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Abstract: Natural compounds that pose no significant medical or environmental side 

effects are potential sources of antifungal agents, either in their nascent form or as 

structural backbones for more effective derivatives. Kojic acid (KA) is one such 

compound. It is a natural by-product of fungal fermentation commonly employed by food 

and cosmetic industries. We show that KA greatly lowers minimum inhibitory (MIC) or 

fungicidal (MFC) concentrations of commercial medicinal and agricultural antifungal 

agents, amphotericin B (AMB) and strobilurin, respectively, against pathogenic yeasts and 

filamentous fungi. Assays using two mitogen-activated protein kinase (MAPK) mutants, 

i.e., sakA∆, mpkC∆, of Aspergillus fumigatus, an agent for human invasive aspergillosis, 

with hydrogen peroxide (H2O2) or AMB indicate such chemosensitizing activity of KA is 

most conceivably through disruption of fungal antioxidation systems. KA could be 

developed as a chemosensitizer to enhance efficacy of certain conventional antifungal 

drugs or fungicides. 
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1. Introduction 

Kojic acid (KA, Figure 1) is a natural pyrone produced by certain filamentous fungi, mainly species 

of Aspergillus and Penicillium. It is a common by-product in the fermentation of soy sauce, sake and 

rice wine, and is widely used as a food additive to prevent oxidative browning, or in cosmetics as a 

depigmenting agent [1–3]. Genes involved in KA biosynthesis were recently identified [4,5]. Cellular 

immunity is enhanced by KA through stimulating phagocytosis and generation of reactive oxygen 

species (ROS) in macrophages, and potentiation of phytohemagglutinin-based proliferation of 

lymphocytes [6,7]. KA is fungistatic against the pathogenic yeast, Cryptococcus neoformans, by 

inhibiting melanin production required for infectivity [8]. Derivatives of KA also have antimicrobial 

activity against a variety of other fungi and bacteria [9], showing its potential as a polyfunctional 

backbone for new antimicrobial agents [10].  

Figure 1. Structure of kojic acid (KA). 
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Among Aspergillus species, A. flavus, A. parasiticus and A. oryzae are the main producers of  

KA [11]. A. oryzae is used widely in the food industry. However, A. flavus and A. parasiticus are 

opportunistic pathogens of various crops, and a concern since they produce carcinogenic aflatoxins 

that can contaminate food. A. flavus is also an agent for human invasive aspergillosis (IA). Of note, the 

chief agent of IA, A. fumigatus, and a third IA agent, A. terreus, do not produce KA [12–14]. 

Co-application of certain types of compounds can enhance efficacy of conventional antimicrobial 

agents through a process termed “chemosensitization.” With regard to microbial pathogens, a 

chemosensitizer functions by debilitating the ability of a pathogen to completely activate a defense 

mechanism to an antimicrobial agent [15,16]. We investigated if KA, as a chemosensitizer, could 

improve activity of commercial antifungal agents against pathogenic strains of Aspergillus and yeasts 

(See Table 1). We tested this chemosensitizing potential by co-applying KA with hydrogen peroxide 

(H2O2) to mimic host ROS, and with a commercial antimycotic, amphotericin B (AMB) and 

agricultural fungicides, fludioxonil (FLUD) and strobilurin (kresoxim methyl (Kre-Me)). 
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Table 1. Fungal strains used in this study. 

Fungal strains Strain characteristics Source/Reference 

Filamentous fungi   

Aspergillus flavus 3357 
Kojic acid producer,  
Human pathogen (aspergillosis), Plant pathogen 

NRRL a 

A. parasiticus 5862 Kojic acid producer, Plant pathogen NRRL a 

A. fumigatus AF293 
Human pathogen (aspergillosis),  
Reference clinical strain 

[17] 

A. fumigatus sakA∆ 
Human pathogen (aspergillosis),  
MAPK mutant derived from AF293 

[17] 

A. fumigatus mpkC∆ 
Human pathogen (aspergillosis),  
MAPK mutant derived from AF293 

[18] 

A. terreus UAB673 Human pathogen (aspergillosis), Clinical isolate  CDC b 
A. terreus UAB680 Human pathogen (aspergillosis), Clinical isolate  CDC b 
A. terreus UAB698 Human pathogen (aspergillosis), Clinical isolate  CDC b 

Yeasts   

Candida albicans 90028 
Human pathogen (candidiasis),  
Reference clinical strain 

