
Int. J. Mol. Sci. 2011, 12, 2518-2542; doi:10.3390/ijms12042518 

 

International Journal of 

Molecular Sciences 
ISSN 1422-0067 

www.mdpi.com/journal/ijms 

Review 

Functioning Nanomachines Seen in Real-Time in Living 

Bacteria Using Single-Molecule and Super-Resolution 

Fluorescence Imaging 

Sheng-Wen Chiu 
1
 and Mark C. Leake 

1,2,
* 

1
 Biochemistry Department, South Parks Road, Oxford University, Oxford OX1 3QU, UK;  

E-Mail: sheng-wen.chiu@linacre.ox.ac.uk 
2
 Clarendon Laboratory, Physics Department, Parks Road, Oxford University, Oxford OX1 3PU, UK 

* Author to whom correspondence should be addressed; E-Mail: m.leake1@physics.ox.ac.uk;  

Tel.: +44-1865-282555; Fax: +44-1865-272400. 

Received: 28 February 2011; in revised form: 7 April 2011 / Accepted: 11 April 2011 /  

Published: 15 April 2011 

 

Abstract: Molecular machines are examples of ―pre-established‖ nanotechnology, driving 

the basic biochemistry of living cells. They encompass an enormous range of function, 

including fuel generation for chemical processes, transport of molecular components within 

the cell, cellular mobility, signal transduction and the replication of the genetic code, 

amongst many others. Much of our understanding of such nanometer length scale machines 

has come from in vitro studies performed in isolated, artificial conditions. Researchers are 

now tackling the challenges of studying nanomachines in their native environments. In this 

review, we outline recent in vivo investigations on nanomachines in model bacterial systems 

using state-of-the-art genetics technology combined with cutting-edge single-molecule and 

super-resolution fluorescence microscopy. We conclude that single-molecule and  

super-resolution fluorescence imaging provide powerful tools for the biochemical, 

structural and functional characterization of biological nanomachines. The integrative spatial, 

temporal, and single-molecule data obtained simultaneously from fluorescence imaging open 

an avenue for systems-level single-molecule cellular biophysics and in vivo biochemistry. 

Keywords: fluorescence microscopy; fluorescent protein; in vivo imaging; molecular 
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1. Introduction 

Biological machines at the nanometer length scale are molecular scale complexes, generally made 

up of multiple protein sub-units, which act as energy transduction devices that respond to specific 

biological stimuli to perform coordinated mechanical work [1–3]. The realization that a large 

collection of such dedicated polypeptide nanomachines carry out the various tasks in a living cell 

deeply alter our conventional view of living systems [1,4]. Optimized over an evolutionary time scale 

of up to 4 billion years, these sophisticated nanomachines are also the starting point for 

bionanotehcnology in constructing more powerful synthetic machines [2,3,5]. At the most fundamental 

level our understanding of these biological molecular machines is essential in exploring the inner 

workings of living cells [1]. 

Bacteria contain a huge number of nanomachines that display diverse functionalities. They can 

perform tasks involved in cell motility, chromosome and plasmid segregation, cytokinesis, DNA 

replication, energy generation, and protein synthesis and secretion, to name but a few [5–15]. As  

well-characterized experimental model organisms, bacteria are relatively easy to grow and manipulate, 

and are feasible for performing single-molecule and super-resolution fluorescence imaging [16]. 

Indeed, research focused on bacterial molecular machines has unveiled many mechanistic insights of 

how biological nanomachines in general work. 

Even the simplest biological nanomachine is composed, in general, of a highly coordinated 

multiprotein assembly. Their dynamic stoichiometries and architectures, as well as forces and 

nanometer-scale conformational changes generated as part of their function, are all essential features 

that need to be investigated. Several different experimental methods have been applied in parallel in 

this regard. Traditional biochemical and biophysical analyses, electron microscopy, X-ray 

crystallography, nuclear magnetic resonance spectrometry and mass spectrometry, have all provided 

significant biochemical, biophysical, and structural data for biological nanomachines [17–19]. 

However, these techniques primarily deal with isolated protein complexes, many of which are only 

parts of the intact nanomachine. Consequently, information on the organization and interactions of the 

protein components, and their precise functions within the context of a fully functional nanomachine is 

lost [18]. Moreover, traditional biochemical and biophysical methods study the average behavior of a 

population, which might mask the full distribution of behavior and produce a misleading picture of a 

system; the mean average behavior is not necessarily equal to the total collective or integrated behavior 

over the whole system. 

Single-molecule approaches provide fresh ways of observing the hidden world masked by ensemble 

averaging. The drawbacks of bulk ensemble-average approaches, and the advantages of single-molecule 

approaches are: (1) heterogeneity and stochasticity, two intrinsic features of biological systems, can 

only be revealed by studying single molecule events; (2) temporal averaging may blur novel features 

of a dynamic molecular process, including transient/rare events and their ordering in time and space;  

(3) perturbing synchronization is unnecessary for single-molecule studies as is often the case for 

ensemble level studies, for example to ensure that all cells in a population are in the same phase in 

their respective cell cycles; (4) the results of ensemble measurements can often be interpreted in 

multiple, indirect ways, whereas single-molecule studies in general provide a more definitive direct 

indication; (5) single-molecule approaches facilitate the direct quantitative measurement of critical 
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properties of single biomolecules and their assemblies, including the forces, motions/steps, and 

conformational changes; (6) single-molecule approaches facilitate the ultimate miniaturization and 

multiplexing of biological assays [20–25]. 

Although there have been multiple ingenious technical approaches for performing single-molecule 

experiments, four such stand out in their recent popularity, to visualize, detect, and manipulate 

individual molecules: atomic force microscopy, laser tweezers, magnetic devices, and single-molecule 

fluorescence microscopy/spectroscopy [20,21,23,24,26]. The application of single-molecule 

techniques in vitro has greatly improved our knowledge of biological nanomachines [12,23,25,26]. 

