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Abstract: Plantaricin 423, produced by Lactobacillus plantarum, and bacteriocin ST4SA 

produced by Enterococcus mundtii, were electrospun into nanofibers prepared from 

different combinations of poly(D,L-lactide) (PDLLA) and poly(ethylene oxide) (PEO) 

dissolved in N,N-dimethylformamide (DMF). Both peptides were released from the 

nanofibers with a high initial burst and retained 88% of their original antimicrobial activity 

at 37 °C. Nanofibers have the potential to serve as carrier matrix for bacteriocins and open 

a new field in developing controlled antimicrobial delivery systems for 

various applications.  
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1. Introduction 

Bacteriocins (ribosomally synthesized antimicrobial peptides) and bacteriocin-like inhibitory 

substances (BLIS) are produced by several species of bacteria, including lactic acid bacteria  

that are generally recognized as safe [1–3]. Bacteriocins are diverse peptides and can be  

divided into the Class I (lanthionine-containing post-translationally modified bacteriocins), Class II  
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(non-lanthionine-containing bacteriocins that do not undergo extensive post-translational modification) 

and the bacteriolysins [1]. Each of these groups can be further sub-divided. Bacteriocins are membrane 

active peptides and most form pores in the cell membranes of sensitive bacteria due to the cationic and 

amphiphilic nature of these peptides, however there are exceptions [4]. Pore formation leads to the 

disruption of the proton motive force (PMF) and the efflux of intracellular material [5]. Bacteriocins 

can have a narrow (active against closely related species) or broad spectrum of activity [6,7]. Class Ia 

bacteriocins, or lantibiotics, use lipid II as target for their mode of action and kill sensitive bacteria by 

pore formation or by hampering cell wall formation [8]. Lantibiotics can also inhibit the germination 

of spores [8] Class IIa, or pediocin-like bacteriocins, mainly form pores in the membranes of sensitive 

cells [1]. By disrupting the PMF, cells cannot secrete antibiotics via transport systems located in their 

cell membranes. This could be an important answer to our search towards more effective ways of 

infection control. More than 95% of Staphylococcus aureus isolates are resistant to penicillin. Of 

these, 60 to 70% are resistant to methicillin [9]. 

A few bacteriocins are active against methicillin-resistant strains of Staphylococcus aureus 

(MRSA), and versus other bacteria of interest in human health, such as Pseudomonas aeruginosa, 

Streptococcus pneumonia and vancomycin-resistant enterococci [10,11]. Bacteriocin ST4SA, 

produced by Enterococcus mundtii, is a Class IIa bacteriocin and is active against several pathogens, 

including Acinetobacter baumannii, Pseudomonas aeruginosa, Streptococcus pneumonia, 

Staphylococcus aureus and Enterococcus faecium [5]. Bacteriocin ST4SA survived conditions in the 

human and animal gastro-intestinal tract [12,13] and was constitutively expressed [14]. Nisin F, 

produced by Lactococcus lactis, was effective in the treatment of Staphylococcus aureus in respiratory 

tract infections [15]. Plantaricin 423, produced by Lactobacillus plantarum, displaced Clostridium 

sporogenes and Enterococcus faecalis from Caco-2 cells [16]. Plantaricin 423 is also a Class IIa 

bacteriocin and shows activity against Bacillus cereus, Clostridium sporogenes, Enterococcus faecalis, 

Lactobacillus brevis (Lactobacillus spp.), Listeria innocua, Listeria monocytogenes, 

Propionibacterium sp., Propionibacterium acidipropionic and Staphylococcus carnosum [17]. 

Bacteriocins may thus offer an alternative to control bacterial infections, administered alone or in 

combination with antibiotics [5]. The challenge would be to protect bacteriocins from proteolytic 

enzymes, keep the peptides in contact with the infected surface and extend the contact time for as long 

as possible. 

Electrospun nanofibers, prepared from selected polymers, may be used as carrier matrix for 

bacteriocins and other antimicrobial peptides [18]. Nanofibers have been used to release antibiotics, 

proteins, growth factors, silver nanoparticles, plasmid DNA, as well as viable cells [18–26]. Specific 

structures can be designed, such as oxygen permeable membranes, matrices with a high surface to 

volume ratio and scaffolds that are morphologically similar to the extracellular matrix of skin [27–31]. 

