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Abstract: We report on a new mode interaction found in electroconvection experiments
on the nematic liquid crystal mixture Phase V in planar geometry. The mode interaction
(codimension two) point occurs at a critical value of the frequency of the driving AC
voltage. For frequencies below this value the primary pattern-forming instability at the onset
voltage is an oblique stationary instability involving oblique rolls, and above this value it
is an oscillatory instability giving rise to normal traveling rolls (oriented perpendicular to
and traveling in the director direction). The transition has been confirmed by measuring
the roll angle and the dominant frequency of the time series, as both quantities exhibit
a discontinuous jump across zero when the AC frequency is varied near threshold. The
globally coupled system of Ginzburg–Landau equations that qualitatively describe this mode
interaction is constructed, and the resulting normal form, in which slow spatial variations of
the mode amplitudes are ignored, is analyzed. This analysis shows that the Ginzburg–Landau
system provides the adequate theoretical description for the experimentally observed
phenomenon. The experimentally observed patterns at and higher above the onset allow
us to narrow down the range of the parameters in the normal form.
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1. Introduction

Electroconvection in nematic liquid crystals is a physical system that serves as a testing ground for
experimental studies and theoretical predictions of pattern formation in spatially extended anisotropic
systems [1–5]. Its advantages over other pattern forming systems are the high aspect ratio (∼ 103), short
time scales, and the adjustable control parameters (amplitude and frequency of the applied voltage). For
electroconvection, the nematic is sandwiched between two glass plates, and an AC voltage is applied
across the electrode plates. Above a critical value of the applied voltage, an electrohydrodynamic
instability combined with a transition from the uniform state to a variety of patterns can occur, including
stationary and traveling rolls as well as more complex spatiotemporal structures like worms, defects and
spatiotemporal chaos [1,6–10].

Some of the patterns observed near the onset can be described by the standard model [5,11], which
combines the theory of Ericksen and Leslie for an electrically conducting anisotropic fluid with the
quasistatic Maxwell equations under the assumption of an ohmic charge conduction in the liquid crystal.
Even with extra flexoelectric term, the standard model always predicts a stationary instability leading
to stationary rolls, so it does not exhibit any oscillatory instability giving rise to the traveling wave
patterns frequently observed near the onset in a variety of nematics like MBBA and Phase V [7,12,13],
and I52 [14]. The weak electrolyte model [15], an extension of the standard model, in which a slow
dissociation-recombination process of the charge carrying ions is taken into account and the ohmic
behavior is replaced by the dynamics of two species of oppositely charged mobile ions, provides
a basis for understanding the Hopf bifurcation that predicts the traveling wave patterns observed
experimentally [7,16]. The weak electrolyte model can show an oscillatory instability as well as a
stationary instability at the onset, and both types of instabilities can lead to oblique or normal rolls
depending on the parameters, thus allowing for the occurrence of steady-oscillatory mode interactions.

A number of experimental and analytical studies of steady-oscillatory (Hopf) mode interactions
in isotropic pattern forming systems, like Taylor–Couette flow, Rayleigh–Bénard convection, and
convection in binary mixtures have been reported in the literature (see, e.g., [17–21] and references
therein). There are no similar results in the literature for steady state-Hopf mode interactions in
anisotropic systems. In this paper we report and analyze complex spatiotemporal patterns recorded
in the electroconvection of the nematic mixture Phase V for AC voltages slightly above the onset value,
which are dominated by normal oscillatory/oblique steady-state mode interaction. We observed, for two
cells of almost the same thickness, oblique stationary modes at lower frequencies and normal traveling
modes at higher frequencies, as well as a jump in the Hopf frequency from zero (stationary state) to over
20 rad/sec (normal traveling rolls) as the driving frequency is increased above a critical value.

The mode interaction point is identified with this critical value of the AC frequency along with the
associated electroconvective threshold voltage. Since two parameters are fixed, this mode interaction
point marks a codimension-two bifurcation point, which is rather different from the well known Lifshitz
point. At the Lifshitz point a continuous transition from normal to oblique rolls of the same type
(either stationary of traveling) occurs, whereas the codimension-two point reported in this paper marks
a transition from oblique stationary to normal traveling rolls combined with a discontinuity in the Hopf
frequency as well as wave numbers and roll angle.
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The experimentally observed behavior can be understood through the amplitude equations that follow
from a governing system of partial differential equations for anisotropic systems in a weakly nonlinear
analysis. In this paper we do not pursue this analysis for the equations for nematic electroconvection,
but instead use symmetry considerations to set up the generic form of the system of globally coupled
Ginzburg–Landau equations that describes the patterns observable near the mode interaction point. The
analysis of the resulting normal form, in which slow variations of the amplitudes are ignored, in a range
of parameters consistent with the experiments, provides a possible theoretical scenario corresponding to
the experimentally observed phenomena.

