; molecular modeling  

and simulation 

 

1. Introduction 

Chitosan, a biocompatible and biodegradable natural polysaccharide, has been extensively studied 

for its potential as a biomaterial for tissue engineering and drug delivery applications [1,2]. In addition 

to the pristine chitosan, graft-copolymerized chitosan and modified chitosan derivatives have been 

extensively researched and reviewed for various biomedical applications [3–7]. Recently, this 

biopolymer has shown promise in neural tissue engineering in the form of nerve guidance conduits 

(NGCs) and scaffold with specific improvements in nerve cells’ attachment, differentiation, and 

growth after derivatization or blending with other polymers such as poly-L-lysine [8]. Additionally, 

poly(acrylamide) individually as well as in combination with other polymers such as poly(urethane) 

has been proposed to be valuable in neural tissue engineering as a cell carrier with sustained  

bioactive-release properties [2,9,10].  

Graft copolymers of chitosan/derivatized chitosan and acrylamide monomer have been extensively 

studied in terms of their synthesis and evaluation in controlled drug release [11,12], adsorption 

separation of azo dyes [13], metal ions [14], or proteins [15] and as flocculants [16]. Conventionally 

acrylamide monomers are grafted onto chitosan using redox systems, ceric-ions or microwave-assisted 

reactions. Among these, redox systems, and particularly potassium or ammonium persulphate, are the 

most commonly used initiator systems for grafting of acrylamide monomer (AAm) onto chitosan [3]. 

The persulfate-chitosan redox system radically initiates the polymerization of AAm leading to 

formation of a graft copolymer: polyacrylamide-graft-chitosan (AAm-g-CHT) and a homopolymer: 

polyacrylamide [14,17]. However, this homopolymer formation remains the main constraint in 
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commercializing the procedures due to the low molecular mass of the graft copolymers and low 

grafting yield [9].  

The graft co-polymerization of chitosan with “presynthesized” polymers such as polyethylene 

glycol (PEG) and polyethylenimine (PEI) forming PEG-g-chitosan [18] and PEI-g-chitosan [19] have 

already been reported where intact functionalized polymers instead of monomers were used for 

modification of chitosan. In comparison to conventional grafting techniques using monomers, the 

advantages of using end-group modified presynthesized polymers is the absence of residual monomers 

and improved side-chain molecular mass control.  

However, a very high molecular mass polymer may inhibit the grafting reaction due to steric 

hindrances and reduced molecular mobility as a result of a higher viscosity. To our knowledge, the 

synthesis of polyacrylamide-(the native polymer)-g-chitosan via a graft copolymerization reaction has 

not been reported although polyacrylamide has been used with chitosan as a blend forming an 

interpenetrating polymer network [20]. It is well acknowledged and established that polyacrylamide 

undergoes degradation in the presence of persulphate ions leading to the formation of high molecular 

mass polyacrylamide free radicals that may act as monomer radicals [21,22]. This is also true for 

chitosan, as persulphates result in the cleavage of polymer chains [23–25]. Hence it is predicted that 

the presence of persulphates may affect the grafting of polyacrylamide directly onto chitosan chains 

and thereby completing the graft copolymerization reaction. In accordance with the discussion  

above, the possibility of producing homopolymers/monomers will be extremely low and the steric 

hinderences and molecular immobility will be reduced due to polymer slicing by persulphate ions. 

Therefore the aim of this work is to prove for the first time the novel strategy of utilizing PAAm for 

grafting onto CHT and show the applicability of polyacrylamidated chitosan in neural engineering. In 

addition, this study also display the uniqueness of synthesizing polyacrylamide-g-chitosan efficiently 

without the use of monomers, as well as elucidating the reactional profile and structure of the  

free-radical grafting reaction on the basis of Static Lattice Atomistic Simulations. The reaction 

mechanism of the grafting process was investigated in order to determine the appropriate synthesis 

conditions. For convenience, graft copolymer (polyacrylamide-g-chitosan) synthesized via acrylamide 

(monomer) and polyacrylamide (polymer) will be denoted as AAm-g-CHT and PAAm-g-CHT, 

respectively, throughout this study. In coherence with the above, comparative scaffold will be 

fabricated using AAm-g-CHT and PAAm-g-CHT and the effect of the graft-copolymerization on the 

viscosity/molecular mass and porosity will be tested utilizing PC12 neuronal cells to asserting the 

applicability of the newly fabricated grafted biopolymer. 

