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Abstract: We propose a generalized regression neural network (GRNN) approach based 

on grey relational analysis (GRA) and principal component analysis (PCA) (GP-GRNN) to 

improve the accuracy of density functional theory (DFT) calculation for homolysis bond 

dissociation energies (BDE) of Y-NO bond. As a demonstration, this combined quantum 

chemistry calculation with the GP-GRNN approach has been applied to evaluate the 

homolysis BDE of 92 Y-NO organic molecules. The results show that the full-descriptor 

GRNN without GRA and PCA (F-GRNN) and with GRA (G-GRNN) approaches reduce 

the root-mean-square (RMS) of the calculated homolysis BDE of 92 organic molecules 

from 5.31 to 0.49 and 0.39 kcal mol
−1

 for the B3LYP/6-31G (d) calculation. Then the  

newly developed GP-GRNN approach further reduces the RMS to 0.31 kcal mol
−1

. Thus, 

the GP-GRNN correction on top of B3LYP/6-31G (d) can improve the accuracy of 

calculating the homolysis BDE in quantum chemistry and can predict homolysis BDE 

which cannot be obtained experimentally. 

Keywords: Y-NO bond; homolysis bond dissociation energy; density functional theory; 

grey relational analysis; principal component analysis; generalized regression neural network 

 

OPEN ACCESS 



Int. J. Mol. Sci. 2011, 12             

 

 

2243 

1. Introduction 

Nitric oxide (NO) is an important signaling and effector molecule that is key to many physiological 

functions of the body (e.g., blood pressure regulation, immune system and nerve conduction), and 

plays a vital role in the regulation of [1–9]. NO has a high chemical activity and rarely exists in the 

form of free radical in the body. It becomes stable by binding itself with the carrier molecules in the 

body in specific binding sites that enable its storage, transfer and release.  

Inspired by the concepts of the “proton affinity” and “electron affinity”, Cheng et al. proposed the 

concept of NO affinity which can be defined as the measure of the strength for a receptor (X) to bind 

with the NO group [10]. It is characterized using the energies of the Y-NO bond (Y is the atom in the 

carrier molecules to which the NO group is attached, Y = N, S, O, C) in two different ways:  

  NOXNOX  (1) 

  NOXNOX  (2) 

The first reaction represents the homolysis which is chemical bond dissociation of a neutral 

molecule generating two free radicals. The energy during the reaction is referred to as homolysis Bond 

Dissociation Energy (BDE).The second reaction represents the heterolysis which is chemical bond 

cleavage of a neutral molecule generation an anions or cations. The energy during the reaction is 

referred to heterolysis BDE. In recent years, Cheng et al. developed a simple experimental approach to 

measure the homolysis and heterolysis bond dissociation energies (BDE) of the Y-NO (Y = C, N, O, S) 

bond in solution [10–20]. Experimental data show that the heterolysis energy of Y-NO bond is 

generally higher than the homolysis BDE of Y-NO bond which implies that it is easier for the NO 

carrier to release NO than NO
−
 and NO

+
. The carrier molecule is a potential free radical to bond with 

NO. The study of the heterolysis and homolysis BDE of the carrier molecules containing Y-NO 

(Y = C, N, O, S) bond helps measure the bonding and release capacity of NO in the body and 

understand and predict the transfer direction and mechanism of NO in the body. 

Quantum chemistry approaches are not only limited to the level of experimental validation, but also 

can predict the BDE without experimental results or with uncertain experimental. The main reason 

leading to this limitation is the similarity between the computational approaches. Therefore, in recent 

10 years, many statistical approaches have been used to improve the accuracy of quantum chemistry. 

First, the molecular properties are obtained from the calculation of quantum chemistry approaches and 

then the statistical approaches are applied to establish the relation between the experimental and 

calculated values. These statistical improvements include linear approaches, such as multiple linear 

regression [21], and nonlinear approaches, such as neural networks, etc. [22–24]. Although multiple 

linear regression approach is simple and intuitive, neural networks can better solve complex nonlinear 

problems which are difficult to model mathematically given the same physical parameters [25–27]. If 

the training of the neural networks is based on the back propagation (BP) algorithm, it is vulnerable to 

the slow convergence rate, and gets stuck at the local minimum points [28]. The genetic algorithm is 

an efficient global search approach which has been adopted in problems with a large search state-space 

to explore the globally optimal results. Therefore, the genetic algorithm can be used to optimize the 

weights of neural network [29].  
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Roman M. Balabin et al. estimate the density functional theory (DFT) energy with large basis set 

using lower-level energy values and molecular descriptors [30]. A total of 208 different molecules 

were used for the artificial neural network (ANN) training, cross validation, and testing by applying 

BLYP, B3LYP, and BMK [31] density functionals. An expected error, mean absolute deviation, ANN 

approximation to DFT energies was 0.6 ± 0.2 kcal mol
−1

. Wu and Xu proposed the X1 approach that 

combines the DFT (B3LYP) with the neural network correction for an accurate prediction of formation 

heat [25]. An error close to the G3 approach (1.34 versus 1.05 kcal mol
−1

 for the G3/99 molecule set) 

was reached. 

Chen and co-workers proposed a DFT-NEURON approach to establish the quantitative relationship 

between the experimental data and the results computed from the first main principle [23]. This 

relationship was then used to reduce the error margin of the values of the computed absorption 

energy [32]. With the TDDFT/B3LYP/6-31G (d) approaches, the root-mean-square (RMS) for the 

absorption energies in 60 organic molecules was reduced from 0.33 to 0.09 eV. Recently, our research 

group proposed a successful improvement approach based on genetic algorithm and neural network 

(GANN) to correct the absorption energies of 150 organic molecules [33]. In addition, we also 

proposed a least squares support vector machine approach to correct the absorption energies of  

160 organic molecules [34]. 

There are mainly two factors affecting the accuracy of the calculation of the homolysis BDE:  

(1) the selection of molecular descriptors and pretreatment; (2) the statistical approaches. Some 

researchers only focus on the statistical approach selection and ignore the molecular descriptors 

selection and pretreatment. The subjective choice of molecular descriptors, the distribution of the 

weights, the redundancy in the chosen molecular descriptors and the multiple correlations in molecular 

descriptors all affect the final results. Therefore, the molecular descriptors selection and pretreatment  

are significant. 