However, in vitro studies focus on isolated molecules in artificial environments. The behavior of a 

molecular process may be different between in vivo and in vitro conditions [25,27–29]. The dynamics 

of nanomachines in their native environment, and the cooperation of them with the cellular functional 

networks cannot be readily obtained by purely in vitro approaches. Rather, if at all technically feasible, 

we need to measure the composition, organization and dynamics of molecular machines in functioning, 

living cells. Central to this challenge is single-molecule and super-resolution fluorescence imaging, 

which potentially offer nanometer-level spatial precision, ca. millisecond temporal resolution,  

single-molecule sensitivity, molecular specificity, multiplexing, and parallel data acquisition [27,30,31]. 

The fact that many biomolecules exist in low copy numbers in a living cell also necessitates  

single-molecule methods [22,31]. 

In this review, we highlight some of the methodological innovations and new observations from 

studies focused on functioning nanomachines in living bacteria using single-molecule and  

super-resolution fluorescence imaging. These examples illustrate the power of fluorescence imaging in 

unveiling the behaviors of functioning molecular machines in their true physiological context. 

2. Single-Molecule Fluorescence Microscopy 

2.1. Fluorescence Imaging: A Brief Introduction 

Owing to its relative ease of implementation and minimally-perturbative/non-invasive nature, 

fluorescence microscopy [32] is among the most versatile and accessible method for direct observation. 

The richness of fluorophores and advances in labeling methods enable the simultaneous observations 

of the distributions and abundance of multiple specific molecules in living cells. The power of visual 

representation, characterization, and quantification makes fluorescence microscopy a central tool  

in biology. 

The spatial precision of fluorescence microscopy can be described in terms lateral (x-y) and axial (z) 

spatial resolution, as well as localization accuracy. In simple terms, the spatial resolution is the 

minimum distance by which two objects can be distinguished, while localization accuracy is the 

minimum distance, or equivalent volume, with which one can locate an object’s position [33–36]. The 

temporal resolution is how fast images from a given system can be faithfully sampled. The spatial  

and temporal resolutions are determined by the whole imaging system, including the microscope,  

the light source, the detector, and the software [24,35,37,38]. To obtain informative live-cell  

fluorescence images, the choice of fluorophores and the preparation and incubation of cells are also  

important [24,35,37,38]. 
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The main challenge of live-cell single-molecule fluorescence imaging is to enhance the  

signal-to-noise ratio [24,31,39]. This can be achieved by decreasing the cellular autofluorescence 

background or increasing detectable fluorescent signals. Autofluorescence is usually homogeneous in 

bacterial cells and can be significantly reduced by growing cells in a defined minimal medium [39]. 

Whenever possible, choosing fluorophores with red-shifted spectra is also helpful. Other methods to 

reduce background are pre-photobleaching and minimizing/delimiting the excitation volume [24,39], 

which are discussed below. It should be borne in mind that all images are subject to interpretation, and 

this is especially true for single-molecule and super-resolution fluorescence imaging which both 

heavily rely on image processing [16,24,34,35,37]. 

2.2. Fluorescent Proteins and Their Applications 

The common fluorophores used in fluorescence microscopy are small organic fluorescent dyes, 

nanocrystals (quantum dots), autofluorescent proteins, and small genetic encoded tags complexed with 

fluorochromes [40,41]. Among them, autofluorescent protein (FP)-tagging is the most popular and 

developed approach in imaging biomolecules in living cells. The discovery, cloning, and heterologous 

expression of the green fluorescent protein (GFP) from the jellyfish Aequorea victoria has 

revolutionized multiple fields in the life sciences, not only in the field of fluorescence imaging [40,42]. 

Besides GFP, a broad range of FPs that span the entire visible spectrum is now available [43,44]. 

Genetic engineering further creates photoswitchable FPs that can be both reversibly and irreversibly 

switched on and off, or converted to different colors [40,41,44,45]. Photoswitchable FPs are useful for 

super-resolution imaging and monitoring protein diffusion, trafficking, and age [40,41,44,45]. 

Translational fusion results in the precise labeling of target proteins by FPs. The FPs’ chromophores 

are generated spontaneously so cofactors other than O2 are not required [40]. When applying FP-tagging, 

it is important to verify the functionality of the fusion protein constructs [46]. It is usually desirable to 

express the fusion proteins under the control of the native promoters of the target proteins to ensure 

near native levels of expression. 

Small organic fluorescent dyes have enhanced brightness and photostability compared to typical 

FPs [40,41]. However, they are not genetically encodable and thus lack specificity for any particular 

protein [40,41]. By using genetic encoded tags, it is now possible to target small organic fluorescent 

dyes to specific proteins in live cells [41]. Notably, by specifically targeting small organic fluorescent 

dyes to a nanomachine, Lee et al. [47] were able to perform single-molecule super-resolution imaging 

in live bacterial cells. 

Photobleaching of Fluorescent Proteins 

Photobleaching techniques are widely used to monitor the kinetics of protein localization/trafficking 

and of protein–protein interactions in living cells. There are two basic types of photobleaching 

approaches: fluorescence recovery after photobleaching (FRAP) and fluorescence loss in 

photobleaching (FLIP) [48] as illustrated schematically in Figure 1. Photobleaching is a photo-induced 

alteration of a fluorophore that irreversibly extinguishes its fluorescence, most typically due to the 

generation of free-radicals in the surrounding water solvent which chemically attack the  

chromophore [48]. In FRAP, a specific region is selectively photobleached with a high-intensity laser 
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and the recovery of fluorescence in this region is monitored over time (Figure 1). The bleach event is 

preferably as short as possible to avoid fluorescent material diffusing significantly within this initial 

laser pulse which in effect extends the spatial extent of the bleach zone. The recovery occurs as 

unbleached fluorophores (e.g., FP-fusion proteins) diffuse back into the bleached region, thus 

providing a measurement of many kinetic parameters of the tagged protein, including diffusion 

coefficient, mobile fraction, binding/dissociation rates and the transport rate. Analysis of FRAP 

kinetics can give important information about the dynamics of protein assemblies like biological 

nanomachines. The information includes the exchange rates of components, whether the components 

are bound and released from certain other structures, or whether they exist as monomers or multimers. 