In this paper we studied the feasibility of electrospinning bacteriocins into nanofibers, as well as 

investigating the nanofibers as a delivery system. Plantaricin 423 and bacteriocin ST4SA were  

used as model bacteriocins (Class IIa) in this study. These bacteriocins were dissolved in  

N,N-dimethylformamide (DMF) and electrospun into biodegradable nanofiber blends of  

poly(D,L-lactide) (PDLLA) and poly(ethylene oxide) (PEO). The nanofiber scaffolds were evaluated 

(in vitro) for the release of the peptides and antimicrobial activity. 
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2. Results 

2.1. Electrospinning of Nanofibers 

Nanofibers produced from blends of PDLLA and PEO, containing plantaricin 423, have a regular 

texture and smooth surface, as revealed by scanning electron microscopy (SEM, Figure 1). The PEO 

90:PDLLA 10 blend produced fibers ranging from 200 to 450 nm, with most of the fibers in the  

300–350 nm range (Figure 1F). Fibers with similar dimensions were produced from the PEO 

50:PDLLA 50 blend (Figure 1D). Fibers with slightly less variation (200–400 nm) and mostly in a 

smaller size range (250–300 nm) were produced from the PEO 70:PDLLA 30 blend (Figure 1E). 

Figure 1. SEM images of electrospun nanofibers containing plantaricin 423 (A–C) and 

fiber diameter distributions of the electrospun nanofibers (D–F). (A and D) PEO 

50:PDLLA 50, (B and E) PEO 70:PDLLA 30, (C and F) PEO 90:PDLLA 10. 
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2.2. Fluorescent Microscopy Images of Polymers 

Fluorescent microscopy images have shown that PEO and PDLLA are homogenously distributed in 

the fiber structure and indicate a large degree of miscibility when used in a 50:50 combination  

(Figure 2). This blend was selected based on characteristics best suited for a drug delivery system, as 

discussed in this manuscript. 

Figure 2. Fluorescent images of PEO and PDLLA labeled with RBITC and FITC, 

respectively. (A) Fluorescent image of PEO; (B) fluorescent image of PDLLA; (C) overlay 

of the fluorescent signals; (D) optical image of fibers with fluorescent signals;  

(E) co-localization of the two signals, indicating miscibility between PEO and PDLLA. 

  

  

  

2.3. DSC Analysis 

It can be seen that the DSC curve of the PEO 50:PDLLA 50 blend yielded a single glass transition 

temperature (Tg) of 9 °C, which falls between the Tg values recorded for PEO (−54 °C) and PDLLA 

(49 °C) (Figure 3). DSC curves provide a good indication of the macromolecular nature of the 

polymer, i.e., crystallinity, Tg and crystalline melting point. In our study, PDLLA had no melt 

endothermic response as expected from an amorphous polymer, contrary to PEO where a melting 

endotherm was recorded at 64 °C. From the insert in Figure 3, it is evident that a single Tg was 
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detectible at 9 °C, which falls between both Tgs of PEO (−54 °C) and PDLLA (49 °C). It is therefore 

suggested that the blend is miscible in the amorphous phase. DSC analysis was also performed on the 

PEO 50:PDLLA 50 blend, containing plantaricin 423, and the Tg value decreased from 9 °C (in the 

blend without peptide) to −12 °C (data not shown). This Tg was still between that of the component 

polymers and therefore also suggested to be miscible in the amorphous phase. 

Figure 3. Differential scanning calorimetric (DSC) thermogram of the PEO 50:PDLLA 50 

blend, as well as the component polymers, PEO and PDLLA. 
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2.4. Fluorescent Images of Labeled Polymers and Peptide 

Fluorescently labeled plantaricin 423 was electrospun into nanofibers prepared from a PEO 

50:PDLLA 50 blend. The bacteriocin was unevenly distributed in these fibers, indicating that the 

peptide has better interaction with one of the polymers (data not shown). Due to the amphiphilic nature 

of bacteriocins, we expected the peptide to show better association with one of the two polymers. 

Fluorescent images of nanofibers prepared from a PEO 50:PDLLA 50 blend are shown in Figure 4. 

Signals of the plantaricin 423 and PEO are overlapping (Figure 4C), suggesting that the peptide is 

associated with the polymer. This was verified with the co-localization of the signals (Figure 4E). 