We report here, for the first time in the literature, experimental evidence of a steady oblique–normal
traveling mode interaction point. Our experiments have been performed in the conduction regime, below
the cutoff value of the driving AC frequency. In a previous study [22], a phase diagram for a Phase
V sample sandwiched in a “channel” (thin cell in one direction) is presented in which a transition
from traveling to steady convection occurs at the cutoff frequency. This transition also corresponds
to a steady-traveling mode interaction, however it does not involve interaction of rolls oriented in
different directions. Moreover, due to the small aspect ratio of the channel, the amplitude description
involves 1D Ginzburg–Landau equations, and both traveling and steady rolls are normal rolls (of different
wavelengths). In contrast, the amplitude equations needed to capture our experimental situation are 2D
anisotropic Ginzburg–Landau equations.

The outline of the paper is as follows. In Section 2 we describe the experimental setup and
the observed electroconvective patterns. In Section 3 we introduce a system of globally coupled
Ginzburg–Landau amplitude equations that captures near-onset patterns in the neighborhood of the mode
interaction point, and perform a bifurcation analysis of the associated normal form. Section 4 is devoted
to a discussion of the results and concluding remarks.

2. Experiments

2.1. Experimental Set Up

The experiments were conducted with the nematic liquid crystal (NLC) Phase V [7,23], a mixture of
65 wt% 4-butyl-4’-methoxyazoxybenzene and 35 wt% 4-ethyl-4’-methoxyazoxybenzene with nematic
range between −5 ◦C and 75 ◦C. The NLC was sandwiched in a ready made sample cell fabricated by
E.H.C. Co., Tokyo, Japan (EHC-cell) with flat transparent electrodes, which are rubbed to produce planar
alignment of the director in a fixed (x) direction. The electrodes are made of indium tin oxide coated
borosilicate glass plates and provide an active lateral area of A = 10× 10 mm2. Outside of the active
area, there is no conductive coating and hence no electrical field is present. In this parallel-plate-capacitor
geometry, the electrodes are separated by a vertical distance, d, which was measured interferometrically.
The electrical contact between the plates and the hookup wires was created using silver-laden epoxy.

Usually a small amount of dopant (tetrabutylammium bromide) is added to the NLC to increase the
conductivity. For our sample the conductivity was sufficient to observe the desired electroconvection
states, thus the experiments have been conducted without added dopant. The conductivity varies
between individual cells with temperature, AC frequency, and time elapsed, and threshold voltages vary
accordingly. To obtain the conductivity, σ⊥, and the dielectric permittivity, ε⊥, perpendicular to the
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director, we measured the conductance (G⊥ = Aσ⊥/d) and the capacitance (C⊥ = Aε0ε⊥/d) using a
capacitance bridge.

The electroconvection apparatus consisted of a temperature-controlled hot stage, electronics for
applying the AC voltage, and a shadowgraph [24] apparatus for visualization. The cell was illuminated
by polarized light with the polarization along the director, and the resulting shadowgraph images were
monitored by a charge-coupled device camera mounted on the microscope, using a 10× objective. The
frame grabber hooked up to the camera captures 8 bit grey scale images of size 480× 640 pixels at a
rate of up to 30 frames per second. The images recorded cover an area of 358.21× 477.61µm2 from the
active area of the cell. In order to remove inhomogeneities in the optical system, the raw images have
been flat-field corrected using the background and dark frames of the system, see [25] for details.

The EHC experiments have been performed in two cells A and B of thicknesses

cell A: d = 10.63± 0.09µm

cell B: d = 10.07± 0.08µm

The experiments in cell B were control experiments to confirm the reproducibility of the EHC-patterns
observed in cell A. The electroconvection was driven by applying an AC voltage of frequency f0 (circular
frequency ω0) and voltage V to the electrodes. The driving frequency was increased in certain steps
adapted to the variation of the onset voltage Vc. For our sample the dielectric anisotropy was negative,
and the AC frequency was varied in the conduction regime, i.e., below the cutoff frequency which was
calculated from measured and tabulated [7] material parameters using the formula given in [11].

To record near-onset patterns for a fixed AC frequency, we slowly increased
V (0 < ε = V 2/V 2

c − 1 � 1), waited a few minutes, and then captured a shadowgraph image
and calculated its spatial power spectrum S(k), k = (p, q). Focusing was adjusted to enhance the
dominant inner modes (first harmonics) of S(k). The sample stage was rotated to ensure that the peaks
of S(k) were equidistant from the axes. Next, the stage was fixed for the whole experiment, and a
short movie of 2048 frames was captured. To see changes in the patterns above the onset, for some
frequencies the experiments have been repeated for higher values of V .