In this paper, the Generalized Regression Neural Network (GRNN) based on the grey relational 

analysis (GRA) and principal component analysis (PCA) (GP-GRNN) approach is proposed to improve 

the accuracy of calculating the homolysis BDE of 92 organic molecules. The DFT B3LYP/6-31G (d) 

approach is first applied to optimize the carrier molecules and calculate their frequency in order to 

obtain the homolysis BDE value and relevant molecular descriptors of the Y-NO (Y = C, N, O, S) 

bond. GRA is used to select the appropriate molecular descriptors. PCA is used to optimize the 

selected molecular descriptors. Finally, GRNN is used to establish nonlinear model. Then the GP-GRNN 

is applied to reduce the RMS of homolysis BDE for the 92 organic molecules. The results show that 

GP-GRNN is a more accurate and informative correction technique in chemical physics. 

2. Description of Approach 

2.1. Grey Relational Analysis 

If the index characteristics of a system are represented as a reference array x0 (n-dimensional), the 

array is used as reference index (experimental value of homolysis BDE in this paper). If an array that 

has multiple characteristics is related to the reference index, then the array is represented as 

javascript:showjdsw('jd_t','j_')
javascript:showjdsw('jd_t','j_')
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xi(i = 1,2,…,m) (n-dimensional). To measure the relationship between the reference index and the 

arrays xi(i = 1,2,…,m), the concept of relational coefficient is introduced below: 

 
       

       

0 0

0 0

min min max max

max max

i i
i k i k

i

i i
i k

x k x k x k x k
r k

x k x k x k x k





   


   

  1,2,..., ; 1,2,...,i m k n   
(3) 

where α is the distinguishing coefficient, ri(k) is the relational coefficient between 
ix  and 

0x  at the  

kth characteristic. 

The following equation further processes the relational coefficients to obtain the 
i  which is the 

relation degree between 
ix  and 

0x . 

       nnrrr iiii /21    (4) 

i  is the average of the relational coefficients [35–37]. 

2.2. Principal Component Analysis 

PCA is a multivariate statistical approach used for reducing variables in the data [38]. Its basic 

content is to convert a set of original indices into a set of comprehensive indices which are new and 

uncorrelated with one another to replace the original. According to the actual needs, it is likely to 

select several fewer comprehensive indices which can reflect the information of original indices as 

much as possible to represent the total indices of original variables to achieve the purpose of  

variable reduction.  

PCA is aimed at compressing the number of variables and making the model reflect the real 

situation better by using fewer variables to explain most of the variables in the original data and 

eliminating the redundancy. This means to convert a number of highly correlated variables into new, 

fewer and independent of one another variables, i.e., principal component which can explain most of 

the variance of the original data. This approach can erase the collinearity existing in the original 

variables, and overcome the problems, such as instability of calculation, ill-conditioned matrix and so 

on and so forth. 

The following part shows the approach and calculation steps that PCA adopts to determine the weight. 

We suppose that the number of sample (organic molecules) is n and the number of indicators’ 

(molecular descriptors) value in each sample is m. Then, we can organize the experimental data into  

a matrix.  

[ ]( 1,2,..., ; 1,2,..., )ijX X i n j m    (5) 

(a) Standardize the original data 

The indicator in each sample is converted into the standardized indicator X
*

j according to the 

standardized Equation 6. Therein, Xj and Sj is respectively are the mean and standard deviation of Xj . 

The mean of X
*

j is 0 and the variance is 1. 

* ( 1,2,..., ; 1,2,..., )
ij j

ij

j

X X
X i n j m

S


    (6) 

(b) Calculate the correlation coefficient rij, of each standardized indicator X
*

j and write down the 

matrix of correlation coefficient: R = [rij]m*m. Therein, 
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1

1
( , 1,2,..., )

1

n

ij ti tj

t

r X X i j m
n 

 

  (7) 

(c) Calculate the eigenvalue i (I = 1,2,…,m) of related matrix R and then, arrange the eigenvalue i 

according to the descending order 1 ≥ 2 ≥ 3 ≥ … ≥ m ≥ 0. 
m

i

i


   is called the variance 

contribution of the principal component Zi, i.e., the weight of the principal component Zi. 

2.3. Generalized Regression Neural Network 

GRNN was proposed by the American scholar D. F. Specht [39]. The approach uses vertical basis 

function as the basis of the hidden units to form the hidden layers. The hidden layers (include pattern 

layer and summation layer) transform the input vectors from the low-dimensional input data into a 

high dimensional space so that the problem can be separated linearly in the high dimensional space. It 

is good at function approximation and the network finally converges to the optimized regression plane 

which contains the most samples. It can predict well, even with very few sample data, and can handle 

instability in the data. The structure of GRNN is composed of four layers, input layer, pattern layer, 

summation layer and output layer (Figure 1).  

Figure 1. Structure of generalized regression neural network (GRNN). 



X1

X2

Xn

 

p1

p2

pn

SD

SN

SN/SD

Y

Input layer Pattern layer Summation layer Output layer

 

The output is Y which corresponds to the net input X = [x1,x2,…,xp]
T
. The number of neurons in the 

input layer is equal to the dimensions of input vector p in the study sample. The number of neurons in 

pattern layer is equal to the number of study sample n. The transfer function of neuron n is 

2

( ) ( )
exp ( 1,2,..., )

2

T

i i
i

X X X X
p i n



  
   

 
 (8) 

therein, X is the network’s input variable and δ is the smoothing factor which determines the shape of 

function. The larger the value is, the smoother the function is. Xi is the corresponding study sample of 

neuron i. Each unit in the pattern layer corresponds to a training sample and the Gaussian function is 

treated as the activation of kernel function. Two types of neurons are used for summation in the 

summation layer, one is  
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[ ]( 1,2,..., ; 1,2,..., )ijX X i n j m    (9) 

whose connection weight with each neuron in the pattern layer is 1, and the other is 

ii

n

i

N pyS 



1

 (10) 

whose connection weight is each factor yi of the output sample in the pattern layer in which the 

weighted sum is adopted to work out the summation of the output of corresponding neurons. The 

output of neurons in the output layer is 

D

N

S

S
Y   (11) 

i.e., the output of network. In our paper, Figure 2 shows a flow chart of GP-GRNN model calculation. 

Figure 2. Flow chart of GP-GRNN model calculation (GRA, grey relational analysis; 

PCA, principal component analysis). 
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3. Computational 

3.1. Data Set 

Ninety-two (92) important organic carrier molecules containing NO are studied in this work. They 

are the four typical NO carrier molecules in the acetonitrile solution: N-nitrosamine compounds,  

O-nitrite, C-nitroso compounds, S-nitrosylation compounds (their molecular structures are shown  

in Table 1). The data set is randomly divided into a training set (80 molecules) and a test set  

(12 molecules). The training set used to adjust the model parameters and the test set is used to test the 

model's predictive ability. 