ATCC c 

C. albicans CAN276 Human pathogen (candidiasis), Clinical isolate  IHMT d 

C. krusei 6258 
Human pathogen (candidiasis),  
Reference clinical strain 

ATCC c 

C. krusei CAN75 Human pathogen (candidiasis), Clinical isolate  IHMT d 
C. tropicalis CAN286 Human pathogen (candidiasis), Clinical isolate  IHMT d 
Cryptococcus neoformans 
CN24 

Human pathogen (cryptococcosis),  
Clinical isolate  

IHMT d 

Saccharomyces cerevisiae 
BY4741 

Model yeast, Parental strain  
(Mat a his3∆1 leu2∆0 met15∆0 ura3∆0) 

SGD e 

S. cerevisiae bck1∆ MAPK mutant derived from BY4741  SGD e 

S. cerevisiae slt2∆ 
MAPK kinase kinase mutant derived from 
BY4741  

SGD e 

a NRRL, National Center for Agricultural Utilization and Research, USDA-ARS, Peoria, IL, USA. b CDC, 

Centers for Disease Control and Prevention, Atlanta, GA, USA. c ATCC, American Type Culture Collection, 

Manassas, VA, USA. d IHMT, Instituto de Higiene e Medicina Tropical/CREM, Universidade Nova de 

Lisboa, Portugal. e SGD, Saccharomyces Genome Database [19]. 

2. Results and Discussion 

2.1. Enhanced Antimycotic Activity of H2O2 by KA against Filamentous Fungi 

2.1.1. Agar Plate Bioassay: Filamentous Fungi 

We initially tested KA (5 mM) and H2O2 (3, 4, 5, 6 mM) on filamentous fungal growth, comparing 

colony diameter to controls in agar bioassays (See Experimental Section). Three strains of  

A. fumigatus (wild type strain, AF293, and two deletion mutants for oxidative/osmotic stress 

responsive mitogen-activated protein kinase (MAPK), sakA∆ and mpkC∆) [17,18], three clinical 

strains of A. terreus (UAB-673, -680 and -698), and one wild type strain, each, of A. flavus 
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(NRRL3357) and A. parasiticus (NRRL5862), were tested. Fungi were cultured at 35 °C, except  

A. parasiticus at 28 °C, on potato dextrose agar (PDA). 

Results showed (Figure 2): (1) KA (at 5 mM) did not affect growth of any strain; (2) H2O2 (up to  

6 mM) alone or with KA had no effect on A. flavus or A. parasiticus; (3) H2O2 alone or with KA 

inhibited growth of all strains of A. fumigatus and A. terreus. Strain sensitivity to KA + H2O2 varied  

as follows (in decreasing order): A. terreus UAB698 > strains 680 = 673 > A. fumigatus  

mpkC∆ = sakA∆ > AF293 > A. flavus = A. parasiticus. Therefore, KA + H2O2 treatments inhibited 

growth much more significantly in strains that do not produce KA (i.e., A. fumigatus, A. terreus). 

Figure 2. Agar bioassay showing antifungal chemosensitization of kojic acid (KA) with 

H2O2 tested against Aspergillus strains. Numbers (0–100) indicate percent (%) radial 

growth compared to non-treated control (100%; no H2O2 and no KA). (−), w/o KA;  

(+), w/ KA (5 mM). 

 

2.1.2. Microtiter Plate (microdilution) Bioassay: Filamentous Fungi 

Based on results of the agar bioassay (shown above), antifungal interactions between KA and H2O2 

were assessed further for only the A. fumigatus and A. terreus strains using triplicate, microtiter-plate 

checkerboard bioassays (Clinical Laboratory Standards Institute (CLSI) M38-A) [20] with 

concentration ranges of KA, 0.2–12.8 mM, and H2O2, 0.0625–16 mM (See Experimental Section).  

Minimum inhibitory concentrations (MICs), lowest concentration of agent(s) showing no visible 

fungal growth, were assessed after 48 h. Minimum fungicidal concentrations (MFCs), lowest 

concentration of agents showing ≥99.9% fungal death, were determined (following completion of MIC 

assays) wherein entire volumes of microtiter wells (200 µL) were spread onto individual PDA plates, 
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and cultured for another 48 h. Compound interactions, Fractional Inhibitory Concentration Indices 

(FICI) and Fractional Fungicidal Concentration Indices (FFCI) were calculated, as follows: FICI or  

FFCI = (MIC or MFC of compound A in combination with compound B/MIC or MFC of compound 

A, alone) + (MIC or MFC of compound B in combination with compound A/MIC or MFC of 

compound B, alone). Interactions were defined as: “synergistic” (FICI or FFCI ≤ 0.5) or “indifferent” 

(FICI or FFCI > 0.5–4) [21].  