To characterize the temporal behavior of the near-onset patterns, we computed the power spectrum,
P (ω), of the time series of the central pixel value for each individual movie. A sharp maximum of
P (ω) at a nonzero circular frequency ωH > 0 was considered as the indicator of traveling rolls, and the
instability at the onset was identified with a Hopf bifurcation (HB) (Hopf frequency fH = ωH/2π). An
example of P (ω) with ωH > 0 is shown in Figure 1. If the maximum occurred at ωH ≈ 0, we identified
the instability with a steady state bifurcation (SSB). In our experiments normal traveling (NT) rolls were
excited at Hopf bifurcations, and oblique stationary (OS) rolls at steady state bifurcations.
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Figure 1. P (ω) for cell A at 35 ◦C and f0 = 350 Hz corresponding to ω0τq = 1.07,
where τq is the charge relaxation time. The circular Hopf frequency is ωH = 16.21 radians/s
(fH = 2.58 Hz).
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τq is the charge relaxation time. The circular Hopf frequency is ωH =16.21 radians/s
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in ωH which are marked by vertical dashed lines. The first jump is from ωH = 0 to ωH = 12.57 radians/s133

(fH = 2.0 Hz) and occurs at f0 = 92 Hz (ω0τq = 0.28). This jump clearly corresponds to a transition134
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stationary (which can be seen in the movie) and made up of oblique rolls, whereas the almost normal146

rolls apparent in (b) are traveling vertically upwards. The moduli of the Fourier transforms of the images147

shown in Figure 3(a) and (b) are shown in Figure 4(a) and (b). For both patterns, we can clearly148

recognize sharp peaks at the dominant (critical) wave numbers corresponding to oblique and normal149

rolls. The peaks at higher harmonics (not shown in Figure 4) are significantly smaller than the peaks at150

the first harmonics.151

2.2. Results

Figure 2(a) shows the onset voltage for cell A at 35 ◦C as function of the dimensionless driving
frequency ω0τq, where τq = ε0ε⊥/σ⊥ is the charge relaxation time. The variation of ωH in this range is
displayed in Figure 2(b). While the threshold curve is continuous, we observe two discontinuous jumps
in ωH which are marked by vertical dashed lines. The first jump is from ωH = 0 to ωH = 12.57 radians/s
(fH = 2.0 Hz) and occurs at f0 = 92 Hz (ω0τq = 0.28). This jump clearly corresponds to a transition
from a steady state bifurcation to a Hopf bifurcation (Section 3). The origin of the second jump is
unknown at present.

To test the reproducibility of the discontinuity in ωH , we have performed the same experiment in cell
B at 35 ◦C and 40 ◦C. The variations of ωH with the driving frequency for these temperatures are shown
in Figure 2(c). In both cases we can recognize again the jumps from ωH = 0 to nonzero value of ωH

occurring at values of ω0τq close to 0.28. The second discontinuity found in cell A is either not present
or occurs at a higher value, outside of the frequency range studied for cell B, i.e., at some ω0τq > 1.

In order to characterize the transition at the first jump, we studied the patterns created slightly above
the onset for ω0τq below and above the discontinuity in ωH . In Figure 3(a),(b), near-onset pattern
snapshots are shown for f0 = 90 Hz (ω0τq = 0.27) and f0 = 95 Hz (ω0τq = 0.29), with voltages
V = 10.38 V (ε = 0.05) and V = 10.39 V (ε = 0.016), respectively. The pattern in Figure 3(a) is
stationary (which can be seen in the movie) and made up of oblique rolls, whereas the almost normal
rolls apparent in (b) are traveling vertically upwards. The moduli of the Fourier transforms of the images
shown in Figure 3(a),(b) are shown in Figure 4(a),(b). For both patterns, we can clearly recognize sharp
peaks at the dominant (critical) wave numbers corresponding to oblique and normal rolls. The peaks at
higher harmonics (not shown in Figure 4) are significantly smaller than the peaks at the first harmonics.
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Figure 2. (a) Threshold curve Vc and (b) circular frequency ωH versus ω0τq for cell A at
35 ◦C. In (c) ωH is shown for cell B at 35 ◦C and 40 ◦C. The vertical dashed lines in (b) and
(c) mark discontinuous jumps.
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Figure 3. Snapshots of patterns in cell A at 35 ◦C for (a) f0 = 90 Hz (ω0τq = 0.27),
V = 10.38 V (ε = 0.05); and (b) f0 = 95 Hz (ω0τq = 0.29), V = 10.39 V (ε = 0.016).
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Figure 3. Snapshots of patterns in cell A at 35 ◦C for (a) f0 =90 Hz (ω0τq=0.27),
V =10.38 V (ϵ = 0.05), and (b) f0 =95 Hz (ω0τq =0.29), V =10.39 V (ϵ = 0.016).
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When the applied voltage in cell A at 35 ◦C at f0 =95 Hz was increased further above threshold,152

we observed a stationary pattern made up of oblique rolls again (not shown here). In contrast, when V153

was further increased above threshold for f0 =90 Hz, no qualitative change in the pattern dynamics was154

observed. Thus above the jump the near-onset patterns are NT rolls, but the OS rolls reappear when the155

voltage is increased further.156
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When the applied voltage in cell A at 35 ◦C at f0 =95 Hz was increased further above threshold,152

we observed a stationary pattern made up of oblique rolls again (not shown here). In contrast, when V153

was further increased above threshold for f0 =90 Hz, no qualitative change in the pattern dynamics was154

observed. Thus above the jump the near-onset patterns are NT rolls, but the OS rolls reappear when the155

voltage is increased further.156

(b)