Table 1. The structures of the 92 organic carrier molecules with Y-NO 
a
. 
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Table 1. Cont. 
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a 1–53 contain N-NO; 54–66 contain O-NO; 67–84 contain S-NO; 85–92 contain C-NO. 

3.2. Calculation of Molecular Descriptors 

All of the calculations were done using Gaussian03 [40]. The geometry was optimized at the 

DFT/B3LYP level with 6-31G (d) basis set. Subsequently, vibrational frequencies were performed at 

the same theoretical level to confirm their local minima. The gas phase homolysis BDE is defined as 

the enthalpy change of the Equation 1 at 298 K in a vacuum [41]. The enthalpy of formation for each 

species was calculated using the following equation: 

RTHZPEEH  0298298  (12) 

The zero point energy correction was taken into account in the calculation. ΔH298–0 is the standard 

temperature correction term including Hvib, Hrot and Htrans. 

)(298)(298)(298hom NOXNOXo HHHH    (13) 

A set of molecular descriptors can be obtained from the geometry optimization and frequency 

calculations. The molecular descriptors include the calculated homolysis BDE value (ΔHhomo), the net 

charge (QY) on the Y(C, N, O, S) atom which is bonded with the NO, the net charge (QN) and (QO) on 

the atoms N, O in the NO molecule fragment, the number of electrons (NX) on the fragment X 

(excluding the NO radical), the molecule dipole moment (μ) and the molecule polarizability (α), the 
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highest occupied molecular orbital and the lowest unoccupied molecular orbital energy (EHOMO) and 

(ELUMO), the second highest occupied molecular orbital and the second lowest unoccupied molecular 

orbital energy (EHOMO−1) and (ELUMO+1), the energy gap (ΔE) between EHOMO and ELUMO. The 

molecular descriptors can reflect covalent and ionic interactions in a molecule bond.  

4. Results and Discussion 

4.1. Calculation of Descriptor 

For the 92 organic molecules containing the Y-NO (Y = C, N, O, S) bond, the B3LYP function is 

used to optimize the geometry at 6-31G (d) basis set level and the frequency is calculated to confirm 

the stable structure. Finally, the homolysis BDE of Y-NO (Y = C, N, O, S) bond and relevant 

molecular descriptors are obtained and shown in Table 2.  

Table 2. Theoretical calculation of the Y-NO (Y = C, N, O, S) bond homolysis BDE  

(in the gas phase) and molecular descriptors 
a
. 

No. b Expt. c ΔHhomo 
d QY QN QO NX µ α EHOMO−1 EHOMO ELUMO ELUMO+1 ΔE 

1 43.8 26.63 −0.309 0.222 −0.325 87 1.83 117.55 −0.2466 −0.2275 −0.0744 −0.0114 0.1532 

2 36.1 28.22 −0.311 0.223 −0.324 79 0.91 111.89 −0.2493 −0.2457 −0.0761 −0.0190 0.1696 

3 38.3 28.99 −0.312 0.224 −0.323 71 0.46 98.39 −0.2580 −0.2494 −0.0781 −0.0223 0.1713 

4 37.6 28.31 −0.314 0.231 −0.324 87 1.53 111.82 −0.2584 −0.2542 −0.0855 −0.0344 0.1687 

5 39.2 29.43 −0.318 0.236 −0.318 93 4.54 117.63 −0.2838 −0.2686 −0.1039 −0.0916 0.1648 

6 34.5 25.37 −0.613 0.230 −0.341 145 2.81 182.34 −0.2432 −0.2360 −0.0556 −0.0086 0.1804 

7 35 25.99 −0.614 0.231 −0.340 137 2.89 168.56 −0.2501 −0.2397 −0.0578 −0.0115 0.1819 

8 36.2 23.67 −0.627 0.251 −0.336 153 3.65 182.09 −0.2476 −0.2432 −0.0666 −0.0196 0.1766 

9 40.4 27.27 −0.615 0.239 −0.332 159 6.30 189.00 −0.2736 −0.2582 −0.0968 −0.0707 0.1614 

10 36.2 25.30 −0.614 0.234 −0.338 171 3.60 190.40 −0.2498 −0.2425 −0.0652 −0.0231 0.1773 

11 21.4 23.56 −0.247 0.213 −0.368 105 4.59 157.91 −0.2261 −0.2146 −0.0500 −0.0147 0.1646 

12 21.4 24.10 −0.248 0.214 −0.366 97 3.78 152.40 −0.2278 −0.2213 −0.0523 −0.0184 0.1690 

13 22.6 24.32 −0.250 0.216 −0.365 89 3.55 138.43 −0.2299 −0.2248 −0.0545 −0.0211 0.1702 

14 24.1 23.71 −0.252 0.220 −0.361 105 2.73 150.61 −0.2373 −0.2318 −0.0628 −0.0309 0.1690 

15 24.3 22.74 −0.256 0.226 −0.353 111 5.18 161.02 −0.2497 −0.2437 −0.0997 −0.0674 0.1440 

16 21 22.69 −0.245 0.209 −0.376 121 5.80 178.22 −0.2209 −0.2028 −0.0445 −0.0135 0.1584 

17 22.3 24.30 −0.249 0.215 −0.367 97 3.44 151.74 −0.2281 −0.2221 −0.0530 −0.0193 0.1691 

18 28.3 19.93 −0.326 0.218 −0.338 103 3.29 136.91 −0.2379 −0.2228 −0.0567 −0.0045 0.1661 

19 28.7 21.40 −0.327 0.219 −0.337 95 2.37 131.36 −0.2430 −0.2373 −0.0583 −0.0077 0.1791 

20 29.1 22.17 −0.328 0.220 −0.336 87 2.54 117.73 −0.2507 −0.2402 −0.0604 −0.0108 0.1798 

21 29.2 21.52 −0.330 0.226 −0.337 103 3.85 131.41 −0.2511 −0.2463 −0.0683 −0.0225 0.1781 

22 33.1 22.52 −0.333 0.232 −0.331 109 6.56 137.77 −0.2664 −0.2592 −0.0970 −0.0752 0.1622 

23 27.5 25.39 −0.322 0.219 −0.345 95 2.41 128.37 −0.2449 −0.2395 −0.0585 −0.0139 0.1810 

24 23.1 26.55 −0.332 0.234 −0.334 103 1.55 127.84 −0.2527 −0.2444 −0.0631 −0.0253 0.1813 

25 30.3 22.23 −0.330 0.228 −0.336 121 4.08 137.71 −0.2481 −0.2459 −0.0683 −0.0235 0.1776 

