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Abstract: The paper presents a model for simulating the protein folding process in silico. 

The two-step model (which consists of the early stage—ES and the late stage—LS) is 

verified using two proteins, one of which is treated (according to experimental observations) 

as the early stage and the second as an example of the LS step. The early stage is based 

solely on backbone structural preferences, while the LS model takes into account the water 

environment, treated as an external hydrophobic force field and represented by a 3D Gauss 

function. The characteristics of 1ZTR (the ES intermediate, as compared with 1ENH, which 

is the LS intermediate) confirm the link between the gradual disappearance of ES 

characteristics in LS structural forms and the simultaneous emergence of LS properties in 

the 1ENH protein. Positive verification of ES and LS characteristics in these two proteins 

(1ZTR and 1ENH respectively) suggest potential applicability of the presented model to in 

silico protein folding simulations. 
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1. Introduction  

Experimental observations of the protein folding process suggest the presence of intermediates [1]. 

An in silico process involving two intermediate steps, accordant with experimental observations, is 

extensively discussed in [2]. Verification of the model appears possible since A. Fersht has described  

(in detail) the structural form of the early intermediate of a specific protein belonging to the group of  

fast-folding proteins [3]. Our two-stage model, consisting of an early stage (ES) and a late stage (LS), 

is applied to the structure of 1ENH (a type of Drosophila melanogaster Engrailed homeodomain [4]), 

and its L16A mutant 1ZTR [3], treated as the early-stage intermediate (based upon experimental 

examination) of the 1ENH protein (LS). 

According to the presented model, the ES step is assumed to be driven solely by the backbone 

conformation expressed by two geometric parameters, treated as criteria for structural classification. 

These two parameters are, respectively, the V-angle (the tilt between two sequential peptide bond 

planes) and the R-radius of curvature (which appears to be dependent on the V-angle, by way of a 

second-degree approximation function [5,6]).  

The LS model assumes the generation of a tertiary structure centered upon a hydrophobic core. This 

phenomenon is the consequence of the folding process occurring in a water environment. Generation of 

a hydrophobic core (i.e., migration of hydrophobic residues towards the center of the protein body, with 

simultaneous exposure of hydrophilic residues on its surface) proceeds in parallel to the standard 

optimization of internal nonbonding interactions [2]. The analyzed proteins are very good examples of 

the verification of the model. Unfortunately only a limited number of examples experimentally proven as 

the early stage of folding process are available. Thus, the verification of the model based on a single 

protein (in its ES and LS forms) is possible using practically just this two proteins of crystalline 

structures of the early- and late-stage folding intermediate. 

Materials and Methods 

Two-step model. The presented model transforms the following folding process: 

U → I1 → I2 →………….→ In → N 

where U—unfolded, I—intermediate the number of which is unknown (possibly dependent on the 

specificity of the protein molecule), N—native form—into the following: 

U → ES → LS → N 

where ES and LS denote the early and late stage respectively.  

Early stage model. This model assumes the dominant role of a backbone whose conformation is 

expressed by two geometric parameters. The first one is the V-angle—the dihedral angle between two 

sequential peptide bond planes, the value of which is close to 0° for helical forms and close to 180° for 

extended and β-like structures. The latter, which appears dependent on the former, is the radius of 

curvature of the polypeptide fragment (calculated for pentapeptide fragments), which is small for helical 

structures and large for β-structural forms. The relation between these two parameters can be expressed 

by an approximation function in the form of a second-degree polynomial. According to  

this model all structures present in proteins may be treated as helixes with a variable radius of  
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curvature—this includes the extended form where the radius of curvature is very large (theoretically 

infinite). The relation between the V-angle and R-radius of curvature (plotted using a logarithmic scale, 

to avoid large values for near-planar forms) is presented in Figure 1B.  

The values of the V-angle and R-radius of curvature, calculated for pentapeptide fragments and 

plotted on a coordinate system, enables measurement of the accordance between the assumed model 

and actual proteins. The average distance between the expected and observed position of a particular 

point was taken as a criterion of accordance. A value of Daveraged lower than 1 unit indicates good 

agreement between the model and corresponding observations.  