Complementary to FRAP, FLIP can be used to examine the continuity of a cellular compartment 

and the boundaries for a protein’s movement. If fluorophores from an outside area can diffuse into the 

region being photobleached, loss of fluorescence will occur in the outside area, indicating that the two 

regions are, in effect, connected. In addition, FLIP can be used to assess the uniformity of a protein’s 

movement across a particular compartment, and whether there are interactions that impede a protein’s 

motion. For example, proteins that are stably associated with, and thus constrained by, a cellular 

structure may photobleach more slowly than those that are freely diffusing. The mobility of various 

biomolecules within living cells was first measured by using photobleaching techniques. Since then, 

photobleaching has become the most common means for monitoring protein kinetics in vivo. The 

application of photobleaching techniques to study biological nanomachines in vivo has also greatly 

improved our understanding of their organization and dynamics. 

Figure 1. In FRAP, the fluorophores in a region of the cell (blue circle) are selectively 

photobleached. Fluorescence recovery in that region is assessed quantitatively by 

monitoring the intensity changes in the region of interest, ROI (red). Kinetics and mobile 

fraction can be calculated. In FLIP, a region of the cell is photobleached, sometimes 

repeatedly. The loss of fluorescence from an outside area (red ROI) is monitored. These 

methods can be used to estimate mobility and kinetic parameters. 
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3. Super-Resolution and Single-Molecule Fluorescence Microscopy 

The diffraction-limited optical resolution for so-called far-field optical microscopy is ca. 200–300 nm, 

which was once regarded as an unbreakable barrier. A variety of super-resolution ―nanoscopy‖ 

techniques, which effectively break the optical resolution limit now exist and permit observation of 

individual proteins and complexes that are on the length scale of ca. 1–50 nm [33,49] (Figure 2).  

These super-resolution methods image protein localization and dynamics at near-molecular length  

scales [33,34,36,41,45,49–54]. These methods can generally be categorized as near-field or far-field 

approaches; for the former either the detector is placed a distance less than the optical resolution limit 

away from the fluorescence emitter, as in scanning near-field optical microscopy (SNOM) for 

example, or the excitation field itself extends spatially less than the optical resolution limit [33]. Total 

internal reflection fluorescence (TIRF) microscopy is the most prominent near-field excitation 

approach, which utilizes the effect of total internal reflection, generally now involving a laser beam 

directed at a highly inclined angle to typically a glass–water interface for the illumination of 

fluorophores (Figure 3) [33,36,55]. TIRF generates an exponentially decaying evanescent field at the 

interface of the two media of different refractive indices (such as the glass of a coverslip and the  

water-based media of a pH buffer surrounding a cell), which can selectively excite fluorophores in 

cells near a thin region extending to ca. 100–200 nm beyond the surface of the coverslip (i.e., the 

excitation volume is delimited parallel to the vertical axis) [33,36,55]. Consequently, there is very little 

fluorescence signal contributed from fluorophores, or contaminants, beyond this thin optical slice, so 

the signal-to-noise ratio can be exceptionally high, permitting single-molecule detection. It is a 

technique of choice for studying functional nanomachines that are expressed in cell membranes and 

therefore within reach of the thin excitation volume. Although the lateral resolution of TIRF is 

diffraction-limited at 200–300 nm, the axial resolution is set by the extent of the evanescent excitation 

field and so may be less than the optical resolution limit. Thus TIRF mircoscopy is rightly regarded as 

a super-resolution method. 

Various pure far-field approaches are available for super-resolution and single-molecule 

fluorescence imaging, namely localization-based, stimulated emission depletion, structured-illumination, 

and non-linear optical methods [33,36,49,50]. Among them, single-molecule localization microscopy 

(PALM/STORM) detects fluorescence emitted from a single fluorophore (or a small number of 

fluorophores) and subsequently determines the molecule’s position (Figure 4) [33,36,45,49,50,52,56]. 

Taking advantage of the fact that the point spread function (PSF) of a microscope can be precisely 

determined, the intensity centroid from a fluorescence emitter (i.e., the exact position of the 

fluorophore) can be localized to nanometer-scale accuracy [33,34,36,45,49,50,52,56,57] provided a 

sufficient number of emitted photons can be sampled. In each imaging cycle a small, optically 

resolvable fraction of fluorophores are imaged.  
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Figure 2. Comparison of the spatial and temporal resolutions of fluorescence microscopy. 

The length and time scales are logarithmic. Average sizes of some biological features are 

given (top panel). For FIONA, II, LB, SHREC, SI, SPT, STED, TIRF, and WF/CF, the 

horizontal dark side of each oval approximates the x-y-resolution/localization accuracy and 

the bright side approximates the z-resolution/localization accuracy. For example, TIRF and 

WF/CF have similar x-y-resolution, but TIRF has a much better z-resolution. For FRET the 

horizontal scale represents distance over which molecular interaction can be detected. For 

FCS and FRAP the horizontal scale represents the limiting size of the measurement field. 

The vertical scales refer to the amount of time needed to take one image frame or complete 

one measurement, the reciprocal of which represents the maximum rate at which dynamic 

changes in the sample can be detected. FCS, fluorescence correlation spectroscopy; 

FIONA, fluorescence imaging with one nanometer accuracy; FRAP, fluorescence recovery 

after photobleaching; FRET, Förster resonance energy transfer; II, interference illumination; 

LB, localization-based; SHREC, single-molecule high-resolution co-localization;  

SI, structured-illumination; SPT, single particle tracking; STED, stimulated emission  

depletion; TIRF, total internal reflection fluorescence; WF/CF, wide-field/confocal. Based  

on [36,41,58]. 
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Figure 3. Optical basis of TIRF illumination. In epifluorescence microscopy, the excitation 

light is transmitted directly through the sample. All of the fluorophores in the entire 

bacterial cell are excited (green circles). In TIRF microscopy, the excitation light is totally 

internally reflected from the coverslip/sample interface at the critical angle, c (red). When 

the excitation light travels at a high incident angle  (blue), which is greater than c, an 

evanescent field is generated on the opposite side of the interface. The intensity of the 

evanescent field decreases exponentially with the distance. Only fluorophores close to the 

surface are significantly excited. To achieve TIRF, the refractive index of the sample  

(n1, typically 1.33 for water-based pH buffers, with the cell itself having a slightly higher 

index of ca. 1.35) must be less than that of the coverslip (n2, typically 1.52 for glass). 
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Figure 4. Principles of PALM/STORM. (A) In conventional fluorescence microscopy, all 

fluorophores are excited at once, thus the diffraction-limited areas from closely positioned 

fluorophores overlap; (B) PALM/STORM excites only a small subset of fluorophores at 

any given time, so the diffraction-limited areas of each fluorophore no longer overlap. The 

precise location of each fluorophore can be determined by finding its intensity centroid 

from the detected fluorescence image. By repeating the cycle, the many measured  

locations of distinct fluorophores in the entire cell are superimposed to generate a final  

super-resolution image.  