26 29.4 21.50 −0.330 0.226 −0.337 121 3.75 139.32 −0.2492 −0.2441 −0.0682 −0.0230 0.1759 

27 30.5 21.90 −0.330 0.227 −0.335 109 3.72 147.05 −0.2515 −0.2480 −0.0736 −0.0553 0.1744 

28 26.6 18.38 −0.327 0.226 −0.348 127 3.31 174.50 −0.2394 −0.2322 −0.0553 −0.0030 0.1769 

29 25.4 20.43 −0.322 0.218 −0.338 175 2.07 247.88 −0.2389 −0.2371 −0.0619 −0.0130 0.1752 
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30 33.7 35.57 −0.489 0.218 −0.367 105 5.11 128.42 −0.2500 −0.2435 −0.0595 −0.0395 0.1840 

31 33.4 35.37 −0.492 0.221 −0.363 97 5.10 122.36 −0.2690 −0.2467 −0.0633 −0.0466 0.1833 

32 34.9 35.23 −0.493 0.221 −0.361 89 4.54 108.58 −0.2783 −0.2491 −0.0662 −0.0499 0.1829 

33 33 34.91 −0.495 0.220 −0.356 105 3.11 122.51 −0.2757 −0.2545 −0.0730 −0.0591 0.1815 

34 33.9 34.64 −0.497 0.220 −0.349 111 2.00 125.62 −0.2986 −0.2629 −0.1125 −0.0797 0.1505 

35 33 34.92 −0.495 0.221 −0.356 123 3.23 130.46 −0.2702 −0.2542 −0.0729 −0.0591 0.1813 

36 33.7 34.32 −0.501 0.228 −0.349 121 3.73 132.97 −0.2716 −0.2568 −0.0733 −0.0694 0.1835 

37 28.7 29.86 −0.219 0.233 −0.355 77 4.28 117.41 −0.2290 −0.2198 −0.0760 −0.0191 0.1438 

38 28.6 29.36 −0.221 0.235 −0.351 69 3.13 111.26 −0.2372 −0.2276 −0.0779 −0.0198 0.1497 

39 29 29.29 −0.223 0.237 −0.348 61 2.85 97.11 −0.2465 −0.2297 −0.0802 −0.0233 0.1495 

40 29.8 29.44 −0.224 0.241 −0.343 77 2.20 111.05 −0.2467 −0.2414 −0.0893 −0.0360 0.1521 

41 29.3 28.89 −0.229 0.249 −0.329 83 4.00 116.51 −0.2715 −0.2541 −0.1089 −0.0828 0.1451 

42 28.47 28.43 −0.225 0.243 −0.341 77 3.79 110.11 −0.2569 −0.2338 −0.0891 −0.0356 0.1447 

43 29.66 29.40 −0.224 0.241 −0.343 95 2.19 119.13 −0.2433 −0.2410 −0.0893 −0.0360 0.1518 

44 22.9 21.76 −0.265 0.217 −0.369 103 3.79 155.37 −0.2333 −0.2254 −0.0486 −0.0139 0.1767 

45 13.6 12.63 −0.230 0.208 −0.376 95 3.04 143.30 −0.2346 −0.2119 −0.0623 −0.0231 0.1496 

46 19.2 19.23 −0.271 0.222 −0.369 101 3.70 165.31 −0.2299 −0.2158 −0.0573 −0.0476 0.1585 

47 27.4 28.27 −0.210 0.229 −0.362 87 3.19 142.90 −0.2329 −0.2307 −0.0751 −0.0406 0.1557 

48 28.3 26.63 −0.212 0.233 −0.353 155 0.72 189.38 −0.2452 −0.2386 −0.0898 −0.0596 0.1488 

49 29.7 26.29 −0.209 0.223 −0.362 99 3.44 152.06 −0.2377 −0.2152 −0.0721 −0.0161 0.1431 

50 13.2 20.67 −0.516 0.240 −0.332 121 5.38 156.76 −0.2605 −0.2475 −0.0697 −0.0523 0.1778 

51 12.4 18.00 −0.513 0.237 −0.335 137 6.62 176.96 −0.2454 −0.2315 −0.0661 −0.0483 0.1654 

52 13.1 20.13 −0.517 0.242 −0.331 137 4.85 171.04 −0.2594 −0.2532 −0.0759 −0.0586 0.1772 

53 14.5 20.83 −0.518 0.241 −0.329 143 3.23 186.80 −0.2584 −0.2540 −0.0809 −0.0706 0.1732 

54 32.5 29.88 −0.482 0.419 −0.205 79 4.05 111.15 −0.2672 −0.2370 −0.1077 −0.0420 0.1293 

55 32.8 29.92 −0.483 0.421 −0.200 71 3.46 103.71 −0.2637 −0.2570 −0.1116 −0.0490 0.1454 

56 33.9 30.02 −0.485 0.424 −0.195 63 2.84 89.12 −0.2682 −0.2658 −0.1150 −0.0522 0.1508 

57 34.3 30.41 −0.489 0.427 −0.188 97 1.43 111.98 −0.2795 −0.2591 −0.1215 −0.0619 0.1375 

58 38.6 31.03 −0.496 0.436 −0.171 85 2.96 107.57 −0.2964 −0.2920 −0.1352 −0.1074 0.1568 

59 35 30.12 −0.491 0.421 −0.193 31 2.09 39.15 −0.3068 −0.2791 −0.1159 0.0010 0.1632 

60 37.9 30.57 −0.488 0.420 −0.195 39 2.04 50.08 −0.3058 −0.2772 −0.1146 0.0031 0.1626 

61 36.7 29.80 −0.488 0.420 −0.196 47 2.14 60.61 −0.3048 −0.2737 −0.1142 0.0011 0.1595 

62 33.7 40.09 −0.380 0.383 −0.325 73 3.67 102.43 −0.2589 −0.2246 −0.0688 −0.0089 0.1559 

63 33.7 37.82 −0.379 0.384 −0.323 65 3.06 96.97 −0.2564 −0.2425 −0.0706 −0.0160 0.1719 

64 35 25.04 −0.380 0.385 −0.322 57 2.68 83.49 −0.2591 −0.2515 −0.0725 −0.0192 0.1790 

65 36.2 40.39 −0.382 0.388 −0.318 91 1.54 104.40 −0.2738 −0.2482 −0.0785 −0.0326 0.1698 

66 36.2 36.75 −0.388 0.394 −0.308 79 3.17 102.33 −0.2882 −0.2792 −0.0977 −0.0898 0.1815 