Figure 1. The ES model definition. (a) the Ramachandran plot with its low-energy area 

distinguished; (b) the relation between the V-angle (dihedral angle between two sequential 

peptide bond planes) and R-radius of curvature (using a logarithmic scale to avoid large 

values for β-structural forms), calculated for structures corresponding to low-energy areas 

on the Ramachandran plot (shown in a), together with the approximation function  

(2nd degree polynomial); (c) the Ramachandran plot with points representing structures 

accordant with the approximation function shown in (b); (d) the elliptical path assumed to 

represent the limited conformational subspace for the early-stage intermediate; (e) the 

elliptical path encompassing all secondary structures. The areas distinguished in (b) (small 

values of V for helical structures and large values for β-like structures) and their placement 

on the Ramachandran plot (e). The arrows linking b and e show the helical and β-like 

structures in two representations: V/R parameters (b) and Ramachandran map (e).  
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The protein 1ZTR is taken in this paper as the example of ES intermediate according to the 

experimental observations [3]. If the model is applied for simulation of the folding process, the ES 

structure is generated on the basis of probability profile along the ellipse path treated as limited 

conformational sub-space for early steps of folding. This probability profile can be received using the 

Phi, Psi angles as they appear in PDB (nonredundant database) using the shortest distance criterion. 

This profile is characterized by seven probability maxima. Some of them represent secondary structural 

motifs (one maximum-right handed helix, two β-structural and one left-handed helix). Three others 

represent the unordered structural forms. The recognition of particular maxima—and in consequence 

recognition of particular structural form (although limited only to the recognition of the structures 

belonging to ellipse path)—is possible using the contingency table which expresses the relation between 

sequence of tetrapeptides and their representation in form as defined for ES intermediate. The detailed 

presentation of this procedure and the ES structural form recognition is given in [5–7]. 

Late-stage model. The tertiary structure of the protein in the LS step of the protein folding process 

is assumed to involve the generation of a hydrophobic core, together with simultaneous optimization of 

all other non-bonding interactions (electrostatic, van der Waals and torsion potential) [2]. The presence 

of an external force field is expressed by a three-dimensional Gauss function. The force field stimulates 

the hydrophobic core in the “fuzzy oil drop” model directing hydrophobic residues toward the center of 

the ellipsoid with simultaneous exposure of hydrophilic residues toward the surface (hydrophobic level 

close to zero) according to the following Gauss function:  
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where zyx ,,  are the coordinates of the geometric center of the molecule (usually located at the origin 

of the coordinate system, where each value can be considered equal to zero). The size of the molecule is 

expressed by the triple σx, σy, σz, which is calculated for each molecule for each axis (direction) 

individually, provided that the longest possible distance between interacting atoms along each plane 

coincides with the appropriate coordinate system axis. σ values are calculated as 1/3 of the longest 

distance between two effective atoms along each axis. The value of the Gauss function at any point of 

the protein body is treated as the idealized hydrophobicity density, shaping its hydrophobic core. 

Idealized hydrophobicity at any point of the “fuzzy oil drop” can be calculated according to the 

Gauss function for the molecule whose geometric center lies at the origin of the coordinate system. The 

empirical hydrophobicity distribution is calculated according to the function presented by Levitt [8] 
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where N expresses the number of amino acids in the protein (number of grid points), r
iH

~
expresses the 

hydrophobicity of the i-th residue according to the accepted hydrophobicity scale, rij expresses the 

distance between the i-th and j-th interacting residues and c expresses the cutoff distance, which, 

according to the original paper, is assumed to be 9 Å. The values of joH
~

are standardized by dividing 
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them by the sumoH
~

 coefficient, which is the sum of all hydrophobicities attributed to grid points. The 

Aboderin scale was applied for calculation [9]. The dependence of the final results on the 

hydrophobicity scale was presented in details in [10]. 

A protein whose hydrophobicity distribution is highly consistent with idealized values is treated as 

structurally accordant with the presented model. 

Kullback-Leibler divergence entropy. The accordance between the idealized and the observed 

hydrophobicity distribution is measured according to the Kullback-Leibler relative (divergence) entropy 

[11], which quantifies the distance between two distributions:  
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where DKL—distance entropy, p—probability of a particular event actually being observed (O),  

p0—probability of the same event in the reference distribution (theoretical one denoted as T). The index 

i denotes a particular amino acid while N denotes the number of amino acids in the polypeptide chain. 

The value of p in the equation corresponds to hydrophobicity density attributed to a specific  

effective atom. 

In order to ensure notational uniformity throughout the paper, the above equation can be  

expressed as: 

 ii

N

i
i TOOTO /log/ 2

1



  

The distance between the observed and the theoretical (O/T) values is calculated as the sum (number 

of residues) of O (observed distribution) versus T (theoretical distribution). The symbol T is substituted 

by R taking the random distribution as the reference one.  

The distance between both distributions (assuming T and R as a reference) has been calculated for 

both presented proteins. Entropy can only be interpreted only in form of relative values. Thus the 

comparison of O/T versus O/R may describe the status of particular hydrophobicity distribution. The 

relation O/T < O/R was taken as evidence for the hydrophobic core accordant with the “fuzzy oil drop” 

model while the opposite relation O/T > O/R suggests rather random distribution. 