Synergistic FICIs and FFCIs between KA and H2O2 only occurred in AF293. Despite the absence of 

calculated “synergism” as depicted by “indifferent” interactions (by definition) (Table 2), there was 

enhanced antifungal activity (i.e., chemosensitization) in the remaining A. fumigatus and A. terreus 

strains. This enhancement was indicated by lower MICs and MFCs for either or both KA and H2O2 

when co-applied. Also, the A. fumigatus MAPK mutants had half the MICs and MFCs of AF293 

(Table 2; Figure 3a), suggesting that, in the wild type fungi, MAPKs in the oxidative/osmotic stress 

responsive pathway play protective roles against the antimycotic activity of KA + H2O2. 

Table 2. Antifungal chemosensitization of kojic acid (mM) with H2O2 (mM) tested against 

Aspergillus strains. a Minimum fungicidal concentrations (MFCs) are concentrations where 

≥99.9% fungal death was achieved. 

Strains Compounds MIC alone MIC combined FICI MFC alone MFC combined FFCI 

A. fumigatus  

AF293 

Kojic  

H2O2 

>12.8 b  

8 

0.8  

4 

0.5 >12.8  

8 

0.8  

4 

0.5 

A. fumigatus 

sakA∆ 

Kojic  

H2O2 

>12.8  

4 

12.8  

2 

1.0 >12.8  

4 

12.8  

2 

1.0 

A. fumigatus 

mpkC∆ 

Kojic  

H2O2 

>12.8  

4 

12.8  

2 

1.0 >12.8  

4 

12.8  

2 

1.0 

A. terreus 

UAB673 

Kojic  

H2O2 

>12.8  

2 

6.4  

1 

0.8 >12.8  

4 

12.8  

1 

0.8 

A. terreus 

UAB680 

Kojic  

H2O2 

>12.8  

2 

6.4  

1 

0.8 >12.8  

2 

12.8  

1 

1.0 

A. terreus 

UAB698 

Kojic  

H2O2 

>12.8  

2 

6.4  

1 

0.8 >12.8  

2 

12.8  

1 

1.0 

Mean Kojic  

H2O2 

>12.8  

3.7 

7.6  

1.8 

0.8 >12.8  

4.0 

10.8  

1.8 

0.9 

t-test Kojic  

H2O2 

- p < 0.001  

p < 0.5 

- - p < 0.001  

p < 0.1 

- 

a MIC: Minimum inhibitory concentration, MFC: Minimum fungicidal concentration, FICI: Fractional Inhibitory 

Concentration Indices, FFCI: Fractional Fungicidal Concentration Indices. Student’s t-test for paired data (combined,  

i.e., chemosensitization) was vs. mean MIC or MFC of each compound (alone, i.e., no chemosensitization) determined in 

six strains. Calculation was based on [22]. b Kojic acid was tested up to 12.8 mM. For calculation purpose, 25.6 mM 

(doubling of 12.8 mM) was used.  
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Figure 3. (a) MFC determination of A. fumigatus strains (AF293, sakA∆, mpkC∆) with the 

treatment of kojic acid (KA) + H2O2. (b) MFC determination in A. fumigatus sakA∆ strain 

with the treatment of KA + AMB. Results indicated that A. fumigatus AF293 and mpkC∆ 

strains needed higher concentration of KA or AMB to achieve ≥99.9% cell death compared 

to sakA∆. (c) MFC determination in Candida krusei ATCC6258 with the treatment of  

KA + AMB. 

 

2.2. Enhanced Antimycotic Activity of AMB with KA in Filamentous Fungi and Yeasts  

AMB is an antimycotic drug against filamentous or yeast pathogens. However, AMB can be 

associated with significant side effects resulting in nephrosis and other tissue-damage in invasive 

pulmonary aspergillosis [23]. Therefore, we reasoned that use of chemosensitizing agents from natural 

sources could enhance the effectiveness of AMB, while lowering toxicity of this polyene drug to 

human cells. The main mode of action of AMB is disruption of the fungal plasma membrane, resulting 

in ion leakage. However, AMB also induces oxidative damage [24–27] by stimulating ROS  

production [28]. Since KA contributed to oxidative stress when combined with H2O2 in Aspergillus 

(See Table 2), we surmised it might also enhance AMB activity. 