67 21 17.49 0.289 0.054 −0.229 73 3.68 111.93 −0.2520 −0.2181 −0.0905 −0.0398 0.1276 

68 21.4 18.94 0.297 0.054 −0.225 65 2.91 105.93 −0.2532 −0.2279 −0.0942 −0.0439 0.1337 

69 19.4 19.67 0.300 0.055 −0.222 57 2.36 91.82 −0.2556 −0.2333 −0.0973 −0.0465 0.1360 

70 19.2 19.25 0.296 0.062 −0.214 73 0.52 106.01 −0.2618 −0.2381 −0.1047 −0.0568 0.1333 

71 18.6 21.03 0.303 0.075 −0.197 79 3.05 113.42 −0.2737 −0.2576 −0.1206 −0.1006 0.1370 

72 23.4 23.60 0.318 0.012 −0.245 145 2.85 221.05 −0.2407 −0.2280 −0.0898 −0.0303 0.1382 

73 20.9 20.02 0.298 0.065 −0.211 73 2.08 104.13 −0.2624 −0.2415 −0.1058 −0.0575 0.1357 

74 19.3 27.21 0.292 0.077 −0.212 73 3.13 102.84 −0.2606 −0.2369 −0.1006 −0.0593 0.1363 

75 19.9 19.54 0.302 0.053 −0.224 65 2.62 104.38 −0.2536 −0.2303 −0.0953 −0.0443 0.1351 



Int. J. Mol. Sci. 2011, 12             

 

 

2251 

Table 2. Cont. 

76 25 27.96 0.316 −0.005 −0.247 49 2.76 73.43 −0.2584 −0.2331 −0.0887 −0.0126 0.1445 

77 17.2 18.89 0.310 0.057 −0.231 73 3.50 108.44 −0.2391 −0.2188 −0.0870 −0.0415 0.1318 

78 24.4 27.17 0.310 0.013 −0.243 179 2.14 218.16 −0.2537 −0.2397 −0.0944 −0.0275 0.1452 

79 24.3 26.82 0.317 0.009 −0.236 161 4.93 172.55 −0.2702 −0.2519 −0.1066 −0.0373 0.1453 

80 26.2 27.04 0.306 0.016 −0.240 171 2.49 197.57 −0.2432 −0.2241 −0.0977 −0.0288 0.1263 

81 26.1 27.27 0.313 0.005 −0.242 131 2.22 148.15 −0.2537 −0.2427 −0.0974 −0.0254 0.1453 

82 26.6 27.28 0.325 0.003 −0.239 163 4.86 191.09 −0.2583 −0.2448 −0.0994 −0.0299 0.1454 

83 29.2 27.17 0.311 0.012 −0.243 163 1.57 190.12 −0.2535 −0.2395 −0.0942 0.0246 0.1452 

84 27.4 27.16 0.306 0.017 −0.241 139 1.23 158.73 −0.2539 −0.2394 −0.0939 −0.0252 0.1455 

85 28.8 21.17 −0.021 0.126 −0.284 79 2.14 112.96 −0.2611 −0.2274 −0.0916 −0.0653 0.1358 

86 29.2 24.62 −0.036 0.139 −0.284 85 2.66 121.41 −0.2621 −0.2295 −0.0946 −0.0621 0.1349 

87 27.5 20.34 −0.120 0.173 −0.254 117 3.29 135.55 −0.2727 −0.2310 −0.0915 −0.0139 0.1396 

88 27.6 19.60 −0.119 0.151 −0.255 109 0.96 126.38 −0.2794 −0.2307 −0.0931 −0.0111 0.1376 

89 26.2 22.5 0.187 0.136 −0.244 69 4.52 82.90 −0.2974 −0.2483 −0.1097 −0.0745 0.1386 

90 30.4 19.55 −0.121 0.149 −0.262 101 2.94 115.49 −0.2788 −0.2314 −0.0927 −0.0150 0.1387 

91 31.4 22.63 0.177 0.144 −0.239 47 3.99 55.09 −0.3002 −0.2542 −0.1127 −0.0783 0.1415 

92 26.3 17.69 −0.118 0.139 −0.261 61 1.77 78.22 −0.2648 −0.2386 −0.1020 −0.0552 0.1366 

a Unit: ΔHhomo (kcal mol−1), Charge (e), Dipole Moment (debye), Polar (a.u.) and Energy (a.u.); b 1–53 contain N-NO, 54–

66 contain O-NO, 67–84 contain S-NO, 85–92 contain C-NO; c Measured in CH3CN at 25 °C by titration calorimentry; d 

The calculated homolysis BDE are with zero-point energy (ZPE) and thermal corrections to enthaply at 298 K by 

B3LYP/6-31G (d). 

In addition, Table 2 also provides the homolysis BDE values that are observed in the experiment in 

the acetonitrile solution. The higher the homolysis BDE is, the stronger that the NO can bond with the 

carrier and vice versa. Lower homolysis BDE indicates that the carrier can serve as a good NO 

releasing agent. The four types of carrier molecules studied in this paper have lower homolysis BDE 

and are excellent NO radical carriers in the body. From Table 2, we can see that the carrier molecules 

containing N-NO, O-NO, S-NO and C-NO bonds have homolysis BDE at 12.4–43.8 kcal mol
−1

,  

32.5–38.6 kcal mol
−1

, 17.2–29.2 kcal mol
−1

 and 27.5–31.4 kcal mol
−1

 respectively. The carrier 

molecule containing the S-NO bond has the lowest homolysis BDE which indicates that the carrier 

containing the S-NO bond is the best free NO radical carrier among the four compounds studied. The 

theoretical calculated homolysis BDE levels for the four compounds are at 12.63–35.57 kcal mol
−1

, 

29.80–40.39 kcal mol
−1

, 17.49–27.96 kcal mol
−1

 and 17.69–24.62 kcal mol
−1

 respectively. Compared 

with the experimental values, the calculated value for the molecule carrier containing the N-NO bond 

is close to its experimental value with some underestimations and the calculated energy for the 

molecule carrier containing the O-NO and S-NO bonds is very close to their experimental values.  

The calculated energy for the molecule carrier containing the C-NO bond is lower than its 

experimental value. 