2. Results and Discussion 

In this section, the L16A mutant of the Drosophila melanogaster Engrailed homeodomain will be 

referred to as ES (1ZTR) while its corresponding WT form is assumed to represent the LS  

(1ENH) structure. 

2.1. ES Intermediate  

The characteristics of the ES intermediate and the native structure (treated as the LS intermediate) 

based on the presented ES model are shown in Figure 2. Assuming an idealized relation between the  

V-angle and R-radius of curvature, the location of points expressing the geometric parameters of the ES 

and the native structural form reveals the degree to which both structures are consistent with the 

assumed model (Figure 2) This accordance can be expressed as higher agreement of assumed model in 
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ES intermediate and its gradual disappearance in LS model (higher values of Daveraged for  

LS intermediate). 

Figure 2. The early stage (ES) model, as applied to 1ZTR (left) and 1ENH (right). Dark 

blue symbols represent the approximation function, pink squares represent the parameters as 

they appear in proteins, while dark distributed points residues which differ by more than  

1 unit (along the Y-axis). 

 

A significantly greater number of residues geometrically accordant with the ES model can be 

observed in 1ZTR (ES intermediate). The ES protein is treated as a “frozen” early-stage structural 

form. Poor agreement with theoretical values occurs in the case of 1ENH—it would appear that this 

protein forfeits its early-stage geometric properties in the process of folding. 

The location of fragments accordant with (and divergent from) the assumed model is shown in 

Figure 3, for both proteins. The values of Daverage in Table 1 express the degree of structural changes. 

Residues exhibiting significant discrepancies between actual and predicted positions (ln(R), 

dependent on the V-angle) are located in close proximity to PRO (4) and GLY (39) (PDBSum indices 

for 1ZTR) in both proteins. The positional irregularity of these residues and their neighbors is probably 

due to their high structural specificity. PRO is the most rigid residue (φ angle fixed) while GLY is the 

most flexible residue among the 20 amino acids.  
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Figure 3. 3D structure (ribbon) of 1ZTR (left) and 1ENH (right), with residues represented 

by dark distributed points in Figure 2. The red fragments represent polypeptides whose 

positions differ from expectations. The white fragments represent the position of point 

mutation L16A in ES form (left picture). 

 

2.2. LS Model  

The accordance of the tertiary protein structure is measured by comparing the idealized 

hydrophobicity distribution with empirically observed values. Both proteins were analyzed to enable 

comparison between early- and late-stage structural forms with respect to the assumed model.  

Figure 4. LS model. Top: the hydrophobicity profile plotted along the polypeptide chain in 

1ZTR; bottom: the corresponding profile in 1ENH (LS). Dark rhombuses–theoretical 

distribution; pink squares–observed distribution; light blue line–random distribution. The red 

circle marks the point of mutation. T, O and R denote the theoretical, observed and random 

distributions, respectively. The yellow triangles distinguish the helical fragments. 
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The hydrophobicity distribution (plotted along the polypeptide chain) for both proteins is shown in 

Figure 4. Visual analysis suggests significantly higher accordance of the hydrophobic core structure in 

1ENH (LS form) compared to 1ZTR (ES form). A quantitative comparison is presented in Table 1. The 

values of O/T and O/R, enabling comparative analysis, are given in Table 1. Significantly better 

agreement between the observed and idealized hydrophobicity distribution occurs in the LS structural 

form. The 3D distribution of low- and high-accordance residues is presented in Figure 5. 

Table 1. O/T and O/R parameters for 1ZTR and 1ENH, treated as ES and LS (native) 

structural forms respectively. O/T denotes the distance between observed (O) and 

theoretical (T) distribution which is used as a reference, while O/R denotes the distance 

between observed (O) and random (R) distribution. The relation O/T < O/R is treated as an 

indicator of agreement between the observed structure of the hydrophobic core and the 

assumed “fuzzy oil drop” model. 

 ES MODEL LS MODEL 

PROTEIN Daverage O/T O/R 

1ZTR (ES structure) 0.342 0.4978 0.3638 

1ENH (LS structure) 0.623 0.1286 0.2137 

Figure 5. 3D representation (ribbon) of 1ZTR (left-ES) and 1ENH (right-LS), with 

residues whose DKL values are below 0.01 (good agreement between the predicted and 

observed hydrophobicity distribution) marked in white. Red residues indicate the point  

of mutation. 

 

The presence and role fragment of well defined secondary structure can be seen on profiles presented 

in Figure 4. The amphiphilic character of helices in 1ENH is visualized as zigzag form of the profile. 