2. Results and Discussion 

2.1. Copolymer Synthesis, Grafting Parameters and Molecular Mass Analysis 

Graft copolymerization of CHT with AAm and PAAm was achieved in the presence of potassium 

persulfate catalyzed free-radical polymerization. For the synthesis of PAAm-g-CHT, the mass ratio of 

CHT:PAAm (1:1) was four times lower than that of CHT-AAm (1:4) in CHT-g-AAm due to the 

increased viscosity of the CHT/PAAm solution as a result of the high molecular mass of PAAm. The 

quantity of KPS used in the CHT-g-PAAm reaction was much higher because as it was involved in the 
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degradation of PAAm prior to grafting. The viscosity of both solutions decreased drastically in the 

presence of KPS when added to the reaction mixtures [11]. The presence of KPS affected the 

degradation of the polymers from free radicals produced by CHT and PAAm. The high molecular 

mass free radicals of PAAm subsequently acted as a functionalized polymer chain (as in the case of 

“presynthesized” polymers such as PEG and PEI forming PEG-g-CHT [18] and PEI-g-CHT [19], 

respectively) with a free radical at one end available to covalently react with the CHT free radical. 

These polymeric radicals combine to form the limiting homopolymer PAAm as previously reported in 

the case of AAm-g-CHT. The complete mechanism of this reaction is summarized and molecularly 

deduced by SLAS later in this paper. 

The comparative profiles of the grafting parameters such as the intrinsic viscosities and molecular 

mass of the graft copolymers are listed in Table 1. Although, the volume of PAAm used in the 

synthesis of CHT-g-PAAm was much less than AAm used in synthesizing AAm-g-CHT, it was evident 

from the data that the grafting efficiency and grafting ratio were higher in the case of PAAm-g-CHT. 

Additionally, PAAm-g-CHT had a higher molecular mass than AAm-g-CHT. This unique finding may 

be due to two possible reasons: Firstly, the degradation of PAAm resulted in long-chain functional 

polymers that directly attached to CHT instead of inherent chain propagation onto CHT, and secondly, 

the low or non-formation of a homopolymer (PAAm). 

Table 1. Intrinsic viscosity and molecular weight details of graft copolymers. 

Graft Copolymer GE a (%) GR b (%) IV c [η] [dL/g] Mv 
d (×106) 

CHT-g-AAm 83 178 3.901 1.22 
CHT-g-PAAm 92 263 5.231 1.63 

a Grafting efficiency; b Grafting ratio; c Intrinsic viscosity; d Viscometric average molecular weight. 

2.2. Investigation of Polymeric Structural Transitions 

ATR-FTIR spectroscopy was employed to confirm the graft copolymerization using PAAm and 

compare the IR spectra of CHT with that of the grafted products and PAAm. It is evident from Figure 1 

that CHT displayed strong bands at 1023 cm−1, 1081 cm−1, and 1375 cm−1, due to O–H bending, C–O 

stretching, and C–N stretching, respectively, which are characteristic of a polysaccharide molecule. 

Additionally the band in the range of 3200–3450 cm−1 (at 3286 cm−1 and 3414 cm −1) depicted the  

O–H stretching vibration, N–H extension vibration, and intermolecular H-bonds. A characteristic peak 

of C=O integration of 1650 cm−1 due to partial deacetylation and characteristic peaks of amino groups 

at 3400 cm−1 and 1320 cm−1 were also observed. For PAAm, the peaks around 1665 cm−1 and 1599 cm−1 

can be assigned to the amide I and II bands, respectively. The FTIR spectrum of the synthesized  

AAm-g-CHT showed typical bands at 1647 cm−1 (amide I) and 1603 cm−1 (amide II) due to grafted 

PAAm chains onto CHT.  

Additionally, the IR spectra of PAAm-g-CHT showed a peak at 1449cm-1, due to the C–N 

stretching, which supported the occurrence of the grafting reaction. Furthermore, the appearance and 

intensification of the two peaks at 1411 cm−1 and 1318 cm−1 for the primary NH2 groups confirmed 

that PAAm chains grew on the CHT backbone. The stretching peak at 3414 cm−1 shifted to a longer 

wavenumber (approximately 3428 cm−1) and was of a reduced intensity with broadness (overlapping 
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of O–H stretching of CHT and N–H stretching of amide groups at PAAm grafts). Reduced intensity of 

this peak with respect to CHT proved that an appreciable quantity of O–H and N–H groups in CHT 

had been grafted with the PAAm chains. These results are coherent with earlier reports on graft 