4.2. Calculation Results of GRA 

The experimenatal value of homolysis BDE of the 92 carrier molecules are used as the reference 

array. The 12 computed molecular descriptors are used as the contrast array. The closer the relation is 

to 1, the more relations the two arrays have and vice versa. 
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When the distinguishing coefficient is set to 0.5, ΔHhomo, QY, QN, QO, NX, µ, α, EHOMO−1, EHOMO, 

ELUMO, ELUMO+1, ΔE are 0.8902, 0.6137, 0.7946, 0.8626, 0.8079, 0.7899, 0.8096, 0.8889, 0.8925, 

0.8359, 0.7020, 0.8827 respectively. The relational coefficients of the 12 parameters on the 

experimental values in decreasing order are EHOMO, ΔHhomo, EHOMO−1, ΔE, QO, ELUMO, α, NX, QN, µ, 

ELUMO+1, QY. Clearly, the EHOMO and EHOMO−1 have a big impact on the homolysis BDE. The ELUMO 

has a certain influence on the homolysis BDE. The ELUMO+1 has little impact on the homolysis BDE. 

The relational coefficient is 0.8902 which indicates a good match between the theoretical calculations 

and the experimental values. The difference between the EHOMO energy level and ELUMO energy level 

ΔE can measure the stability of the molecules and has a large impact on the homolysis BDE. In the NO 

molecular fragments, the oxygen’s electronegativity is greater than that of nitrogen and the net charge 

of oxygen has a larger impact than that of the nitrogen on the homolysis. The net charge on the  

Y(C, N, O, S) atoms which are connected to NO has the minimal impact on the homolysis which 

implies that the ionicity of chemical bonds is smaller. The polarization rate can measure the molecular 

deformation and affect the homolysis BDE. The number of electrons on the molecular fragment X 

which is connected to NO has a certain impact on the homolysis. The dipole moment is a vector that 

has little impact on the homolysis which indicates that the Y-NO direction has little impact on the 

molecular dipole moment. 

4.3. Calculation Results of PCA 

According to the results of GRA, the molecular descriptors that have a relation of greater than 0.8 

are selected. The first eight molecular descriptors are used as the basic characteristics. A correlation 

matrix is generated after the correlation analysis on the eight molecular descriptors (Table 3). It can be 

seen that there is a certain correlation between them and the correlation between α and NX is as high as 

0.9331. It is inevitable that increasing the complexity of data analysis, if these eight selected molecular 

descriptors are taken as the final attribute characteristics directly, there would be some problems such 

as instable calculation and ill-conditioned matrix which are caused by superposed information existing 

in the above eight molecular descriptors. Nevertheless, these problems can be avoided through PCA 

that can also make the weight distribution of the molecular descriptors more reasonable, avoid the 

redundant information, and eliminate the not useful information. 

Table 3. Correlation matrix between the selected molecular descriptors. 

 ΔHhomo QO NX α EHOMO−1 EHOMO ELUMO ΔE 

ΔHhomo 1.0000 −0.0712 −0.1201 −0.2483 −0.3506 −0.4384 −0.1329 0.2507 

QO  1.0000 −0.2639 −0.3599 −0.5379 −0.3361 −0.8101 −0.6399 

NX   1.0000 0.9331 0.3038 0.1239 0.2756 0.2088 

α    1.0000 0.5355 0.3294 0.4073 0.1729 

EHOMO−1     1.0000 0.7963 0.7207 0.1078 

EHOMO      1.0000 0.5695 −0.2589 

ELUMO       1.0000 0.6465 

ΔE        1.0000 

The PCA is performed on the eight selected molecular descriptors to obtain the eigenvalues, 

variance and cumulative variance contribution rate for each principle component (Table 4). It can be 
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seen that the first six principal components can explain 99.63% of the total variance of all variables, 

which means that the six indicators of the new indicators system can reflect 99.63% differences in 

samples. The eigenvalue for the seventh principal component is already very small and the eighth 

eigenvalue is 0. The smaller the eigenvalue is, the less amount of information its principal component 

contains. Therefore, the seventh principal component contains very little useful information and the 

eighth principal component contains no useful information. Therefore, the first six principal 

components are selected to avoid redundancy of information and eliminate the interference 

information, namely no useful information. 

Table 4. Eigenvalues and cumulative contributions of variances. 

No. Eigenvalues Variances (%) Cumulative (%) 

1 3.7039 0.4630 0.4630 

2 1.8642 0.2330 0.6960 

3 1.3980 0.1747 0.8708 

4 0.6259 0.0782 0.9490 

5 0.2211 0.0276 0.9766 

6 0.1573 0.0197 0.9963 

7 0.0296 0.0037 1.0000 

8 0.0000 0.0000 1.0000 

The weights of the first six principal components and the corresponding molecular descriptors are 

shown in Table 5. From the analysis of the weights of the first six principal components, it can be seen 

that the EHOMO−1 and ELUMO have a higher load in the first principal component, the ΔHhomo and ΔE on 

the second principal component have a higher load, the NX and α on the third principal component 

have a higher load, the ΔHhomo on the fourth principal component has a higher load, the QO on the fifth 

principal component has a higher load and the EHOMO on the sixth principal component has a higher 

load. Thus the assignment to the weights has the theoretical basis. Meanwhile, the variance between 

either two of six principal components is 0 which means that the six principal components are 

unrelated to each other. Therefore, the instability and ill-conditioned matrix problems can be avoided 

in the computation. 

Table 5. First six principal components of the weight coefficients and the corresponding 

molecular descriptors. 

No. ΔHhomo QO NX α EHOMO−1 EHOMO ELUMO ΔE 

1 −0.1532 −0.3985 0.3084 0.3863 0.4423 0.3413 0.4597 0.2235 

2 −0.5035 −0.3290 0.0001 −0.0929 −0.2155 −0.4219 0.1850 0.6090 

3 0.0213 −0.2076 −0.6685 −0.5414 0.1997 0.3165 0.2750 0.0294 

4 0.8325 0.0471 −0.0684 −0.0798 −0.1917 −0.3043 0.0950 0.3940 

5 −0.1589 0.7964 −0.0431 0.0081 0.4025 −0.0457 0.2491 0.3352 

6 0.0479 −0.2266 −0.2212 0.1074 0.6798 −0.4933 −0.4229 −0.0391 

After the GRA and PCA approaches are performed for the molecular descriptors selection and 

optimization, the first six principal components are used as the final GRNN inputs. To assess the  

GP-GRNN approach’s effect on calculating the homolysis BDE of 92 organic molecules, we compare 
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the GP-GRNN correction results with the B3LYP/6-31G (d) correction results, the correction results of 

the full-descriptor GRNN without GRA and PCA (F-GRNN) and with GRA (G-GRNN), respectively. 

The differences between the experimental and calculated homolysis BDE for the F-GRNN, G-GRNN 

and GP-GRNN correction results are tabulated in Table 6. 

Table 6. The experimental homolysis BDE values and the differences between the 

experimental and calculated values of 92 organic molecules (in kcal mol
−1

). 