 

With repetitive imaging cycles, the positions of a high proportion of fluorophores in the sample may 

ultimately be determined, allowing the reconstruction of an extended super-resolution image, provided 

the ca. 200–300 nm diameter diffraction-limited PSF images from neighboring single fluorophores do 

not overlap in a given cycle (i.e., the effective active fluorophore concentration in the cell is kept 

sufficiently low at any given time [31,59]). If an FP is used as the fluorophore, this can be achieved in 

many ways [59]. Generally, the expression of the target protein-FP fusion is controllable, and the 

emitting FP population can be reduced via photobleaching before measurements are made [59]. 

Moreover, photoswitchable/photoactivatable FPs can be used [34,45]. The emission of these FPs can 

be switched on and off under the control of light. The activation light (often in the ultraviolet) may 

illuminate the entire sample at a low intensity, so only one or a few FPs are activated in a stochastic 

fashion into an activated conformation that can then be excited subsequently into fluorescence by a 

second light source of higher wavelength. The localization accuracy is dependent on how bright  

(the number of photons detected) the FP is over the background signal (cell autofluorescence and 

camera detector readout and pixilation noise, as well as the dim fluorescence of non-active FPs 

emitting in the activation channel which is often the largest component) [34,45,52,56].  

The performance of PALM/STORM depends critically on the labeling density and the biological 

structure under investigation [33]. It may perform better for imaging smaller or filamentous objects 

than dense and bulky structures [33]. The main weakness is the need to collect, process, and integrate 
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many raw images which may take a long time, and so this is not particularly useful for monitoring very 

fast, dynamic processes [36]. However, the relatively simple optical setup has led to its rapid adoption. 

New improvements also have largely reduced the time required for generating an image. Conventional 

single-molecule tracking experiments require low densities of target molecules. PALM/STORM using 

photoactivatable/photoswitchable fluorophores allow a high density of target molecules to be labeled 

and tracked. Although it may still take a substantial time to collect the large number of localizations 

required to construct a high-resolution extended structure, the motion and dynamics of the molecules 

inside the structure can be obtained with ca. millisecond temporal resolution from the single-molecule 

tracking. Indeed, several studies have used the PALM/STORM approach to visualize protein 

movements and dynamic events in living cells [49,50]. This approach also has a great potential to 

probe the organization and stoichiometry of molecular complexes. 

Among the different single-molecule localization approaches, fluorescence imaging with one 

nanometer accuracy (FIONA) [52,57,60] is of immense potential for single-molecule studies. This 

technique can locate the position of a fluorophore with accuracy in the range of a few nanometers. By 

using FIONA, Kural et al. [61] located GFP–tagged peroxisomes in cultured Drosophila S2 cells to 

within 1.5 nm with a time resolution of just 1.1 ms. They found that the peroxisomes are moved by 

dynein and kinesin in 8.3-nm steps. By applying FIONA to samples labeled with two spectrally 

different fluorophores, one can reach single-molecule high-resolution co-localization (SHREC) which 

can measure relative separations of the different colored fluorophores larger than ca. 10 nm [52,62–64]. 

Currently, SHREC is effective when the number of fluorophores is limited, and has only been applied 

with great success to study myosin V, and for studying properties of the kinetochore [65,66]. There is 

also related techniques called SHRImP [67] and NALMS [68], which were invented independently but 

are essentially the same technique; they use photobleaching to localize two closely placed fluorophores 

to nanometer accuracy, applied for example to study the hand-over-hand action of myosin VI [69], but 

now capable of sub-nanometer accuracy [70].  

Single-particle tracking (SPT) has been applied to visualize the movements of single (or small 

numbers of) molecules in live cells by optical microscopy. The development of single-molecule 

tracking photoactivated localization microscopy (sptPALM) can contribute to a quantitative 

understanding of the dynamics of individual molecules, and provide new insights into the mechanisms 

of many biological processes, including protein heterogeneity in the plasma membrane, the  

dynamics of cytoskeletal systems, and clustering of receptor complexes [71]. SPT and sptPALM have  

both been applied to several bacterial systems. For example, the localization mechanism of the  

Caulobacter crescentus histidine kinase PleC and the pole-organizing protein PopZ was shown to be 

consistent with a diffusion-to-capture model by SPT [59,72,73]. 

Temporal resolution is another factor to be considered for super-resolution fluorescence microscopy 

methods. To overcome the challenge of imaging fast events in living cells, several methods have been 

developed, including slimfield microscopy, brighter fluorophores, and new millisecond or even  

sub-millisecond time-resolution cameras [22,49]. Slimfield microscopy (Figure 5) utilizes a different 

illumination mode suitable for rapid (millisecond) temporal resolution. By concentrating the excitation 

light into a small area (~30 μm
2
), slimfield microscopy illuminates the sample with excitation 

intensities ~100 times greater than those of conventional wide-field fluorescence microscopy [74]. The 

much greater excitation intensity overcomes camera noise when lowering the frame integration time to 
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millisecond levels, permitting single-molecule detection at high speed [74]. It is also possible to 

perform simultaneous dual-color slimfield imaging for co-localization and FRET studies [74]. 

Figure 5. Slimfield illumination. Conventional wide-field fluorescence microscopy 

illuminates a wider field of the sample by lower excitation intensity, while slimfield 

microscopy concentrates the excitation light into a smaller area with greater  

excitation intensity. 