2.2.1. Microtiter Plate (microdilution) Bioassay: Filamentous Fungi 

Checkerboard assays of KA (0.2–12.8 mM) and AMB (0.125–32 µg/mL) (See Experimental 

Section) were initially used to assess antifungal interactions against the Aspergillus strains, by using 

CLSI M38-A protocol [20]. In assays of the Aspergillus strains, co-application of KA increased AMB 

activity only in strains of A. fumigatus, where FICIs and FFCIs were synergistic in the A. fumigatus 

MAPK mutant strains (Table 3; Figure 3b). 
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Table 3. Antifungal chemosensitization of kojic acid (mM) with AMB (µg/mL) tested 

against Aspergillus and yeast strains. a MFCs are concentrations where ≥99.9% fungal 

death was achieved, except where noted in the Table.  

Strains Compounds 
MIC 

alone 

MIC 

combined 
FICI 

MFC 

alone 

MFC 

combined 
FFCI 

A. fumigatus 

AF293 

Kojic  

AMB 

>12.8 b  

4 

0.8  

2 

0.8 >12.8  

>32 c 

3.2  

32  

0.6  

(99.8% 

inhibition) 

A. fumigatus 

sakA∆ 

Kojic  

AMB 

>12.8  

2 

12.8  

1 

1.0  

(85%–90% 

inhibition) 

>12.8  

4 

0.4  

2 

0.5 

A. fumigatus 

mpkC∆ 

Kojic  

AMB 

>12.8  

4 

0.2  

2 

0.5 >12.8  

8 

0.2  

4 

0.5 

C. albicans 

CAN276 

Kojic  

AMB 

>12.8  

1 

6.4  

0.5 

0.8 >12.8  

1 

> 12.8  

1 

2.0 

C. krusei 

ATCC 6258 

Kojic  

AMB 

>12.8  

2 

0.4  

1 

0.5 >12.8  

2  

6.4  

1  

0.8 

Cryptococcus 

neoformans 

CN24 

Kojic  

AMB 

>12.8  

2 

0.4  

1 

0.5 >12.8  

2 

3.2  

1 

0.6 

Mean Kojic  

AMB 

>12.8  

2.5 

3.5  

1.3 

0.7 >12.8  

13.5 

6.5  

6.8 

0.8 

t-test Kojic  

AMB 

- p < 0.001  

p < 0.05 

- - p < 0.005  

p < 1.0 

- 

a AMB: Amphotericin B. MIC: Minimum inhibitory concentration, MFC: Minimum fungicidal concentration.  

FICI: Fractional Inhibitory Concentration Indices, FFCI: Fractional Fungicidal Concentration Indices. Student’s t-test for 

paired data (combined, i.e., chemosensitization) was vs. mean MIC or MFC of each compound (alone, i.e., no 

chemosensitization) determined in six strains. Calculation was based on [22]. b Kojic acid was tested up to 12.8 mM. For 

calculation purpose, 25.6 mM (doubling of 12.8 mM) was used. c AMB was tested up to 32 µg/mL. For calculation 

purpose, 64 µg/mL (doubling of 32 µg/mL) was used.  

2.2.2. Microtiter Plate (microdilution) Bioassay: Yeasts 

Checkerboard assays of the yeast strains employed methods outlined in the European Committee on 

Antimicrobial Susceptibility Testing (EUCAST)] [29]. According to these methods, MICs were 

determined at 24 h for Candida and Saccharomyces, and at 48 h for Cryptococcus. Following MIC 

determinations, MFCs were determined on Yeast Peptone Dextrose (YPD) agar, where cells were 

cultured for an additional 48 h for Candida/Saccharomyces or 72 h for Cryptococcus, respectively. 

Among the Candida and Cryptococcus strains tested, KA enhanced AMB activity in C. albicans 

CAN276, C. krusei ATCC6258, C. neoformans CN24 (Table 3). Synergism of KA + AMB was 

observed in C. krusei ATCC6258 and C. neoformans strains (Table 3; Figure 3c). 