No. Expt. 
a
 Deviation 

b
 Deviation 

c
 Deviation 

d
 Deviation 

e
 

1 43.80 17.17 1.35 −0.08 0.01 

2 36.10 7.88 −0.47 0.28 −0.30 

3 38.30 9.31 0.76 −0.29 0.29 

4 37.60 9.29 0.26 0.01 0.02 

5 39.20 9.77 0.04 0.00 0.01 

6f 34.50 9.13 0.66 −0.61 0.10 

7 35.00 9.01 −0.11 0.01 −0.01 

8 36.20 12.53 0.15 −0.03 0.01 

9 40.40 13.13 0.01 0.00 0.00 

10 36.20 10.90 0.05 0.00 0.01 

11 21.40 −2.16 −0.22 0.08 −0.06 

12 21.40 −2.70 −0.73 0.53 −0.56 

13 22.60 −1.72 0.18 −0.29 0.33 

14 24.10 0.39 0.07 −0.05 0.06 

15 24.30 1.56 −0.01 0.00 0.00 

16 21.00 −1.69 −0.02 0.00 −0.01 

17 22.30 −2.00 0.04 −0.33 0.30 

18 28.30 8.37 1.01 −0.05 0.01 

19 28.70 7.30 0.58 −0.11 0.05 

20f 29.10 6.93 0.29 −0.03 0.67 

21 29.20 7.68 −0.24 −0.13 −0.20 

22 33.10 10.58 0.01 0.00 −0.01 

23 27.50 2.11 0.18 −0.29 0.50 

24 23.10 −3.45 −1.43 0.61 −0.59 

25 30.30 8.07 0.65 −0.87 0.49 

26 29.40 7.90 −0.16 −0.22 −0.10 

27f 30.50 8.60 0.56 −0.42 0.13 

28 26.60 8.22 −0.15 −0.02 0.07 

29 25.40 4.97 −0.01 0.00 −0.01 

30 33.70 −1.87 −0.01 0.00 0.00 

31f 33.40 −1.97 0.05 −0.16 0.11 

32 34.90 −0.33 0.08 0.00 0.00 

33f 33.00 −1.91 −0.05 0.16 −0.11 

34 33.90 −0.74 0.00 0.00 0.00 

35 33.00 −1.92 −0.27 0.27 −0.25 

36 33.70 −0.62 0.23 −0.27 0.25 

37 28.70 −1.16 −0.03 0.00 0.01 

38 28.60 −0.76 −0.42 0.10 −0.02 
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39 29.00 −0.29 −0.18 −0.03 0.02 

40 29.80 0.36 0.05 −0.05 0.06 

41 29.30 0.41 −0.03 0.00 0.00 

42 28.47 0.04 −0.13 0.04 −0.01 

43 29.66 0.26 −0.08 0.02 0.03 

44f 22.90 1.14 −1.45 1.09 −0.87 

45 13.60 0.97 −0.06 0.00 0.00 

46 19.20 −0.03 −0.10 0.03 −0.01 

47 27.40 −0.87 −0.12 0.01 −0.11 

48 28.30 1.67 0.00 0.00 0.00 

49 29.70 3.41 0.08 0.00 −0.01 

50 13.20 −7.47 −0.07 1.82 −0.38 

51 12.40 −5.60 −0.01 0.02 −0.10 

52 13.10 −7.03 −0.11 0.26 −0.12 

53 14.50 −6.33 0.09 −0.23 0.12 

54 32.50 2.62 −0.01 −0.26 0.10 

55 32.80 2.88 −0.24 0.04 −0.05 

56 33.90 3.88 0.25 −0.04 0.05 

57 34.30 3.89 0.01 0.00 0.01 

58f 38.60 7.57 0.00 0.00 0.01 

59 35.00 4.88 −1.38 1.01 −0.97 

60 37.90 7.33 1.27 −1.03 1.00 

61 36.70 6.90 −0.08 0.24 −0.25 

62 33.70 −6.39 0.01 0.00 0.00 

63 33.70 −4.12 −0.01 0.00 0.00 

64 35.00 9.96 0.01 0.02 −0.01 

65 36.20 −4.19 0.01 0.00 0.00 

66 36.20 −0.55 −0.01 0.00 0.00 

67 21.00 3.51 0.89 −0.17 −0.01 

68 21.40 2.46 1.12 −0.81 0.87 

69 19.40 −0.27 −0.65 0.38 −0.42 

70 19.20 −0.05 −0.24 0.66 −0.65 

71f 18.60 −2.43 −0.36 0.13 −0.01 

72 23.40 −0.20 −0.13 0.00 −0.01 

73 20.90 0.88 0.46 −0.66 0.64 

74 19.30 −7.91 −0.13 0.26 −0.10 

75 19.90 0.36 −0.31 0.44 −0.37 

76 25.00 −2.96 0.01 0.00 0.01 

77 17.20 −1.69 −1.50 0.21 −0.16 

78 24.40 −2.77 −0.01 0.05 −0.12 

79 24.30 −2.52 −0.46 0.04 −0.05 

80 26.20 −0.84 0.12 0.00 0.01 

81 26.10 −1.17 0.01 0.00 0.00 

82 26.60 −0.68 0.47 −0.09 0.17 

83f 29.20 2.03 0.33 −0.49 0.44 

84f 27.40 0.24 −0.33 0.49 −0.45 
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Table 6. Cont. 

85f 28.80 7.63 0.08 −0.04 −0.01 

86 29.20 4.58 0.01 0.00 0.00 

87 27.50 7.16 −0.80 0.17 −0.07 

88 27.60 8.00 −0.13 0.77 −0.76 

89 26.20 3.70 0.01 0.00 0.00 

90 30.40 10.85 0.87 −1.02 0.86 

91f 31.40 8.77 0.29 −0.09 0.01 

92 26.30 8.61 −0.01 −0.01 0.01 

a Experimental data; b Differences between the B3LYP calculated and experimental values; c Differences between calculated 

and experimental values for DFT-F-GRNN calculation; d Differences between calculated and experimental values for 

DFT-G-GRNN calculation; e Differences between calculated and experimental values for DFT-GP-GRNN calculation;  

f Organic molecules belong to the test set. 