copolymerization of PAAm onto CHT [13,14,16,26–28]. For the PAAm-g-CHT, FTIR spectra showed 

major peaks at 3183 cm−1, 1651 cm−1, 1607 cm−1, 1451 cm−1, 1416 cm−1 and 1323 cm−1 corresponding 

to 3190 cm−1, 1647 cm−1, 1603 cm−1, 1449 cm−1, 1411 cm−1 and 1318 cm−1 peaks of AAm-g-CHT, 

respectively. With the incorporation of PAAm instead of AAm in the grafting strategy, the intensity of 

all peaks increased significantly from the AAm-g-CHT to PAAm-g-CHT. This result suggested that 

more amide (I) groups were introduced onto the CHT backbone; that is the polymer chain of grafted 

PAAm was longer in PAAm-g-CHT forming a high molecular mass graft copolymer. The occurrence 

of a peak at 1110 cm−1 and a shoulder at 889 cm−1 further proved that PAAm-g-CHT had fewer but 

longer PAAm chains (exposing more PAAm and the CHT backbone) compared with AAm-g-CHT that 

had a large number of short PAAm chains. Additionally, the increase in ratio of the peak intensities  

at 1651 cm−1 to 1607 cm−1 may be due to an increase in the grafting efficiency. The increase in the 

number of amide groups, as revealed by FTIR studies, may render more hydrophilicity to the  

PAAm-g-CHT as well as an increase in surface charge leading to enhanced neurocompatibility and 

adhesion—the prerequisites for a neural scaffold [10]. Furthermore, the longer PAAm chains will 

render high “crosslinkability-induced” robustness providing an optimal platform for the  

mechano-sensitive PC12 neuronal cells as mentioned earlier in this paper. 

Figure 1. Attenuated Total Reflectance-FTIR (ATR-FTIR) spectra of Polyacrylamide 

(PAAm), Chitosan (CHT), CHT-g-PAAm and CHT-g-AAm (ascending order). 
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2.3. Comparison of Thermally-Induced Transitions of the Grafted Copolymers 

DSC was used to measure and compare the thermal transitions inherent to the synthesized 

copolymers as a function of temperature thereby directly measuring different heat flows between the 

reference (AAm-g-CHT) and sample (PAAm-g-CHT) [29]. The DSC curves of the copolymers are 

depicted in Figure 2 revealing three thermal transitions. Firstly, for CHT-g-AAm, the thermal transition 

at 132 °C represents the structural relaxation associated with the glass transition temperature (Tg) which 

corresponds to the Tg of PAAm (127.3 °C). The higher Tg may be due to the covalent coupling of 

PAAm to the CHT backbone via graft copolymerization [13]. The second thermal transition at 197 °C 

corresponds to the Tg of CHT (203 °C) as reported by Sakurai and co-workers (2000) [30]. There is 

considerable debate over the exact value of the structural relaxation associated with the Tg of chitosan 

as discussed by Duarte, Mano and Reis (2010) [31]. The lowering of the Tg of chitosan could be due to 

the inclusion of PAAm on the CHT backbone in coherence with Fox’s theory [30]. The DSC 

thermogram of CHT-g-AAm also exhibited an endothermic peak at 256 °C that was attributed to the 

melting point (Tm) of the grafted polymer moiety (PAAm chains) [32].  

Figure 2. DSC thermogram of graft copolymers in the second heating run. 

 

In the case of PAAm-g-CHT, the above-mentioned thermal transitions appeared at 136 °C, 197 °C 

and 254 °C corresponding to 132 °C, 197 °C and 256 °C of AAm-g-CHT, respectively. Although the 

thermal peaks differed in terms of their onset, endset and depth, the thermal properties of the polymer 

components were not significantly different in terms of eventual peak values which confirmed the 

comparability of the structural profile of the synthesized graft polymers as explained in the ATR-FTIR 

discussion. The decrease in Tg of PAAm in PAAm-g-CHT may be due to an increase in chain length [33]. 