Almost every one or two residues represent opposite hydrophobic character. The improper (in respect 

to hydrophobic core structure) orientation of helical fragments in 1ZTR is changed in 1ENH where the 

accordance between expected and observed distribution is high. The hydrophobicity distributions in the 

same helical fragments (of amphiphilic character) in both structures do not fit to the expected 

distribution in the ES structure. It suggests the proper orientation of helices in respect to the 

hydrophobic core structure in LS intermediate. 
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3. Conclusions 

The geometric characteristics of the ES intermediate seem to represent a structural form dominated 

by backbone preferences which are not evident in the LS structural form. The accordance of the LS 

model is opposite in character. Poor agreement between the idealized and observed hydrophobicity 

distributions can be observed in the ES intermediate, while a well-constructed hydrophobic core 

emerges in the LS intermediate. The loss of idealized backbone geometry on the one hand, with 

simultaneous generation of a hydrophobic core on the other hand yield hints as to the nature of the 

folding process.  

Both models were positively verified using 1ENH and 1ZTR as examples, in order to estimate the 

applicability of the presented concept to protein folding simulations. The generation of a tertiary 

structure based on a hydrophobic core seems to follow theoretical predictions.  

The geometric interpretation of the ES structural form carries some consequences related to the 

definition of a limited conformational subspace of the ES intermediate (Figure 1). Structures which 

satisfy the proposed relation between the V-angle and R-radius of curvature belong to specific areas on 

the Ramachandran plot, suggesting an elliptical conformational subspace for the early-stage 

intermediate. This limited subspace, which appears to be balanced with respect to the amount of 

information carried by the amino acid sequences and the amount of information necessary to define the 

protein’s structure, enables generation of starting structures for various optimization methods. Proteins 

folded with the use of ES intermediates (according to this model) are discussed in [12]. 

The influence of an external force field representing water and its impact upon the folding process 

seems to be very well described by a 3D Gauss function. The set of compounds whose structure appears 

accordant with theoretical predictions includes downhill proteins [13], antifreeze proteins [14] and 

certain other proteins with varying biological properties. The structure of proteins folded in silico in the 

presence of an external force field was found to be in good agreement with observations [2]. Whenever 

the shape of the hydrophobic core diverged from the idealized “fuzzy oil drop” model, ligand presence 

was usually responsible. Protein folding in the presence of an external hydrophobic force field is 

presented in [14–16], suggesting practical applicability of the model (although the degree of accordance 

is not yet deemed satisfactory). Structural analysis of trans-membrane proteins in their dynamic forms 

strongly suggests the reliability of the proposed model [17]. 

The validity of the assumed model with respect to the influence of an external force field on protein 

structure suggests a search for other external elements directing the folding process toward  

the generation of highly specific ligand (substrate) binding sites, as hinted by simulations of  

ribonuclease [18] and hemoglobin [19], with and without the presence of ligands in the folding 

environment. Residues characterized by hydrophobicity deficiency (versus the idealized distribution) 

appear to be involved in biological functions such as ligand (substrate) binding [20,21].  

Restricting the presented analysis to a pair of proteins was necessitated by the lack of a larger base of 

experimentally verified early intermediates. An extensive study of the presence of ES characteristics in 

crystal (native) structures of proteins classified according to the SCOP database can be found  

in [22]. Proteins classified according to their secondary structure reveal significant representation of ES 

properties even in LS forms. It seems that significant changes occur in loop fragments (as observed in 

both proteins discussed in this paper), which calls for the preparation of suitable starting structures for 
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structure prediction algorithms. The conformational subspace defined in this paper helps solve this 

problem by introducing a method facilitating the search for starting structures. 

In conclusion, we can state that: 

1. Limiting the conformational subspace for early folding stages seems to be accurate, as proven 

by the experimentally-verified structure of 1ZTR.  

2. The LS step may be simulated through the generation of a hydrophobic core (using a 3D Gauss 

function), which results in the highest concentration of hydrophobicity at the center of the 

protein body with simultaneous exposure of hydrophilic residues on the protein surface.  

3. The generation of a hydrophobic core (triggered by an external force field) should be taken as 

an accompanying procedure in the course of internal energy minimization.  

The database shows that when proteins fold, a significantly large percentage of nonpolar groups are 

exposed and a large percentage of charged and polar groups are buried in the interior (groups with 

opposite charges are usually in contact with each other). This observation appeared to be related to our 

model. The irregularity of hydrophobic profile appeared to be specific for particular protein. This is why 

the quantitative measurements of these irregularities was used as the criteria for the recognition of 

biological function of particular protein. The application and detailed analysis is presented in previous 

papers [10,20]. 
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