 

Stroboscopic illumination can provide another means of enhancing temporal resolution of live-cell 

single-molecule imaging to sub-millisecond levels [31]. In this method, a short laser pulse can 

overcome the limitation of a slow mechanical shutter or slow frame rate due to large pixel arrays of the 

CCD. The shutter and the CCD can be left open for longer times while an intense excitation laser pulse 

for a short duration is applied, during which the FP-fusion construct under study does not diffuse 

significantly. Thus the temporal resolution in stroboscopic illumination is determined by the laser 

pulse width. By varying the pulse width and dwell time dynamic properties such as residence times of 

weak binding and diffusion constants can be estimated. The main drawback of this method is that 

single FP molecules are more photolabile under the high pulse intensity. This approach has been used 

to image single cytoplasmic FP and fast diffusion of single transcription factors in live bacterial cells [31]. 

4. Experimental Studies 

4.1. Flagellar Motors 

The bacterial flagellum is a complex nanomachine powered by H
+
 or Na

+
 ion flux [7,75]. It is a 

large membrane-spanning structure generated from choreographed expression and assembly of  

~50 genes. Each flagellum consists of a filament, a hook, and a basal body. The flagellar motor in the 

basal body has a stator unit that pushes a rotor at several hundred Hz for the H
+
-driven motor, and up 

to a few kHz for the Na
+
-driven motor. In many bacterial species, the motor can switch its direction, 

with the switching rates controlled by chemotatic signaling [7,75]. 

In a pioneering study, Leake et al. [76] used TIRF mircoscopy and photobleaching to obtain the 

stoichiometry of the flagellar motor nanomachine in live bacterial cells. In addition, FRAP and FLIP 

were utilized to complement super-resolution/single-molecule imaging and SPT for studying the 

dynamic movement of the stator component MotB in the protein complex. By attaching living 

Escherichia coli cells via one of their flagellar filaments to a coverslip, rotation of cells, an indication 

of the functionality of the GFP–MotB fusion protein, was observed simultaneously with fluorescence 

emissions. Taking advantage of a phenomenon of stepwise/discrete photobleaching (fluorophores like 
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GFP will photobleach stochastically in a step-like manner), the stoichiometry of the stator component 

MotB (Figure 6A) in functioning flagellar motors was then estimated in these live E. coli cells. Each 

flagellar motor contains ~22 MotB molecules. Since it was known that two MotB molecules form a 

single stator unit, there are thus ca. 11 stator units per motor. FRAP and FLIP studies showed that 

MotB diffuses in the membrane when it is not incorporated into a motor. Motor-integrated  

MotB molecules are turned over and exchanged with a membrane pool (~200 molecules) about once 

every 30 seconds (Figure 6B). Importantly, this was the first direct measurement of the stoichiometry, 

dynamics and turnover of protein subunits within a functioning molecular machine.  

A subsequent study using similar approaches has shown that an E. coli flagellar motor contains  

~30 copies of the rotor switch component FliM (Figure 6C) [77]. These FliM molecules exist in 

two discrete populations, one tightly associated with the motor (ca. 1/3 of all motors) and the other 

undergoing stochastic turnover (ca. 2/3 of all motors; half-life: ~40 s). These may reflect 

two previously described populations of FliM, exchangeable FliM in a peripheral location and FliM 

located in the core of the complex [78,79]. Importantly, it was found that the turnover of FliM 

molecules depended on the presence of activated response regulator CheY (Figure 6C), which binds 

FliM to cause a switch in rotational direction of the motor [77]. The work of Delalez et al. [77] 

provides direct evidence for chemotatic signal-dependent dynamic exchange of a switch complex 

component in functioning flagellar motors. Thus the exchange of FliM subunits could be either a cause 

or effect of motor reversal [77,80]. Moreover, there are ~24 FliM spots per cell, 2–8 times more than 

the typical number of complete flagella. Of all fluorescent FliM spots observed, 40% have ~30 FliM 

molecules per spot, 60% have ~18 FliM molecules. The 18-molecule spots may represent preassembly 

C rings that have not fully integrated into functional motors. It is estimated that there is a total of  

630 ± 290 FliM molecules per cell, with a comparable number of FliM molecules diffusing freely. The 

estimated total number of FliM molecules is in very good agreement with that measured from earlier 

biochemical studies, indicating the power of single-molecule imaging in determining the in vivo 

stoichiometries of biological nanomachines [77]. In addition, this study suggests that protein turnover 

and exchange may play active roles in the function of biological nanomachines, and not only a passive 

role in the maintenance of macromolecular complexes. 

4.2. Membrane Transporters and Energetic Complexes 

About 25% of a cell’s proteome must translocate across membrane [81]. In bacteria, the Sec 

pathway transports proteins as unstructured linear peptide chains across the cytoplasmic membrane, 

whereas the protonmotive force (PMF)-driven twin-arginine translocation (Tat) system translocates 

folded proteins [15,81,82]. Since folded proteins are larger and more variable in size, the translocation 

is particularly challenging for the Tat transport nanomachine. Indeed, the exact mechanism by which 

the Tat system transports proteins is under debate. At least three models have been proposed: (1) the 

polymerization model, in which substrate interaction with TatBC triggers TatA polymerization; (2) the 

bespoke channel model, in which the dynamic variation of TatA oligomeric state could maintain a seal 

around substrates of different sizes during transport; (3) the bilayer perturbation model, in which  

TatA polymerization may alter local membrane bilayer structure to allow substrate movement [15,83]. 

In E. coli, three integral membrane proteins TatA, TatB, and TatC are essential Tat components [81]. 
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TatB and TatC are involved in signal peptide recognition and the targeting of protein substrates to 

TatA. Previous structural and biochemical information suggests that TatA forms a ring-shaped 

translocation pore of the Tat system [81]. 

Figure 6. Stoichiometries and dynamics of a functioning flagellar nanomachine in living 

bacterial cells. (A) Stepwise photobleaching of GFP–MotB molecules in a motor after 

prebleaching of the cell to reduce background. Shown are the raw motor intensity (blue), 

Chung-Kennedy filtered motor intensity trace (red), and detected steps (in parentheses) and 

step sizes; (B) Successive TIRF images of a cell region before and after photobleaching. 