In parallel checkerboard assays of S. cerevisiae, the wild type and two MAPK cell wall integrity 

mutant strains, i.e., slt2∆ (MAPK deletion; cell wall integrity pathway) and bck1∆ (MAPK kinase 

kinase deletion; cell wall integrity pathway) were included. We tried to determine whether the MAPK 

system for cell wall integrity plays a protective role against the antimycotic activity of KA + AMB. 
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These mutants previously showed hypersensitivity to certain environmental stresses [30,31]. However, 

the mutants were not more sensitive than the wild type to co-application of either compound (Table 4), 

indicating Slt2p and Bck1p (viz., cell wall integrity pathway) do not participate in yeast cell 

homeostasis under KA + AMB treatment. 

Table 4. Antifungal chemosensitization of kojic acid (mM) with AMB (µg/mL). a MFCs 

are concentrations where ≥99.9% fungal death was achieved. 

Strains Compounds 
MIC 

alone 

MIC 

combined 
FICI MFC alone 

MFC 

combined 
FFCI 

S. cerevisiae 

BY4741 

Kojic  

AMB 

>12.8 b 

2 

6.4  

1 

0.8 > 12.8  

4 

12.8  

2 

1.0 

S. cerevisiae 

slt2∆ 

Kojic  

AMB 

>12.8  

2 

6.4  

1 

0.8 > 12.8  

4 

12.8  

2 

1.0 

S. cerevisiae 

bck1∆ 

Kojic  

AMB 

>12.8  

2 

6.4  

1 

0.8 > 12.8  

4 

12.8  

2 

1.0 

Mean Kojic  

AMB 

>12.8  

2 

6.4  

1 

0.8 > 12.8  

4 

12.8  

2 

1.0 

t-test Kojic  

AMB 

- p < 0.001  

p < 0.001 

- - p < 0.001  

p < 0.001 

- 

a AMB: Amphotericin B. MIC: Minimum inhibitory concentration, MFC: Minimum fungicidal 

concentration. FICI: Fractional Inhibitory Concentration Indices, FFCI: Fractional Fungicidal Concentration 

Indices. Student’s t-test for paired data (combined, i.e., chemosensitization) was vs. mean MIC or MFC of 

each compound (alone, i.e., no chemosensitization) determined in three strains. Calculation was based on [22].  
b Kojic acid was tested up to 12.8 mM. For calculation purpose, 25.6 mM (doubling of 12.8 mM) was used. 

2.3. No Enhancement of Antimycotic Activity of H2O2 with KA in Yeasts 

KA (5 mM) and H2O2 (2 and 3 mM) co-application was tested against yeast in agar bioassays, 

including five clinical strains of Candida, one of C. neoformans and non-pathogenic, S. cerevisiae. 

Yeast cells (1 × 106) were serially diluted (10-fold), spotted onto Synthetic Glucose (SG)  

agar incorporated with KA and/or H2O2, and incubated at 30 °C, S. cerevisiae, or 35 °C, 

Candida/Cryptococcus (See [32] for methods). These assays revealed no effect (data not shown) and 

hence, checkerboard assays to determine MICs, FICIs, etc., were not performed.  

The results of all chemosensitization tests (i.e., KA + H2O2 or AMB in filamentous and yeast 

strains) are summarized in Table 5. 
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Table 5. Summary of responses of Aspergillus and yeast strains to the co-application of 

kojic acid with H2O2 or AMB. a 

Fungal strains 
Agents co-applied 

H2O2 (FICI, FFCI) b AMB (FICI, FFCI) b 

Filamentous fungi   

Aspergillus flavus 3357 - - 
A. parasiticus 5862 - - 
A. fumigatus AF293 + (0.5, 0.5) + (0.8, 0.6) 
A. fumigatus sakA∆ + (1.0, 1.0) + (1.0, 0.5) 
A. fumigatus mpkC∆ + (1.0, 1.0) + (0.5, 0.5) 
A. terreus UAB673 + (0.8, 0.8) - 
A. terreus UAB680 + (0.8, 1.0) - 
A. terreus UAB698 + (0.8, 1.0) - 

Yeasts   

Candida albicans 90028 - - 
C. albicans CAN276 - + (0.8, 2.0) 
C. krusei 6258 - + (0.5, 0.8) 
C. krusei CAN75 - - 
C. tropicalis CAN286 - - 
Cryptococcus neoformans CN24 - + (0.5, 0.6) 
Saccharomyces cerevisiae BY4741 - + (0.8, 1.0) 
S. cerevisiae bck1∆ - + (0.8, 1.0) 
S. cerevisiae slt2∆ - + (0.8, 1.0) 

a +, enhancement of antifungal activity after co-application; -, no enhancement of antifungal activity after  

co-application. b FICI, Fractional Inhibitory Concentration Indices; FFCI, Fractional Fungicidal 

Concentration Indices; Both FICI and FFCI values were based on Tables 2–4; Bold: synergistic interaction. 