Figure 4. (a) and (b): Amplitude of Fourier transform of the images depicted in Figure 3(a),
(b), respectively, into regions showing the dominant first harmonics.
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To confirm the transition from normal to oblique rolls at onset, we computed the average of the
horizontal and vertical wave numbers,

< p >=
∫

pSa(p, q) dpdq, < q >=
∫

qSa(p, q) dpdq,
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Figure 4. (a) and (b): Amplitude of Fourier transform of the images depicted in Figure 3(a)
and (b), respectively, into regions showing the dominant first harmonics.
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To confirm the transition from normal to oblique rolls at onset, we computed the average of the
horizontal and vertical wave numbers,

< p >=
∫

pSa(p, q) dpdq, < q >=
∫

qSa(p, q) dpdq,

(b)

When the applied voltage in cell A at 35 ◦C at f0 = 95 Hz was increased further above threshold,
we observed a stationary pattern made up of oblique rolls again (not shown here). In contrast, when V
was further increased above threshold for f0 = 90 Hz, no qualitative change in the pattern dynamics was
observed. Thus above the jump the near-onset patterns are NT rolls, but the OS rolls reappear when the
voltage is increased further.

To confirm the transition from normal to oblique rolls at onset, we computed the average of the
horizontal and vertical wave numbers,

< p >=
∫
pSa(p, q) dpdq, < q >=

∫
qSa(p, q) dpdq
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where Sa(p, q) is the average of S(p, q) over the first 100 frames, normalized such that
∫
Sa(p, q)dpdq = 1. The variations of these averages, and of the corresponding average roll angle,

θ = arctan
< p >

< q >

with ω0τq are shown in Figure 5(a, b), respectively. In these plots we can see jumps in < q > and θ at
ω0τq ≈ 0.28 from nonzero to zero values, showing that there is a transition from oblique to normal rolls.
Notice that in the oblique regime < p > and < q > show a relatively strong variation with the driving
frequency, whereas in the normal regime there is little variation. In addition to this strong variation in
the average wave numbers, there is also a strong variation of σ⊥ and ε⊥ (but not a discontinuity) in the
oblique regime, see Figure 6.

Figure 5. Variation of (a) the non-dimensionalized average wave numbers < p > d/π (up
triangles) and < q > d/π (circles); and (b) the average roll angle θ with the normalized
frequency in cell A at 35 ◦C. The dashed arrow differentiates between OS (left) and NT
(right) rolls.

(a)

(b)
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Figure 6. Variation of ε⊥ (up triangles) and σ⊥ (circles) with ω0τq for cell A at 35 ◦C. The
dashed arrow marks the critical ω0τq-value separating the OS and NT regimes.

3. Amplitude Equations and Bifurcation Diagrams

3.1. Codimension-two Mode Interactions

The observed coincidence of a stationary and an oscillatory instability is commonly referred to as a
codimension-two mode interaction [26]. Codimension two here means that two parameters, in our case
the threshold voltage and the AC frequency, have to be adjusted. This mode interaction can be explained
by coincident minimal voltages on two neutral stability surfaces. The extended model for EHC in NLC,
the weak electrolyte model [7,15,27], can show a Hopf as well as a stationary instability at the onset,
and they both can lead to oblique or normal rolls depending on the parameters. In either case, the critical
onset voltage is the minimum of a neutral stability surface in (V, p2, q2)-space, on which an eigenvalue
of the linearized system is either zero (stationary case) or purely imaginary (oscillatory case).

Let us denote by Vs(p
2, q2, ω0) the stationary neutral stability surface with minimum

Vsc(ω0) = Vs(p
2
sc, q

2
sc, ω0), and by Vo(p2, q2, ω0) the oscillatory neutral stability surface with minimum

Voc(ω0) = Vo(p
2
oc, q

2
oc, ω0) and Hopf frequency ωH(ω0) at criticality. Our experiments suggest that

qoc(ω0) = 0 since NT rolls are observed, and Voc(ω0c) = Vsc(ω0c) at the critical value of the AC frequency
(ω0cτq = 0.28 for cell A at 35 ◦C). Moreover, Voc(ω0) > Vsc(ω0) if ω0 < ω0c and Voc(ω0) < Vsc(ω0) if
ω0 > ω0c. Thus the critical wave numbers at onset are (psc(ω0), qsc(ω0)) for ω0 < ω0c and (poc(ω0), 0)

for ω0 > ω0c. The codimension-two mode interaction point is given by fixing ω0 = ω0c and V = Vc,
with Vc = Vsc(ω0c) = Voc(ω0), and has frequency ωHc = ωH(ω0c) associated with the NT rolls.