The increase in chain length may further affect the cellular response based on robustness as explained 

in earlier sections. Furthermore, the decrease in peak intensity in the case of PAAm-g-CHT displayed a 

less crystalline/more amorphous character of the newly synthesized PAAm-g-CHT copolymer due to 

more exposure of the CHT chains. From neural tissue engineering prospective, the amorphous nature 

of the PAAm-g-CHT scaffold may further render superior neurocompatibility and invasiveness as  

the cell adhesion, growth and proliferation are inversely proportional to the crystallinity of the  

scaffold architecture [34]. 
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2.4. Morphological Characterization and Quantitative Image Processing Analysis 

Image Processing was performed on 16-bit greyscale photomicrograph images obtained by SEM  

of the AAm-g-CHT and PAAm-g-CHT scaffold (Figure 3). Thresholding of crude images restricted 

data capture and therefore intermediary image-processing steps were employed to equilibrate the 

background and contrast fields between the polymeric architecture, pore structure and the non-Focus 

areas of the image. Images in TIFF format were computatively imported using Equation 1 and 

converted to Mathematica™ 8.0 format. 

SEMimage = Import[“X:\\directory\\folder\\filename.tif”] (1) 

The first processing step, blurring the image, provided a blurred version of the image obtained by 

convolving the image with a low pass filter. This was important for the quantitative mapping of the 

images. In this work, the extent of fuzziness was increased by increasing the pixel radius (r) to 10 

quantitative points without compromising the image details. This was achieved in Mathematica™ 8.0 

by applying a custom blurring function (Equation 2). 

BLURimage = Blur[SEMimage,10] (2) 

After blurring the image, the next step was to ColorQuantize the blurred image at a value of 5 that 

provided an approximation to an image that utilized 5 distinct colors. This was achieved by applying a 

custom ColorQuantize function (Equation 3) (Figure 3 ColorQuantized). 

CQimage = ColorQuantize[BLURimage,5] (3)

The third step involved analyzing the ColorQuantized images by histogram plots of the pixel levels 

for each channel in the image (Figure 3). Furthermore, separate histograms for each color channel were 

constructed, by applying an ImageHistogram function for default and separated algorithms using 

Equation 4. 

Histogram = ImageHistogram[CQimage,Appearance→ “Transparent”] (4)

Analysis of the histogram plots are essential for optimizing the threshold and discriminating 

between different morphological features observed on the SEM of the AAm-g-CHT and PAAm-g-CHT 

scaffold. An assumption was that the probability of finding intensity at a pore-fiber boundary would be 

equal for both features. Figure 3c, CHT-g-AAm, displayed a tetramodal distribution having peaks  

at four different voxel intensities representing voxels for air-filled deep pores and pores reaching  

the second or third layer of the polymeric structure (smaller peaks), as well as solid polymeric 

architecture at different layers in order of increasing linear absorption coefficients (larger drifts). For  

CHT-g-PAAm (Figure 3e), the histogram plot of the SEM image represented a pentamodel distribution 

having all four voxel peaks of CHT-g-AAm and one added peak of near average intensity. The new 

threshold generation implied that the intensity was more in congregation with the porous structure than 

that of the polymeric solid structure. These transitions toward air-filled pores may be attributed to an 

increase in graft co-polymer chain lengths (decreased solid area) leading to formation of larger 

uniform pores resulting in an increase in the porosity. 
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Figure 3. Scanning electron micrographs, ColorQuantized images, ImageHistograms and 

Cytocompatibility of CHT-g-AAm (a, b, c, d); and CHT-g-PAAm (e, f, g, h), respectively. 

 

The SEM images shown in Figure 3d,h, 2 days after cell-seeding, clearly depict the effect of the 

grafting strategy on the cellular response. During SEM analysis of AAm-g-CHT, no PC12 neuronal 

cells were present within the scaffold with a small population existing only on the surface of the 

scaffold as shown in Figure 3d. Interestingly, the PAAm-g-CHT displayed the presence of PC12 cells 

inside the scaffold and were much more developed (Figure 3h). However, no significant axonal 

extension was observed in both cases over the 2 days. According to Chung and Park (2007), “an ideal 

polymeric scaffold requires several structural and chemical features: (i) a three-dimensional 

architecture with a desired volume, shape, and mechanical strength, (ii) a highly porous and well 

interconnected open pore structure to allow high cell seeding density and tissue in-growth,  

(iii) chemical compositions such that its surface and degradation products are biocompatible causing 

(a)

(g)

(f)

(c)

(b)

(e)

(d) (h)
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minimal immune or inflammatory responses, and (iv) their degradation rate finely tuned in a pattern 

such that it provides sufficient support until the full re-growth of impaired tissues” [35]. The present 

scaffold structure fabricated from PAAm-g-CHT successfully delivers on the first three aspects 

reported by Chung and Park (2007) with the fourth requiring further research. The applicability of 

PAAm-g-CHT to neural tissue engineering can be attributed to its anisotropic porous scaffold 

architecture leading to cell and tissue infiltration into the biopolymeric scaffold. Furthermore, due to 

the high molecular mass of PAAm-g-CHT as compared to AAm-g-CHT, it may result in multiple 

crosslinkages per polymer chain, essentially producing a more robust network with increased tensile 

moduli and stiffness (at lower polymer concentrations).  