2.4. Enhanced Antimycotic Activity of Strobilurin with KA in A. fumigatus  

We also tested combinations of KA with agricultural fungicides, fludioxonil (FLUD) or Kre-Me 

(strobilurin), fungicides that target different components of the oxidative stress response  

system [33,34], by using A. fumigatus wild type and MAPK (sakA∆, mpkC∆) mutants. Certain fungi 

with mutations in genes involved in signal transduction of stress response, e.g., MAPK signaling 

pathway, can escape toxicity of the commercial fungicide FLUD [34]. In a prior study we found  

redox-active benzo derivatives co-applied with either of these fungicides reduced effective dosages 

and prevented tolerance of A. fumigatus sakA∆ and mpkC∆ mutants to FLUD [35]. However, in our 

present study, co-application of KA with FLUD did not overcome tolerance of these mutants to this 

fungicide (Figure 4a).  

In a parallel study, we tested combinations of KA with Kre-Me. Kre-Me is an inhibitor of complex 

III of the mitochondrial respiratory chain (MRC), the key route system for cellular energy (ATP) 

production [36]. Moreover, disruption of complex III of the MRC results in an abnormal release of 

electrons that additionally cause cellular oxidative stress [37]. Therefore, antioxidant enzymes play 

important roles in protecting cells from oxidative damage triggered by MRC inhibitors. KA improved 

antimycotic activity of Kre-Me against all A. fumigatus strains (Figure 4b), where A. fumigatus sakA∆ 
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and mpkC∆ mutants showed relatively higher tolerance to Kre-Me than the wild type (AF293). Thus, 

results indicated that the chemosensitizing mechanism of KA might not involve glutathione/superoxide 

dismutase-based oxidative stress response, differing from redox-active benzo derivatives [35]. We 

speculated that, in addition to inhibiting ATP production, co-application of KA and Kre-Me might 

involve responses of other types of antioxidant enzymes/systems. Comprehensive chemosensitization 

tests using KA with additional strobilurins are currently underway in various filamentous fungi, 

including Aspergillus, Penicillium, Acremonium, Scedosporium, and others (Note: There was no 

chemosensitization effect of KA with any azole drug, such as fluconazole, ketoconazole, itraconazole, 

in Aspergillus or yeasts (data not shown)). 

Figure 4. (a) Agar bioassay showing co-application of kojic acid (KA) could not overcome 

the tolerance of Aspergillus fumigatus sakA∆ and mpkC∆ mutants to fludioxonil (FLUD). 

None, no treatment control; FLUD 50 µM; KA 30 mM. (b) Agar bioassay showing  

co-application of KA enhanced the antifungal activity of strobilurin (Kre-Me) in  

A. fumigatus strains. None, no treatment control; Kre-Me 25 µM; KA 25 mM. 

 

3. Experimental Section  

3.1. Fungal Strains and Culture Conditions 

Aspergillus strains (See Table 1) were grown at 35 °C on potato dextrose agar (PDA; Sigma,  

St. Louis, MO, USA), except A. parasiticus, which was grown at 28 °C on PDA. Yeast strains 

(Candida albicans, C. krusei, C. tropicalis, Cryptococcus neoformans, Saccharomyces cerevisiae; See 

Table 1) were cultured on Synthetic Glucose (SG; Yeast nitrogen base without amino acids 0.67%, 

glucose 2% with appropriate supplements: uracil 0.02 mg/mL, amino acids 0.03 mg/mL) or Yeast 

Peptone Dextrose (YPD; Bacto yeast extract 1%, Bacto peptone 2%, glucose 2%) medium at 35 °C for 

yeast pathogens (Candida, Cryptococcus) or 30 °C for S. cerevisiae, respectively. 
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3.2. Chemicals 

Antifungal chemosensitizing agent (kojic acid (KA)), antifungal drugs (amphotericin B (AMB), 

fluconazole, ketoconazole, itraconazole), strobilurin (kresoxim methyl (Kre-Me)) and oxidizing agent 

(hydrogen peroxide (H2O2)) were procured from Sigma Co. (St. Louis, MO, USA). Each compound 

was dissolved in dimethyl sulfoxide (DMSO; absolute DMSO amount: <1% in media), except H2O2, 

which was dissolved in water, before incorporation into culture media. In all tests, control plates (i.e., 

“No treatment”) contained DMSO at levels equivalent to that of cohorts receiving antifungal agents, 

within the same set of experiments. 