In general there should be no special relation between the location of the minima on the two neutral
stability surfaces, thus a jump can be expected in both the horizontal and vertical critical wave numbers
as we have found in the experiments. We note that the codimension-two mode interaction point described
above is very different from the well-known Lifshitz point [3,4]. The main difference is that the Lifshitz
point involves a single neutral stability surface (either the stationary or the oscillatory one) and there is a
continuous transition from oblique to normal rolls, whereas the mode interaction reported here involves
two different neutral stability surfaces and leads to jumps.
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3.2. Globally Coupled Ginzburg–Landau Equations

We now describe the derivation of the system of globally coupled Ginzburg–Landau amplitude
equations that captures near-onset patterns in a vicinity of the mode interaction point.

The weak electrolyte model (WEM) consists of partial differential equations derived from the
Navier-Stokes equation for an anisotropic electrically conducting fluid, the conservation of charge,
Poisson’s law, and a partial differential equation for the conductivity. The WEM equations are extremely
complicated for a fully 3D numerical simulation, therefore a weakly nonlinear analysis at the onset is
particularly useful. In this analysis, the patterns above threshold are represented as superposition of OS
and NT modes in the form

u(t, x, y, z) = ε(AeipscxUs+(z) +Be−ipscxUs−(z))eiqscy +

ε(CeipocxUo+(z) +De−ipocxUo−(z))eiωHct + cc +O(ε2) (1)

where u represents the field variables of the WEM (velocities, electric potential, director, conductivity,
see [15,16,27,28]), A, B and C, D are slowly varying complex envelopes of the OS-rolls and the
counter-propagating NT-rolls, respectively, ε is a small parameter, ε2 ∼ |V/Vc− 1|, Us±(z) and Uo±(z)

are vertical critical modes, and cc refers to the complex conjugate expression. All envelopes are functions
of a slow time T = ε2t and slow space variables. Specifically, A, B depend on (X, Y ) = (εx, εy), and
C and D depend on (X+, Y ) and (X−, Y ), respectively, where X± = ε(x ± vct) and vc is the critical
group velocity derived from the oscillatory neutral stability surface at criticality, see [29,30].

The form of the system of globally coupled Ginzburg–Landau equations for the envelopes follows in a
straightforward manner from symmetry considerations combined with a formal multiple scale expansion
and an appropriate rescaling of the envelopes and the slow variables as (the subscript T denotes derivative
with respect to the slow time T )

AT = (Λs +Ds(∂X , ∂Y )− |A|2 − a|B|2 + c < |C|2 > +c < |D|2 > )A

BT = (Λs +Ds(−∂X , ∂Y )− |B|2 − a|A|2 + c < |D|2 > +c < |C|2 > )B

CT = (Λo +Do(∂X+ , ∂Y )− b1|C|2 − b2 < |D|2 > +d < |A|2 + |B|2 > )C

DT = (Λo +Do(∂X+ , ∂Y )− b1|D|2 − b2 < |C|2 > +d < |A|2 + |B|2 > )D

(2)

where a is real and b, b1, b2, c, d are complex coefficients. The diffusion operators in (2) are

Ds(∂X , ∂Y ) = ∂2X + 2δ∂X∂Y + ∂2Y

Do(∂X± , ∂Y ) = α∂2X± + β∂2Y
(3)

with a further real coefficient δ, δ2 < 1, and complex coefficients α, β with positive real parts. The
coefficients vc and a, b1, b2, c, d are computable from the linear and the quadratic and cubic terms
of the constitutive equations of the WEM, respectively [16]. Due to the different variables on which
the envelopes depend, the Ginzburg–Landau Equations (2) contain global coupling terms involving
spatial averages

< |F |2 >= lim
L→∞

1

2L

∫ L

−L
|F (T, ξ, Y )|2 dξ

where F represents any of the four envelopes and ξ = X if F = A or B, whereas ξ = X+ if F = C

and ξ = X− if F = D. The presence of these global coupling terms is due to the assumption of a finite
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group velocity and follows in a similar way as in the case of an oscillatory instability leading to oblique
traveling rolls [29,30]. Finally, Λs and Λo are O(1) “unfolding parameters” describing deviations of V
and ωo from the codimension-two point

Λs = λ− bsµ, Λo = aoλ− boµ (4)

where
ε2λ =

V

Vc
− 1, ε2µ =

ω0

ω0c

− 1 (5)

with a further real coefficient bs and complex coefficients ao, bo. The coefficient of λ in Λs has been
normalized to unity which can be achieved by a rescaling of T .

We note that the system (2) holds in the generic case when psc/poc is irrational. If this ratio is rational,
additional coupling terms have to be included.