The boundary of the laser focus is indicated (dotted circle, middle panel). FLIP (red) and 

FRAP (light green) of GFP–MotB molecules of two motors are shown. The cell is outlined 

(white) [76]; (C) Turnover of FliM molecules in the switch complex is dependent on the 

response regulator CheY. Mean FRAP (red) and FLIP (blue) traces (dotted lines: SEM 

error bounds) based on 7–11 spots are shown for FliM-YPet in WT and ΔcheY cells [77]. 
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To better understand the mechanism of Tat-mediated protein translocation, it is critical to determine 

the oligomeric state and organization of TatA in vivo directly. To this end, Leake et al. [83] applied 

stepwise photobleaching to measure the stoichiometry of TatA–YFP in a native membrane 

environment. Custom-written software automatically identified and tracked TatA spots through stacks 

of consecutive images, which determined the intensity of each TatA complex together with its position 

to a precision between ~2 and ~20 nm. They found that TatA forms ~15 mobile complexes with  

~25 TatA sub-units per complex. The mobility of TatA complex decreases with increasing complex 

size. Analysis of the stoichiometry distribution suggests the TatA complexes are assembled  

from tetramer units. There are ~460 TatA molecules associated with complexes in a cell, with  

~100 molecules of a disperse membrane pool. Notably, mathematical modeling of the diffusion 

behavior of the complexes indicates that TatA protomers organize into a ring and not a filled 

bundle/disc. Loss of PMF has no effect on the stoichiometry of TatA complex. However, TatA does 

not form complexes in ΔtatBC cells, suggesting that TatBC controls the oligomeric state of TatA. The 

mechanistic models of Tat transport make specific predictions about the oligomeric state of TatA and 

whether and how this changes during the transport cycle. Although previous biochemical studies have 

shown that TatA exhibits heterogeneous oligomeric states, it is uncertain whether this heterogeneity is 

an artifact of the detergent extraction [81]. Leake et al. [83] demonstrated that this variability in 

oligomer size is an inherent property of TatA in vivo, with a polymerization TatA complex model 

being most likely. 

Bacterial nanomachines work in a whole cellular context. Therefore, the subcellular distributions of 

these nanomachines are important for a comprehensive understanding of how they function. Nearly all 

organisms are able to synthesize ATP by OXPHOS (oxidative phosphorylation), a biochemically  

well-understood process carried out by many membrane-bound enzymes [84]. However, little was 

known until recently about the relationship between its functions and cellular spatial localization. 

By tagging OXPHOS ATP synthase and succinate dehydrogenase with different fluorescent 

proteins, Johnson et al. [85] showed that these complexes distribute heterogeneously in mobile patches 

in living Bacillus subtilis cells. However, the dynamic localization of the complexes was investigated 

at relatively low temporal resolution and the stoichiometry was not quantified. Lenn et al. [13,86] 

further studied the organization and dynamics of functional GFP-tagged cytochrome bd-I oxidase 

complex in living E. coli cells. TIRF microscopy, SPT and stepwise photobleaching showed that 

~76 cytochrome bd-I oxidases cluster into mobile spots in the cytoplasmic membranes. The positions 

of these clusters were obtained to within a few nanometers precision. Like TatA, cytochrome bd-I 

clusters are assembled from tetramer units. There are ~230 clusters per cell, and ~88% of all 

cytochrome bd-I oxidases are directly associated with the clusters. Interestingly, the cluster widths 

(with a mean of ~100 nm) of cytochrome bd-I clusters do not increase with cluster intensities, 

indicating that the diameters of the clusters are not determined solely by the number of constituting 

cytochrome bd-I complexes. The authors suggested that respiration occurs in mobile membrane 

clusters which they called ―respirazones‖. These specialized compartments are dedicated to respiratory 

function. Within the putative respirazones, OXPHOS complexes and electron carriers might be highly 

concentrated, thus enhancing energetic efficiency. In OXPHOS, the oxidation of electron donors is 

coupled with the generation of PMF. If ATPases and proton symporters/antiporters are also associated 

with respirazones, the efficiency of PMF-dependent processes could also be enhanced. Intriguingly, 
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the adventurous gliding motility of the Gram-negative bacterium Myxococcus xanthus is mediated by 

the rotation of a helical cytoskeleton powered by PMF [87]. The motility cytoskeleton interacts with 

MotAB homologs. A mechanochemical model was proposed: PMF-driven motors (similar to flagellar 

stator complexes) run along a helical track and drive the rotation of the track, thus pushing cells 

forward. Further co-localization studies of OXPHOS components with PMF-driven motors could 

provide insights of whether there are localized power supplies for different PMF-dependent processes 

in the cytoplasmic membrane [13,86]. 

PspA is a peripheral membrane protein which maintains PMF under stress conditions [88]. In vitro 

studies have shown that PspA exists in oligomeric states [88,89]. However, the stoichiometry of the 

PspA complexes in vivo is undetermined. Lenn et al. [90] utilized wide-field fluorescence microscopy 

and photobleaching to measure the stoichiometry of PspA complexes in living E. coli cells. Their 

results indicate that PspA may mainly exist as hexamers in the cytoplasmic membrane. They show that 

quantifications with single-molecule sensitivity can be achieved under normal epifluorescence 

illumination. Engl et al. [91] have shown that PspA is organized into two distinct functional classes, 

one localizes at the cell pole and the other at the lateral cell membrane. The highly mobile lateral PspA 

complexes are absent in cells lacking the MreB cytoskeleton, and cells fail to maintain PMF under 

stress conditions. Interestingly, the M. xanthus PMF-driven motility system is also dependent on the 

MreB cytoskeleton [87]. 

4.3. The Replisome 

The bacterial replisome is a multiprotein nanomachine that replicates DNA at a rate  

~1000 nucleotides per second and makes less than one mistake per 10
9
 nucleotide incorporations [92]. 

The robust and efficient coordination of its components accounts for the high efficiency and fidelity. 