2.5. Static Lattice Atomistic Simulations 

Molecular Mechanics (MM) describes the energy of a molecule in terms of a simple function which 

accounts for distortion from ideal bond distances and angles, as well as for non-bonded Van der Waals 

and Coulombic interactions. To corroborate the experimental results with added confidence, global 

energy minimizations were employed, to demonstrate the non-bonding electro- and structure-selective 

binding of the polymeric moieties, CHT and PAAm in the presence of KPS. In this work,  

we established a novel grafting strategy to synthesize PAAm-g-CHT (Schemes 1–4). Table 2 and 

Figure 4 display the results of computations undertaken in vacuum. The molecular tectonics of  

coupled-complexed-copolymer in this study was found to be affected by various types of non-bonding 

attractive interactions such as Van der Waals contacts, H-bonds and electrostatic interactions. It is 

evident from Figure 4a, that KPS interacted with C-3 and C-6 of the CHT glucosamine polysaccharide 

moiety resulting in “polymer slicing” of C2-C3 and the β-(1-4)-linkage, respectively, which further 

lead to formation of free radical sites as displayed in Scheme 1a. Similarly, KPS interacted with  

the –CONH2 group of PAAm (Figure 4b) and initiated the degradation of the polymer chain—

“polymer slicing”—into smaller fragments via the formation of free radicals as displayed in Scheme 1b. 

In addition, the steric energy profiles of CHT-KPS4 (ΔE = −35.235 kcal/mol) and PAAm-KPS4  

(ΔE = −51.762 kcal/mol) confirmed the inherent binding stability of the complexes through  

non-bonding interactions namely electrostatic (ΔE = −32.394 kcal/mol) and H-bonding  

(ΔE = −3.039 kcal/mol), respectively. Both the complexes were also equally stabilized by London 

dispersion forces. It is evident from the reactional profiles that CHT and PAAm provide an abundance 

of reactive functional groups such as –COO−, –NH3+, –OH, –CONH2, and –NH2 [36]. The presence of 

such ionic functional groups may further provide a conductive surface environment for the growth and 

proliferation of the neural architecture on account of their mixed hydrophillicity/hydrophobicity and 

varied surface-to-charge ratio. 
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Scheme 1. Schematic representation of chain degradation—“polymer slicing”—and free 

radical formation of (a) Chitosan; and (b) Polyacrylamide (X represents the group  

of –CONH2) in the presence of persulphate ions. 

 

Scheme 2. Schematic representation of radical induced graft copolymerization—“polymer 

complexation”—of AAm to chitosan in the presence of persulphate ions.  
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Scheme 3. Schematic representation of termination of the graft copolymerization  

leading to formation of (a) coupled graft copolymer; (b) chitosan polysaccharide; and  

(c) polyacrylamide homopolymer (X represents the group of –CONH2), in the presence of 

persulphate ions.  

 

Scheme 4. Schematic representation of mechanism summary of CHT-g-PAAm in the 

presence of persulphate ions, where, C = Chitosan; X = O or N for (PAAm-co-Chitosan)p 

or (PAAm-co-Chitosan)q, respectively; PA = Polyacrylamide; A= Acrylamide. 
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Table 2. Energy attributes calculated for the optimized geometrical preferences of in silico 

complexes comprising chitosan, polyacrylamide and potassium persulfate. 

Compound Energy (kcal/mol) 

Steric energy a ΔEbinding 
b LDF c Δldf d H bond e Ionic f  

CHT g 35.556 - 13.323 - 0 −24.697 
PAAm h 10.357 - −5.072 - −0.035 0 
KPS4 

i 238.832 - −5.776 - 0 0 
CHT-KPS4 

j 239.153 −35.235 −27.503 −35.05 −0.0879 −32.394 
PAAm-KPS4 

k 207.784 −51.762 −39.943 −29.095 −3.039 0 
CHT-PAAm2-KPS4 

l 202.903 −92.199 −88.755 −86.158 −5.927 −33.481 
a Minimized global energy for an optimized structure; b ΔEbinding = E(Host.Guest) − E(Host) − E(Guest);  
c London dispersion forces due to non-bonded/van der waals interatomic distances; d Δldf = E(Host.Guest)ldf − 

E(Host)ldf − E(Guest)ldf; 
e Hydrogen-bond energy function; f Ionic energy arising from electrostatic interactions; 

g Chitosan; h polyacrylamide; i Potassium Persulfate (four molecules); j Chitosan complexed with four 

molecules of Potassium Persulfate; k Polyacrylamide complexed with four molecules of Potassium Persulfate; 
l Chitosan complexed with two molecules of polyacrylamide and four molecules of Potassium Persulfate. 