3.3. Normal Form and Bifurcation Diagrams

The Ginzburg–Landau system (2) provides the correct amplitude description for the type of instability
considered, and results of numerical simulations of (2) will be described elsewhere. In this paper
we confine ourselves to spatially uniform solutions and present bifurcation diagrams consistent with
our experiments. Ignoring spatial variations of the envelopes leads to the following system of normal
form equations

AT = (Λs − |A|2 − a|B|2 + c|C|2 + c|D|2)A
BT = (Λs − |B|2 − a|A|2 + c|D|2 + c|C|2)B
CT = (Λo − b1|C|2 − b2|D|2 + d(|A|2 + |B|2))C
DT = (Λo − b1|D|2 − b2|C|2 + d(|A|2 + |B|2))D

(6)

In polar coordinates, A = rAe
iϕA , etc., the radial parts satisfy the following system of equations

which is decoupled from the phases (we use subscripts r and i to denote real and imaginary parts)

rA,T = (Λs − r2A − ar2B + cr(r
2
C + r2D))rA

rB,T = (Λs − r2B − ar2A + cr(r
2
C + r2D))rB

rC,T = (Λor − b1rr2C − b2rr2D + dr(r
2
A + r2B))rC

rD,T = (Λor − b1rr2D − b2rr2C + dr(r
2
A + r2B))rD

(7)

The basic (conduction) state corresponds to the trivial solution T : A = B = C = D = 0. The basic
state is stable if Λs < 0 and Λor < 0. On Λs = 0 two types of stationary “pure mode” solutions bifurcate
from T: The OS-rolls satisfying rA = R > 0, rB = 0, rC = rD = 0, and stationary rectangle (SR)
solutions which satisfy rA = rB = R > 0, rC = rD = 0. Both OS and SR are fixed points of (7) and (6)
and only one of them can be stable in a region of the (Λs,Λor)-plane. The condition that OS is stable, as
observed in our experiments, requires that

a > 1 (8)

At Λor = 0 two types of oscillatory “pure mode” solutions bifurcate from T: NT-rolls satisfying
rC = R > 0, rD = 0, rA = rB = 0, and standing wave (SW) solutions which satisfy rC = rD = R > 0,
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rA = rB = 0. These solutions are also fixed points of (7) but periodic solutions of (6), and only one of
them can be stable. The condition that NT is stable requires that

b2r > b1r > 0 (9)

As common in mode interaction normal forms [26], in addition to the primary pure mode solutions,
mixed mode solutions branch off the primary solutions in secondary bifurcations. These mixed
mode solutions are also fixed points of (7) and are revealed as superpositions of a primary stationary
solution and a primary oscillatory solution. Among the four possible mixed mode solutions, only the
superposition of OS and NT is relevant in our case, and we refer to this solution as MM. The MM
satisfies rA = Ro > 0, rC = Rn > 0, and rB = rD = 0.

The equations for OS, NT, and MM are

OS: R2 = Λs

NT: R2 = Λor/b1r

MM: R2
o = (b1rΛs + crΛor)/J

R2
n = (drΛs + Λor)/J

(10)

where J is the determinant
J = b1r − crdr (11)

which we assume to be nonzero. The MM solution is a quasiperiodic solution of (6) since two
frequencies are nonzero, as can be seen from the two phase equations

ϕA,T = ci(r
2
C − r2D),

ϕC,T = Λoi − b1ir2C − b2ir2D + di(r
2
A + r2B)

The OS-solution exists in Λs > 0 and encounters a transition to instability along the half-line

(O): drΛs + Λor = 0, J(b1rΛs + crΛor) ≥ 0 (12)

Likewise the NT-solution exists in Λor > 0 and encounters a transition to instability on the half-line

(N): b1rΛs + crΛor = 0, J(drΛs + Λor) ≥ 0 (13)

The two half-lines (O) and (N) define a wedge in the (Λs,Λor)-plane, and in this wedge the
MM-solution exists. Moreover, MM is stable (unstable) if J > 0 (J < 0).

In Figure 7(a), the information about the existence and stability of the three solutions (10) is
summarized in the form of stability diagrams in the (Λs,Λor)-plane for the two cases J > 0 and J < 0,
and with both cr < 0 and dr < 0. The existence domains of the three solutions are indicated by
circle-segments, and the dots on these segments separate regions in which the solution is stable (s) and
unstable (u). The trivial solution is stable only in the third quadrant. The straight arrow pointing from the
third quadrant to the first quadrant indicates the path traversed for µ = 0 (ω0 = ω0c) when λ increases
from negative (V < Vc) to positive (V > Vc) values, thereby crossing the mode-interaction point at the
origin. The primary bifurcations occur on the axes, and the secondary bifurcations on the half-lines (O)
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and (N) defined by (12) and (13). If dr > 0 and cr > 0, (O) and (N) are located in the fourth and second
quadrant, respectively.

The path for µ = 0 is below the wedge in which MM exists, as indicated in Figure 7(a), if

J > 0, dr < 0, 0 < aor < −dr
or J < 0, cr < 0, 0 < aor < −b1r/cr

(14)

The bifurcation diagram R versus λ for this path is sketched in the upper left panel of Figure 7(b).
The other three bifurcation diagrams in this figure are for µ < 0 and µ > 0 with J > 0 and J < 0, and

aorbs − bor > 0 (15)

which implies that the path in Figure 7(a) is translated upward for µ > 0 and downward for µ < 0. In
addition, it is assumed that b1r > aor in all four diagrams, leading to an intersection of the OS and NT
branches for µ > 0 (which does not correspond to a stability exchange). In all four bifurcation diagrams
stable branches are displayed solid and unstable branches dashed.