Although the replisome has been extensively studied in vitro [92,93], its in vivo composition and 

supramolecular architecture has been a mystery until recently. For a cytoplasmic protein complex, the 

replisome itself has a relatively slow apparent diffusion, with a mean-square displacement (MSD) of 

~10
3
 nm

2
/s [94], because it is bound to the nucleoid DNA. However, with non-bound cytoplasmic 

components diffusion faster by a factor of ca. 1000, at a comparable rate to the replication of the DNA 

bases themselves. Conventional video-rate (tens of milliseconds per image frame) fluorescence 

microscopy that has been used to study membrane-integrated protein complexes is not sufficient for 

studying these fast dynamics of the replisome without running the risk of generating blurry images. By 

using slimfield fluorescence microscopy and stepwise photobleaching, Reyes-Lamothe et al. [95] 

determined the stoichiometry of the replisome. The authors tagged the ca. 10 replisome components 

with the fluorescent protein YPet. The fusion proteins were under control of the native promoters. 

They observed ~75% of cells contain two spatially separated replisomes (i.e., two fluorescent spots), 

each associated with independent replication forks. The remaining ~25% of cells have sister 

replisomes separated by a distance smaller than the diffraction limit of the imaging system and are 

seen as a single fluorescent spot. Correspondingly, most replisome components have bimodal 1:2 

distributions of stoichiometries, with single fluorescent spots displaying doubled stoichiometries. 

Earlier in vitro experiments established a textbook view of DNA polymerase III (DNA pol III): each 

replisome containing two pol IIIs (Figure 7), one for a replication fork on the leading strand and one 
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for the lagging strand [14]. Surprisingly, Reyes-Lamothe et al. [95] found that each replisome contains 

three pol IIIs (Figure 7). The clamp loader that links pol IIIs also has three copies per replisome. 

However, the spatial intensity distribution of a clamp component suggested that only ~27% of 

replisomes have all three clamps associated with the Pol III core. In other words, in ~73% of 

replisomes one clamp localizes outside this core. These results indicated that in a few cells all three pol 

IIIs may be associated with active replication, while in most cells the third pol III may be waiting to be 

loaded on to the lagging strand. The functional insight of this architecture might be that the third Pol 

III facilitates the replication of the lagging strand [95,96]. In combination with degron-targeted 

proteolysis and gene deletion of specific proteins, Reyes-Lamothe et al. [95] also obtained an 

unanticipated insight into the architecture of the replisome by in vivo single-molecule imaging. They 

showed that the single clamp loader in each replisome contains three τ proteins but no γ, instead of the 

previously believed two τ subunits with a single γ subunit (Figure 7) [14]. By tracing single  

YFP-labeled primases, events of transient binding and unbinding of individual primases at the 

replisome that possibly correspond to the formation of Okazaki fragments was also observed in living 

E. coli cells [31]. 

Figure 7. Models for replisome composition/architecture. The old view is based on previous 

in vitro experiments, and the new view based on the work of Reyes-Lamothe et al. [95]. 

Components that are identical in both models are shown in gray. In the new model, there 

are three Pol IIIs, three β clamps (one of them is dynamically localized, either within or 

outside the replisome core), and three τ subunits. 

 

5. Cytoskeletons 

5.1. MreB 

MreB, the most widely conserved prokaryotic actin homolog, is found in almost all non-spherical
 

bacteria [6,97]. MreB homologs have been shown to form filaments with biochemical and structural 

properties strikingly similar to those of actin, and been implicated in diverse cellular spatial regulations, 

including chromosome replication, segregation, and decatenation, cell growth and division, 

morphogenesis, polarity, protein localization, organelle positioning, and differentiation [6,97]. MreB 

homologs assemble into helical
 
filaments beneath the cell membrane or ring-like structures at putative 

division sites [6,97]. 
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Combinations of single-molecule imaging and SPT/sptPALM have yielded plenty of new 

information about the MreB cytoskeleton. When 3–4 MreB-YFP fusion proteins were expressed in 

each C. crescentus cell under the control of an inducible promoter in a background of wild-type MreB, 

polymerized and unpolymerized MreB monomers were distinguished [59,98]. Unpolymerized MreB 

molecules show Brownian diffusion that is slower than expected for a cytoplasmic protein but is 

consistent with the motion of a membrane-associated protein, whereas polymerized MreB molecules 

display slow, directed motion (average speed: 6.0 ± 0.2 nm/s). Importantly, this directional movement 

of MreB in the growing polymer provides an indication that, like actin, MreB monomers treadmill 

through MreB filaments by preferential polymerization at one filament end and depolymerization at 

the other filament end [59,98]. It was suggested that MreB helices may serve as tracks for  

the movements of other cellular components. However, single MreB filaments are much shorter  

(392 ± 23 nm) than the cell length and the direction of their polarized assembly seems to be 

independent of the overall cellular polarity. Thus, the long helical MreB structures that have been 

visualized represent bundles of short filaments, and these helices lack a uniform global polarity [59,98]. 

PALM was further used to explore the super-resolution structure of the MreB cytoskeleton to a 

precision of ca. 40 nm. After the photobleaching of all emissive YFP-MreB molecules, a sparse subset 

was reactivated in each diffraction-limited region [59,99]. Two distinct MreB superstructures were 

identified in C. crescentus: a quasi-helical arrangement in a stalked cell and a mid-cell ring in the  

pre-divisional cell [34,59,99]. Uniquely, by using the natural treadmilling motion of MreB, the number 

of localizations (thus the effective resolution) was increased without further MreB induction [34,99]. 

Since each localization event (i.e., each determination of a position) along the MreB cytoskeleton 

comes from a single 100 ms frame in these studies, multiple position determinations may come from a 

single MreB-YFP molecule as it treadmills through an MreB protofilament. This approach allowed 

researchers to use a smaller real concentration of FP-fusions to obtain a large number of spatial 

localizations. Live-cell dynamics can thus be utilized to obtain higher resolution information of 

subcellular architecture [34,99]. 