To further elucidate the grafting mechanism of PAAm and CHT, computations were executed by 

simulating CHT, PAAm and KPS in a closed system as shown in Figure 4c and 4d. Apparently, PAAm 

molecules formed bonds with the free radical sites generated in the CHT ring i.e., coupling occurred 

through –CONH2 carrying carbon of PAAm and the C2 (–NH2) and C3 (–OH) of CHT—“polymer 

complexation”—as evident from Figure 4c. The mechanistic structural profiles pertaining to this 

coupling is explained in Scheme 2. Noticeably, these are the same sites through which KPS interacted 

with both polymers. The total energy profile of CHT-PAAm2-KPS4, also favored the formation of  

the grafted copolymer with impressive highly stabilized values of ΔE = −92.199 kcal/mol,  

Δvdw = −86.158 kcal/mol, EH-bonding = −5.927 kcal/mol and Eelectrostatic = −33.481 kcal/mol. This energy 

stabilization owing to the presence of the bulky carboxylic and amide groups in sterically favorable 

equatorial positions with H-atoms occupying axial positions strengthened the proposal of employing 

polyacrylamidated chitosan for neural engineering where a favorable interaction of the biological 

system with the biomaterial depends on the copolymer’s hydrophobicity, feature size, radius of 

curvature, charge and coatings. These phenomena are out of the scope of this study and require  

further investigation. 

Upon the termination of the grafted copolymer formation, the free radicals of the respective 

polymers combine as shown in Scheme 3. This further supports our approach of using a  

pre-synthesized polymer (PAAm) and the possibility of having monomers in the final product is 

minimized. Figure 4d depicts that the energy minimized Van der Waals radii structure of  

CHT-PAAm2-KPS4 was due to the flexibility of the PAAm chain, the relevant segments of polymeric 

rearrangement to form a remarkable structure fit between the –NH3
+, –COO− and –OH− ions, the 

electrostatic, Van der Waals and H-bond interactions being almost simultaneously optimized. The full 

mechanism of formation of the newly grafted PAAm-g-CHT is summarized in Scheme 4. The spectral 

analysis also corroborated with the mechanistic simulation in terms of functional groups involved in 

coupling and complexation (FTIR structural variation analysis) and in terms of the degree of thermal 

stability within the copolymer structure which strengthens the experimental and computational correlation. 
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Figure 4. Energy minimized geometrical preferences of the molecular complexes  

derived from molecular mechanics calculations: (a) Chitosan (sticks)-KPS (tube);  

(b) Polyacrylamide (sticks)-KPS (tube); (c) Chitosan-PAAm-KPS and (d) Chitosan(red)-

PAAm(yellow)-KPS(blue). Color codes for elements are: Carbon (cyan), Nitrogen (blue), 

Oxygen (red), Potassium (purple) and Hydrogen (white). 

 

3. Experimental Section  

3.1. Materials 

Polyacrylamide (PAAm) (Mw = 5 × 106 − 6 × 106 g/mol), the synthetic non-ionic polymer, was 

supplied by Fluka Biochemika (St. Louis, MO, USA). Acrylamide monomer (AAm), potassium 

persulphate (KPS) (>98% purity) and chitosan (CHT) low Molecular mass (50–150 kDa) were 
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purchased from Sigma-Aldrich (Sigma-Aldrich, St. Louis, MO, USA). PC12 neuronal cell lines were 

used as a model system for primary neuronal differentiation, derived from Rattus norvegicus 

pheochromocytoma and were purchased from the Health Science Research Resources Bank (HSRRB, 

Osaka, Japan). All other reagents used were of analytical grade and were employed as received. 