Figure 7. (a) Stability diagrams showing existence and stability regions (s: stable,
u: unstable) of OS, NT, and MM in the (Λs,Λor)-plane in the case of (8), (9), and dr < 0,
cr < 0. The straight arrow pointing from the third to the first quadrant corresponds to the
path traversed for µ = 0 when λ increases from negative to positive values and (14) holds.
(b) Sketch of bifurcation diagrams of OS, NT, and MM for fixed µ = 0, µ < 0 and µ > 0

with J < 0 and J > 0 in the case of (8), (9), (14), (15) and b1r > aor. Stable and unstable
branches are marked solid and dashed, respectively.
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cr < 0. The straight arrow pointing from the third to the first quadrant corresponds to the
path traversed for µ = 0 when λ increases from negative to positive values and (14) holds.
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unstable) of OS, NT, and MM in the (Λs, Λor)-plane in the case of (8), (9), and dr < 0,
cr < 0. The straight arrow pointing from the third to the first quadrant corresponds to the
path traversed for µ = 0 when λ increases from negative to positive values and (14) holds.
(b) Sketch of bifurcation diagrams of OS, NT, and MM for fixed µ = 0, µ < 0 and µ > 0

with J < 0 and J > 0 in the case of (8), (9), (14), (15) and b1r > aor. Stable and unstable
branches are marked solid and dashed, respectively.
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Figure 7. (a) Stability diagrams showing existence and stability regions (s: stable, u:
unstable) of OS, NT, and MM in the (Λs, Λor)-plane in the case of (8), (9), and dr < 0,
cr < 0. The straight arrow pointing from the third to the first quadrant corresponds to the
path traversed for µ = 0 when λ increases from negative to positive values and (14) holds.
(b) Sketch of bifurcation diagrams of OS, NT, and MM for fixed µ = 0, µ < 0 and µ > 0

with J < 0 and J > 0 in the case of (8), (9), (14), (15) and b1r > aor. Stable and unstable
branches are marked solid and dashed, respectively.
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(ω0 > ω0c) the OS-rolls reappear when V is further increased above the Voc-threshold. Note that J > 0

leads to a continuous transition of stable branches, NT→MM→OS, whereas for J < 0 we find bistability
leading to hysteresis.

In summary, consistency with our experiments requires that the conditions (8), (9), (14), and (15) are
satisfied by the normal form coefficients, but we cannot discriminate between J > 0 and J < 0. The
global persistence of the OS-rolls is apparent from the clear OS-pattern in Figure 3(a) in the OS-regime
ω0 < ω0c, whereas in Figure 3(b) we observe “almost” pure NT-rolls with small patches of OS-rolls.
Such patches cannot be explained on the basis of the normal form (6), but require numerical studies of
the Ginzburg–Landau system (2).

In the normal form description, the critical voltages are given by Λs = 0 and Λor = 0, which leads to

Vsc = Vc(1 + bsµ),

Voc = Vc(1 + (bor/aor)µ)

The threshold curves depicted in Figure 2(a) show that the stationary critical voltage, Vsc, is strongly
decreasing from Vc when µ is decreasing in µ < 0, whereas the oscillatory critical voltage, Voc, is weakly
increasing from Vc in µ > 0. Thus we can conclude that the coefficients in Λs and Λor satisfy

0 < bor � aorbs.

4. Conclusions

In this paper we have presented and analyzed the first reported occurrence of near-onset
patterns dominated by the interaction of steady oblique rolls and normal traveling rolls in nematic
elctroconvection experiments. The results described in this paper confirm that nematic electroconvection
is a multi-parameter physical system that naturally exhibits this kind of mode interaction. In addition,
our experiments also confirm the weak electrolyte model as the correct theoretical description governing
the spatiotemporal dynamics of nematic elctroconvection, since it predicts oblique as well as normal
rolls at the onset and both types of rolls can be stationary or traveling. As common in spatially extended
systems, we did not observe ideal roll patterns, but patches of ideal patterns separated by domain walls.

A pivotal result of our qualitative theoretical study is the derivation of the system of globally coupled
Ginzburg–Landau equations governing the dynamics of slowly varying spatiotemporal envelopes of ideal
roll patterns in anisotropic systems near the experimentally observed codimension-two point. We have
identified primary solution branches, studied their stability, and identified regions in parameter space
giving rise to superpositions of these solutions (mixed mode solutions) in the context of an idealized
normal form description restricted to spatially uniform envelopes of ideal patterns. The main features
of the resulting bifurcation diagrams are that there is either a continuous transition between the two
primary branches via a stable mixed mode branch, or a region with bistability and an unstable mixed
mode branch leading to a hysteretic transition. Our experiments do not yet provide evidence which of
the two scenarios is present in the physical system. Further experiments in which the voltage is carefully
increased and decreased for ω0 > ω0c combined with a thorough analysis of the recorded patterns are
necessary to discriminate between the two scenarios.