 

Figure 3. Calculated homolysis BDE versus experimental homolysis BDE for all  

92 organic molecules; (a) B3LYP 6-31G (d) calculated homolysis BDE from the DFT 

approach; (b) full-descriptor GRNN corrected homolysis BDE for the F-GRNN approach; 

(c) The combined GRA and GRNN corrected homolysis BDE for the G-GRNN approach; 

(d) The combined GRA, PCA and GRNN corrected homolysis BDE for the GP-GRNN 

approach. Triangles (∆) are for the training set and crosses (×) are for the test set. Insets are 

the histograms for the differences between the experimental and calculated homolysis 

BDE; All values are in units of kcal mol
−1

. 
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Figure 3a is the scatter diagram of the B3LYP/6-31G (d) results and experimental results. The 

vertical coordinates are the experimental values and the horizontal coordinates are the B3LYP/6-31G (d) 

calculated values. The diagonal line represents that the vertical coordinate and horizontal coordinates 

are equal. In Figure 3b, Figure 3c and Figure 3d the horizontal coordinates represent the correction 

results of F-GRNN, G-GRNN and GP-GRNN, respectively. It can be seen that the correction results of 

GP-GRNN are closer to the experimental values. The insets are the histogram for the deviation  

of three approaches in Figures 3a–3d. It is obvious that B3LYP/6-31G (d) approach has large  

systematic deviation while the F-GRNN, G-GRNN and GP-GRNN approaches corrected have small  

systematic deviation.  

For GRNN, the initialization is to determine the study process of training samples. Then, the 

connection weight between the network structure and each neuron is determined after the 

determination of the study samples. The training process of network is just the process of determining δ. 

In the training process, the learning algorithm is to adjust the transfer function of each unit to acquire 

the best results of regression estimation by changing δ, not by adjusting the connection weight  

between neurons.  

In the transfer function, the value of δ is increased progressively from 0.02 to 1 by the constant of 

the variation of 0.02. The optimal output of neural network can be decided in the process of the 

variation of δ. For F-GRNN, G-GRNN and GP-GRNN approaches, when the values of δ are 

respectively 0.18, 0.08 and 0.10, the best results of regression estimation appear. For the training test, 

the RMS before correction is 5.40 kcal mol
−1

, and the RMS of F-GRNN and G-GRNN after correction 

is 0.48 and 0.38 kcal mol
−1

; however the RMS of GP-GRNN is 0.30 kcal mol
−1

. For the test set, the 

RMS respectively decreases from 4.69 to 0.55, 0.46 and 0.39 kcal mol
−1

 (Table 7). The GP-GRNN 

approach improved DFT calculation results in both the training set and the test set separately. After the 

correction of GP-GRNN, the deviation between the value of each sample and the experimental value 

of homolysis BDE in the test set is reduced. Nevertheless, two deviations (in sample 22 and 24) are 

much bigger than the other ten. The reasons why the above two deviations are much bigger lie in the 

following two facts. (1) When the smoothing factor δ is larger, the network output Y (predictive value 

of homolysis BDE) approaches the mean of experimental value of homolysis BDE in all samples. On 

the contrary, when the smoothing factor δ tends to 0, Y is close to training sample. When the points 

which need predicating are included in the training sample, the predictive value of the experimental 

value of homolysis BDE calculated by using Equation 11 approaches corresponding experimental 

value of homolysis BDE in sample. Nevertheless, the predictive results may be worse if there are some 

sample points excluded in the sample. The value of δ is not the larger the better, nor the smaller the 

better. When the value of δ is moderate, all the experimental value of homolysis BDE in the training 

sample are taken into account and the experimenatal value of homolysis BDE corresponding to the 

sample points close to the predictive points add more weight. Hence, the value of δ is selected in this 

paper after many experiments with the aim to acquire the best network output. (2) Sample data is few 

in the training set and the features cannot be extracted in the training procedure of neural network. The 

prediction accuracy of GP-GRNN approach can be further improved as more and better experimental 

data are available. The consistency between the training and test set implied that the GP-GRNN results 

could indeed predict the homolysis BDE with higher accuracy than F-GRNN and G-GRNN. 
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Table 7. RMS of B3LYP/6-31G (d), DFT-F-GRNN, DFT-G-GRNN, and DFT-GP-GRNN 

correction (in kcal mol
−1

). 

 B3LYP/6-31G (d) F-GRNN G-GRNN GP-GRNN 

Training set 5.40 0.48 0.38 0.30 

Test set 4.69 0.55 0.46 0.39 

Overall 5.31 0.49 0.39 0.31 

The B3LYP/6-31G (d) calculations are carried out to evaluate the homolysis BDE of the 92 organic 

molecules, and their overall resulting RMS from the experimental data is 5.31 kcal mol
−1

. Upon the 

traditional F-GRNN correction approach, the RMS of the calculated homolysis BDE of the 92 organic 

molecules is reduced from 5.31 to 0.49 kcal mol
−1

 for the B3LYP/6-31G (d) calculation. With the  

G-GRNN and GP-GRNN correction, the RMS is reduced from 5.31 to 0.39 and 0.31 kcal mol
−1

, 

respectively (Table 7).  

From Table 7, it can be seen that the correction result acquired from G-GRNN is better than that 

acquired from F-GRNN. If the molecular descriptors are added to G-GRNN, the good fitting ability 

and the poor generalization ability appear on the training set and the test set, respectively. This denotes 

that over fitting happens with the F-GRNN. Similarly, the correction result from GP-GRNN is also 

better than that from G-GRNN. This better result is facilitated by PCA which can optimize selected 

molecular descriptors. From the above discussion, it can be deduced that the descriptors selection and 

optimization play a key role to obtain a perfect model, although GRNN theoretically shows a stronger 

capability of anti-redundancy. 

5. Conclusions 

GP-GRNN approach was successfully used to improve the homolysis BDE calculation’s accuracy. 

GRA is used to select the appropriate molecular descriptors. PCA is used to optimize the selection of 

molecular descriptors. GRNN is used to establish non-linear model. The GP-GRNN approach reduced 

the calculated RMS of 92 organic molecules from 5.31 to 0.31 kcal mol
−1

. Compared with the  

F-GRNN and G-GRNN, GP-GRNN is more feasible and effective. Further, the GP-GRNN correction 

on top of the B3LYP/6-31G (d) results is a better approach to correct homolysis BDE and can be used 

as the approximation of experimental results, when the experimental results are limited to 

measurement, with very high accuracy. GP-GRNN approach extends the B3LYP/6-31G (d)’s 

feasibility and applicability. The more experimental data the training set has, the more accurate the 

GP-GRNN approach will be. GP-GRNN approach can be not only used to calculate the homolysis 

BDE, but also it can be applied to calculate the heterolysis BDE, absorption energy, ionization energy, 

formation heat and so on. In summary, the GP-GRNN approach is an effective and predictive tool that 

can be used in the study of physical and chemical properties at the molecular level. 
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