3.2. Synthesis of Polyacrylamidated Chitosan Using Monomer (AAm-g-CHT) 

Chitosan (CHT), polysaccharide backbone, was dissolved in 25 mL of a 1% v/v acetic acid aqueous 

solution via agitation overnight. After complete solubilization of CHT, the solution was decanted into 

a 150 mL reactor equipped with a N2 inlet and stirred for 30 min. Thereafter, the desired quantity of 

acrylamide monomer (AAm) and potassium persulphate (KPS) initiator were added to the solution 

maintained at 50 °C. The mass ratio of CHT:AAm was 1:4 and KPS:AAm was 1:5. After 6 h of 

reaction, polymerization was stopped by the addition of hydroquinone and the AAm-g-CHT was 

precipitated in an excess of acetone. The product obtained was further purified by Soxhlet extraction 

using 70% methanol as a solvent and finally dried at 40 °C in a vacuum oven (Vacuum Drying Oven 

“VACUTERM” EV-50, Raypa, Barcelona, Spain) for 48 h. The final grafted polymer was pulverized 

and fabricated into scaffold. For preparing the scaffold, a solution of AAm-g-CHT, equivalent to  

a 2% w/w CHT, was prepared in 0.2 M acetic acid. The solution was then decanted into 3 mL Teflon 

injection moulds (9 mm diameter) and frozen at −20 °C. The polymeric cylinders were removed  

after 6 h and immediately frozen at −80 °C overnight before being lyophilized (FreeZone® 2.5, 

Labconco®, Kansas City, MS, USA) at 25 mtorr for 48 h. Thereafter, the cross sections of the scaffold 

were subsequently sputter-coated with gold for Scanning Electron Microscopy (SEM) analysis 

(PhenomTM Desktop SEM, FEI Company, Hillsboro, OR, USA). SEM images of the scaffold were 

quantitatively processed on Mathematica™ 8.0 (Wolfram Research, Champaign, IL, USA) using a 

sequential procedure of blurring, color-quantizing and generating an image histogram. Initially, the 

area of interest was restricted to image content of the scaffold.  

3.3. Synthesis of Polyacrylamidated Chitosan Using Polymer (PAAm-g-CHT) 

Chitosan was dissolved in deionized water (25 mL degassed) containing 1% v/v acetic acid in a 

reactor (with a N2 inlet) placed in a water bath preset at 50 °C. PAAm was dissolved in deionized  

water (5 mL degassed) in a separate flask. Upon reaching 50 °C, the PAAm solution and desired 

quantity of potassium persulphate (KPS) were added to the chitosan solution and the resulting mixture 

was allowed to react under a N2 nitrogen atmosphere. The graft copolymerization process was allowed 

to occur for 6 h at 50 °C and then terminated by adding hydroquinone and purified as above. The mass 

ratios of CHT:PAAm was 1:1 and KPS:PAAm was 1:1. The PAAm-g-CHT scaffold was synthesized 

and quantified using Mathematica™ 8.0 as discussed in previous section. 

3.4. Cell-Culture and Cell-Seeding for Ex Vivo Tissue Engineering Evaluation 

PC12 neuronal cells were grown in RPMI-1640 media (with L-glutamine and sodium bicarbonate) 

supplemented with 5% fetal bovine serum (heat inactivated), 10% horse serum (heat inactivated), 1% 

penicillin (100 IU/mL) and streptomycin (100 µg/mL) in an incubator with a humidified atmosphere 
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(RS Biotech Galaxy, Irvine, UK) and 5% CO2 at 37 °C. Cells were grown in 75 cm2 cell-culture flasks 

in a monolayer to 80%–90% confluency and seeded into 96-well cell-culture plate at a seeding density 

of approximately 10,000 cells per well. Prior to cell-seeding, the AAm-g-CHT and PAAm-g-CHT 

scaffold were sterilized with 75% ethanol, washed twice with sterilized PBS buffer solution (pH 7.4) 

and finally rinsed in cell-culture media. 

3.5. Determination of Grafting Parameters 

Grafting parameters such as the Grafting efficiency (GE) and Grafting Ratio (GR) were calculated 

using Equations 5 and 6. 

GE =
weight of graft copolymer-weight of initial chitosan

weight of graft copolymer
× 100 (5)

GR =
weight of graft copolymer-weight of initial chitosan

weight of initial chitosan
× 100 (6)

3.6. Determination of the Approximate Molecular Mass of the Grafted Polymer 

The Mark-Houwink Equation (Equation 7) was used for the comparative profiling of the 

viscometric average molecular mass of the graft copolymers: 

η  = KMα (7) 

Where, K and α are constants for a particular polymer/solvent/temperature system. For PAAm the 

values of K and α were 6.31 × 10−5 and 0.80, respectively [37]. Viscosity measurements of the 0.01% 

aqueous solutions of the graft copolymers were conducted on a Modular Advanced Rheometer system 

(ThermoHaake MARS Rheometer, Thermo Fischer Scientific, Karlsuhe, Germany).  