The next step in the theoretical analysis of the mode interaction will be a numerical study of the
patterns predicted by the globally coupled Ginzburg–Landau equations. Of special interest here is the
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region in which the normal traveling waves are created in the primary instability. We expect that the two
normal form scenarios described above will lead to rather different spatiotemporal patterns, which will
provide further criteria allowing to distinguish between them in experiments. Ultimately, the connection
between the experiment and the theoretical model has to be established by computing the coefficients
of the Ginzburg–Landau equations from the equations of the weak electrolyte model for the material
parameters of the Phase V sample used in the experiments. Such calculations have been performed
in [16] for the case of the oblique oscillatory instability in the nematic liquid crystal I52.
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liquid crystals. Adv. Solid State Phys. 1989, 29, 35–47.
13. De la Torre Juarez, M.; Rehberg, I. Four-wave resonance in electrohydrodynamic convection. Phys.

Rev. A 1990, 42, 2096–2100.



Int. J. Mol. Sci. 2011, 12 4503

14. Dennin, M.; Treiber, M.; Kramer, L.; Cannell, D.S.; Ahlers, G. Origin of traveling rolls in
electroconvection of nematic liquid crystals. Phys. Rev. Lett. 1996, 76, 319–322.

15. Treiber, M.; Kramer, L. Bipolar electrodiffusion model for electroconvection in nematics. Mol.
Cryst. Liq. Cryst. 1995, 261, 311–326.

16. Oprea, I.; Dangelmayr, G. Dynamics and bifurcations in the weak electrolyte model for
electroconvection of nematic liquid crystals: A Ginzburg-Landau approach. Eur. J. Mech. B
Fluids 2008, 27, 726–749.

17. Chossat, P; Iooss, G. The Couette-Taylor Problem; Springer: Berlin, Germany, 1994.
18. Renardy, M.; Renardy, Y.; Sureshkumar, R.; Beris, A.N. Hopf-Hopf and steady-Hopf mode

interactions in Taylor-Couette flow of an upper convected Maxwell liquid. J. Non-Newtonian Fluid
Mech. 1996, 63, 1–31.

19. Fujimura, K.; Renardy, Y. The 2:1 steady/Hopf mode interaction in the two-layer Bénard problem.
Phys. D 1995, 85, 25–65.

20. Dawes, J.H.P. A Hopf/steady state mode interaction in rotating convection: Bursts and heteroclinic
cycles in a square periodic domain. Phys. D 2001, 149, 197–209.

21. Guba, P.; Grae Worster, M. Interactions between steady and oscillatory convection in mushy layers.
J. Fluid Mech. 2010, 645, 411–434.

22. Rehberg, I.; Rasenat, S.; Fineberg, J.; de la Torre Juarez, M.; Steinberg, V. Temporal modulation
of traveling waves. Phys. Rev. Lett. 1988, 61, 2449–2452.

23. Grebovicz, J.; Wunderlich, B. The glass transition of p-alkyl-p’-alkoxy-azoxybenzene mesophases.
Mol. Cryst. Liq. Cryst. 1981, 76, 287–296.

24. Rasnet, S.; Hartung, G.; Winkler, B.L.; Rehberg, I. The shadowgraph method in convection
experiments. Exp. Fluids 1989, 7, 412–420.

25. Dangelmayr, G.; Acharya, G.; Gleeson, J.T.; Oprea, I.; Ladd, J. Diagnosis of spatiotemporal chaos
in wave-envelopes of an electroconvection pattern. Phys. Rev. E 2009, 79, 046215–046235.

26. Golubitsky, M.; Stewart, I.; Schaeffer, D.G. Singularities and Groups in Bifurcation Theory II;
Springer: Berlin, Germany, 1988.

27. Treiber, M. On the Theory of the Electrohydrodynamic Instability in Nematic Liquid Crystals Near
Onset. Ph D Thesis, University of Bayreuth: Bayreuth, Germany, 1996.

28. Dangelmayr, G.; Oprea, I. A bifurcation study of wave patterns for electroconvection in nematic
liquid crystals. Mol. Cryst. Liqu. Cryst. 2004, 413, 305–320.

29. Dangelmayr, G.; Wegelin, M. Hopf bifurcations in anisotropic systems. In Pattern Formation in
Continuous and Coupled Systems; Golubitsky, M., Luss, D., Strogatz, S., Eds.; Springer: Berlin,
Germany, 1999; Volume 115, pp. 33–42.

30. Dangelmayr, G.; Oprea, I. Modulational stability of travelling waves in 2D anisotropic systems.
J. Nonlinear Sci. 2008, 18, 1–42.

c© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/.)


	Introduction
	Experiments
	Experimental Set Up
	Results

	Amplitude Equations and Bifurcation Diagrams
	Codimension-two Mode Interactions
	Globally Coupled Ginzburg–Landau Equations
	Normal Form and Bifurcation Diagrams

	Conclusions