3.3. Antifungal Bioassay  

3.3.1. Agar Plate Bioassay: Filamentous Fungi 

In the plate bioassay, measurement of sensitivities of filamentous fungi to the antifungal agents was 

based on percent (%) radial growth of treated compared to control (“No treatment”) fungal colonies 

(See text for test concentrations.) [38]. Minimum inhibitory concentration (MIC) values on agar plates 

were determined based on triplicate bioassays, and defined as the lowest concentration of agents where 

no fungal growth was visible on the plate. For the above assays, fungal conidia (5 × 104 CFU/mL) 

were diluted in phosphate-buffered saline (PBS) and applied as a drop onto the center of PDA plates 

with or without antifungal compounds. Growth was observed for three to seven days to determine 

cellular sensitivities to drugs/compounds.  

3.3.2. Microtiter Plate (microdilution) Bioassay: Filamentous Fungi 

To determine antifungal chemosensitizing activities of KA (0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8 mM) to 

antifungal drug (AMB; 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32 µg/mL) or H2O2 (0.0625, 0.125, 0.25, 0.5, 1, 

2, 4, 8, 16 mM) in filamentous fungi, checkerboard bioassays (0.4 × 104–5 × 104 CFU/mL) were 

performed in microtiter wells using a broth microdilution (with RPMI 1640 medium; Sigma Co.  

(St. Louis, MO, USA), according to methods outlined by the Clinical Laboratory Standards Institute 

(CLSI) M38-A [20]. MICs for chemosensitization were defined as the concentrations where no fungal 

growth was visible at 48 and 72 h. All bioassays were performed in triplicate. Statistical analysis was 

based on [22]. 

3.3.3. Microtiter Plate (microdilution) Bioassay: Yeasts 

Chemosensitizing activities of KA (0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8 mM) to antifungal drug (AMB; 

0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32 µg/mL) or H2O2 (0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16 mM) were 

determined by using checkerboard bioassays in microtiter plates (with RPMI 1640 medium, except SG 

for S. cerevisiae; Sigma Co., Madrid, Spain). To determine changes in MICs of antifungal agents (i.e., 

drugs and chemosensitizers) in microtiter wells, checkerboard bioassays (0.5 × 105 to 2.5 × 105 CFU/mL) 

were performed using broth microdilution protocols according to methods outlined by the European 

Committee on Antimicrobial Susceptibility Testing (EUCAST) [29]. MICs for chemosensitization 
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were defined as the concentrations where no fungal growth was visible at 24 and 48 h. All bioassays 

were performed in triplicate. Statistical analysis was based on [22]. 

4. Conclusions  

In summary, enhancing antifungal interactions of KA in combination with H2O2, AMB, FLUD or 

Kre-Me were, as follows: (1) All A. fumigatus strains were sensitive to either KA + H2O2 or  

KA + AMB; (2) A. terreus strains were only sensitive to KA + H2O2; (3) C. albicans CAN276,  

C. krusei ATCC6258, C. neoformans CN24, S. cerevisiae were only sensitive to KA + AMB; and  

(4) A. flavus 3357, A. parasiticus 5862, C. albicans 90028, C. krusei CAN75, C. tropicalis CAN286 

were marginally or not sensitive to any co-treatments; (5) A. fumigatus AF293 was more sensitive than 

the MAPK mutant strains to KA + Kre-Me. Thus, the antifungal chemosensitizing capacity of KA 

appears to be antifungal agent and/or fungal strain-specific. In conclusion, KA, a safe natural 

compound, may have a new use as an enhancer of certain commercial antifungal agents, such as AMB, 

H2O2 or strobilurin, against defined fungal pathogens. The enhancing effect appears to involve the 

modulation of the function of oxidative stress response system in the fungus. Further studies are 

warranted to determine the precise mechanism of action of KA for antifungal chemosensitization. 
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