3.7. Polymeric Structural Variation Analysis 

Attenuated Total Reflectance-FTIR (ATR-FTIR) analysis was performed on the native polymers 

(PAAm and CHT) and the grafted copolymers (AAm-g-CHT and PAAm-g-CHT) to evaluate, 

ascertain and compare the structural transformations. ATR-FTIR spectra were recorded on a Perkin 

Elmer Spectrum 2000 FTIR spectrometer with a MIRTGS detector (PerkinElmer Spectrum 100, 

Llantrisant, Wales, UK), using an ATR-FTIR cell and a diamond crystal internal reflection element. 

Samples were analyzed at a wavenumber range of 650–4000 cm−1 with a resolution of 4 cm−1 and  

64 scans per spectrum. 

3.8. Exothermic and Endothermic Mapping of the Grafted Polymers 

Comparative DSC analyses were performed on AAm-g-CHT and PAAm-g-CHT using a Mettler 

Toledo, DSC1, STARe System (Schwerzenback, Switzerland) at a heating rate of 10 °C/min from −10 

to 325 °C under a constant flow of N2 gas. Accurately weighed samples (10–15 ± 0.1 mg) were placed 

into a covered aluminum sample holder with a central pin hole. Indium metal (99.99%) was used to 

calibrate the DSC modulus in relation to temperature and enthalpy. An empty sample holder was used 
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as reference and experimental runs were performed by heating the samples from −10 °C up to 125 °C 

with a constant isotherm for 15 min. New samples were re-weighed and heated from −10 °C up to  

325 °C. DSC thermograms were subsequently compared for transitions in thermal events. 

3.9. Establishment of the Reactional Profile and Mechanisms via SLAS 

All modeling procedures and computations, including energy minimizations in Molecular 

Mechanics, were performed using HyperChem™ 8.0.8 Molecular Modeling Software (Hypercube Inc., 

Gainesville, FL, USA) and ChemBio3D Ultra 11.0 (CambridgeSoft Corporation, Cambridge, UK). 

The decamer of acrylamide (PAAm) was archetyped using ChemBio3D Ultra in its syndiotactic 

stereochemistry as a 3D model, whereas the structures of chitosan (10 glucosamine saccharide  

units-CHT) was built from standard bond lengths and angles using the Sugar Builder Module on 

HyperChem 8.0.8. The structure of K2S2O8 (KPS) was constructed with natural bond angles. The 

models were primarily energy-minimized using the MM+ Force Field algorithm and the resulting 

structures were once again energy-minimized using the AMBER 3 (Assisted Model Building and 

Energy Refinements) Force Field algorithm. The conformer having the lowest energy was used to 

develop the polymer-polymer and polymer-KPS complexes. A complex of one polymer molecule with 

another was assembled by parallel disposition and the energy-minimization was repeated to generate 

the final models: CHT-KPS4, PAAm-KPS4, CHT-PAAm2 and CHT-PAAm2-KPS4 (digits in the 

subscript represent the number of molecules of a moiety modeled). Full geometrical optimization was 

conducted in vacuum employing the Polak–Ribiere Conjugate Gradient method until an RMS gradient 

of 0.001 kcal/mol was reached [38]. 

4. Conclusions  

Anisotropic porous scaffold architectures for neural tissue engineering were obtained using a new 

grafting approach to fabricate PAAm-g-CHT for the first time. The semi-synthetic copolymer was 

successfully synthesized via a persulphate-initiated degradation free radical mechanism using PAAm 

instead of AAm monomers. The PAAm-g-CHT formed had higher molecular mass with superior 

grafting efficiency and neurodurability. The ATR-FTIR and DSC results confirmed the synthesis of 

PAAm-g-CHT and AAm-g-CHT and the structural and thermal transitions were similar between the 

copolymers with no significant variations proving optimal fabrication. Molecular Mechanistic 

simulations further aided in deducing the schematic mechanisms of the new graft copolymerization 

reaction. The high molecular mass polyacrylamidated chitosan exhibited promising neurocompatibility 

due to enhanced robustness, hydrophilicity and high surface charge with far-reaching use in 

specialized neural tissue engineering applications such as neural implants and conduits.  
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