5.2. FtsZ 

FtsZ, a tubulin homolog, is the major component of the bacterial cytokinesis nanomachine [6,8]. It 

is almost universally present in bacteria as well as in the chloroplasts and mitochondria of some 

eukaryotes. FtsZ forms the Z-ring under the membrane at the mid-cell, and this cytoskeletal structure 

serves as a scaffold to recruit and position a cascade of proteins that have diverse functions in cell 

division and cell wall synthesis. The constriction of the Z-ring initiates cytokinesis. However, whether 

the Z-ring is a passive scaffold or an active force generator directing inward growth of the cell wall has 

long been debated [6,8]. Super-resolution and single-molecule imaging is essential to explore this and 

other important aspects of FtsZ functions in vivo. 

Niu and Yu [100] applied sptPALM to investigate the dynamics of FtsZ in live E. coli cells. They 

found two subpopulations of FtsZ molecules with distinct diffusion dynamics. The FtsZ molecules 

forming the Z-ring are mainly stationary, and the rest of the unpolymerized FtsZ molecules undergo 

Brownian motion spanning the whole cell. Intriguingly, the diffusion of FtsZ is spatially restricted to 

helical-shaped regions. Fu et al. [101] further used PALM to characterize the in vivo structure of the  
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Z-ring in E. coli. They found that in addition to the ring-like conformation, the Z-ring also adopts a 

novel compressed helical conformation with variable helical length and pitch. The conformation of the 

Z-ring is dependent on FtsZ expression level. The thickness of the Z-ring is ~110 nm. These results 

suggest that the Z-ring is composed of a loose bundle of FtsZ protofilaments that randomly overlap 

with each other in both longitudinal and radial directions of the cell. Similar observations were made 

by super-resolution imaging based on STED microscopy [102]. The above information provides 

important insights for the investigations of structure-function relationships and spatial regulation of the 

FtsZ cytoskeleton. 

5.3. ParA 

The ParABS system is long regarded as a mitotic-like apparatus for active and faithful partitioning 

of plasmid and chromosomes in bacteria [9]. This mitotic-like force generation device provides a 

means for the identification of DNA cargos and a way to move them. The parABS locus contains a  

cis-acting DNA region parS (centromere) and encodes two trans-acting proteins: the ATPase 

cytoskeletal protein ParA (motor) and a centromere-binding protein ParB that interacts with the 

ATPase (adaptor) [9]. Emerging evidence indicates that ParABS systems encoded by chromosomes 

and plasmids segregate DNA by similar mechanisms [9]. Shared features of chromosomal and plasmid 

ParAs are: (1) dynamic movement over the nucleoid; (2) ATP-dependent non-specific binding to 

DNA; (3) interaction with the ParB–parS complex [9,103,104]. Despite these shared features, the 

actual molecular mechanisms linking ParA dynamics with DNA partitioning is still unknown [9,103]. 

Basically, two types of models are proposed: a filament-pulling model and a diffusion-ratchet  

model [103]. Both models employ a ―time-delay ratchet‖ which may be originated from the slow  

multi-step conformational transition of ParA upon ATP binding [103,104]. The primary difference 

between these models is whether ParA polymerizes into filaments, and whether depolymerization of 

filaments can provide the pulling force for DNA segregation [103]. It is thus critical to clarify whether 

ParA really polymerizes into filaments in vivo to understand the mechanism of ParA-mediated 

DNA partitioning. 

By utilizing super-resolution fluorescence imaging, Ptacin et al. [104] provide direct evidence that 

ParA forms slightly curved cytoskeletal filaments in C. crescentus cells. The ―comet tail-like‖ 

polarized ParA gradients observed in different chromosomal and plasmid ParABS systems under 

diffraction-limited fluorescence microscopy probably correspond to narrow linear ParA structures that 

have widths of 40.1 ± 9.5 nm [104]. In the burnt-bridge Brownian ratchet filament-pulling model, a 

pulling force is generated by depolymerization of ParA filament that is stimulated by the ParB–parS 

complex [9,103,104]. The moving ParB–parS complex ―ratchets‖ along the end of a retracting ParA 

filamentous structure and leaves behind it a ParA-free nucleoid zone. The ParB–parS ratchet utilizes 

the slow multi-step conformational transition of ParA to ensure the directionality of DNA movement. 

A retracting ParA cytoskeleton can pull the chromosome with a speed of ~120 nm/min [105].  

Ptacin et al. [104] combined super-resolution and conventional fluorescence imaging, genetic analysis, 

and biochemical approaches to support this model. Their results demonstrate that the operating 

principles of the filament-pulling mechanism are similar to eukaryotic mitotic machinery: a 

multivalent protein complex at the centromere stimulates the dynamic disassembly of cytoskeletal 
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filaments to move DNA into daughter compartments. Significantly, there is growing evidence that 

similar ParA-dependent systems are used in several other partitioning processes other than DNA 

segregation in bacteria [106–108]. It is possible that ParA-dependent systems represent a family of 

universal partitioning machinery. 

6. Conclusions 

In addition to the studies of nanomachines, single-molecule and super-resolution fluorescence 

imaging have been applied to explore many other cellular events in living bacterial cells. From these 

studies, a hitherto undiscovered picture of the cell has gradually emerged [22,31,39,59,109]. Soon  

in vivo single-molecule and super-resolution fluorescence imaging will become a standard tool in 

investigating molecular processes underlying diverse biological phenomena. The abilities of 

visualizing and quantifying individual molecules at work with spatial distributions and temporal 

resolutions in living cells offer a ―bottom-up‖ approach for systems-level understandings [22,30,110]. 

Indeed, fluorescence microscopy is a promising method that could be a vital tool for in vivo  

high-throughput studies [30,110]. Although systems biology has explosively uncovered many new 

cellular networks, a comprehensive understanding of a biological nanomachine with only five 

components (ParA, ParB, parS, ATP, and cargo DNA) is still beyond current technical experimental 

feasibility [103]. We believe that single-molecule and super-resolution fluorescence imaging is the key 

to reveal the hidden behaviors of biological nanomachines and other cellular systems. Developments in 

multicolor single-molecule fluorescence imaging and optogenetics [111,112], the method of 

controlling cellular functions with light, will enormously increase our ability to observe and 

manipulate nanomachines in their physiological context.  

Let there be light! 
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