These results were confirmed with fluorescent images of labeled plantaricin 423 and PDLLA. Green 

and red fluorescent signals could still be differentiated in the overlay, indicating that the peptide is 

closer associated with PEO. These results were supported with much less co-localization seen between 

the signals from the fluorescently labeled PDLLA and plantaricin 423 (Figure 4J). 
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Figure 4. Fluorescent images of labeled plantaricin 423 and polymers electrospun into 

nanofibers consisting of PEO 50:PDLLA 50. (A) Fluorescent image of PEO labeled with 

RBITC in the fibers; (B) fluorescent image of the bacteriocin labeled with FITC in the 

fibers; (C) overlay of the fluorescent images; (D) optical image of fibers with fluorescent 

signals; (E) co-localization of the signals; (F) fluorescent image of bacteriocin labeled with 

RBITC in the fibers; (G) fluorescent image of PDLLA labeled with FITC in the  

fibers; (H) overlay of the two fluorescent images; (I) optical image of fibers with 

fluorescent signals; (J) co-localization of the two signals. 
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2.5. Release of Antimicrobial Peptide 

From cumulative release studies, it is evident that the PEO 90:PDLLA 10 blend released the highest 

concentration (78%) of the antimicrobial peptides (Figure 5). An initial release of 46% was recorded 

within the first 2 h, followed by 32% over the following 8 days (Figure 5). This could be ideal in the 

control of infections. A rapid release of antimicrobial peptides during the first 2 h would kill most of 

the pathogens, whereas a slow and constant release over the following few days would keep infection 

under control. The PEO 70:PDLLA 30 and PEO 50:PDLLA 50 blends yielded less promising results 

with 69% and 60% of the peptides being released over 8 days (Figure 5). 

Figure 5. Cumulative release of plantaricin 423 from electrospun PEO:PDLLA blends. 

These fibers showed a high initial burst release and a more sustained release of bacteriocin 

over an 8 days period. 
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2.6. Morphological Changes and Weight Loss 

SEM images taken from PEO 50:PDLLA 50 nanofibers, containing plantaricin 423, after 8 days of 

incubation in PBS buffer (pH 7.4) did not reveal any significant structural changes or signs of 

deterioration of the fibrous structure (Figure 6I–L), suggesting that these nanofiber scaffolds would be 

stable for at least 8 days. Slight textural changes have been recorded for the PEO 70:PDLLA 30 blend, 

containing plantaricin 423, after 8 days (Figure 6E–H). However, significant morphological changes 

and signs of deterioration were observed for nanofibers prepared from the PEO 90:PDLLA 10 blend, 

containing plantaricin 423 (Figure 6A–D). Fibrous structures were visible, but most of the fibers 

formed a film-like structure after 2 h. 
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Figure 6. SEM images of PEO:PDLLA blend fibers, containing plantaricin 423, incubated 

in PBS buffer pH 7.4 for different time intervals. Significant morphological changes are 

seen in the PEO 90:PDLLA 10 blend (A–D). The PEO 70:PDLLA 30 blend showed some 

morphological changes; however the fiber structure stayed more or less intact (E–H). The 

PEO 50:PDLLA 50 blend showed very little morphological changes and the fiber structure 

stayed intact (I–L).  
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Nanofibers prepared from the PEO 90:PDLLA 10 blend showed high weight loss within the first 

few hours with only 24% of the original weight remaining. Eighty percent weight loss was seen over  

8 days at 37 °C, whereas nanofibers prepared from the PEO 70:PDLLA 30 and PEO 50:PDLLA 50 

blends lost approximately 60% and 40% of their original weight, respectively (data not shown). 

2.7. Antimicrobial Activity Tests  

A clear zone of growth inhibition was recorded surrounding PEO 50:PDLLA 50 nanofibers for at 

least 6 days (Figure 7). This suggested that the nanofibers retained their antimicrobial activity for at 

least 6 days on solid medium. The peptides retained 88% of their original antimicrobial activity after 

18 h of incubation at 37 °C in PBS pH 7.4. As little as 25 mg nanofibers inhibited the growth of  
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E. faecium HKLHS in 50 mL MRS broth for up to 10 h, whilst cells in the control (without nanofibers) 

reached stationary phase after 10 h (Figure 8). 

Figure 7. Antimicrobial activity tests of PEO 50:PDLLA 50 blend fibers containing 

plantaricin 423 (A) and bacteriocin ST4SA (B). Modified Kirby Bauer tests were 

performed by placing approximately 1 cm
2
 of fiber on plates seeded with target strains. 

Enterococcus faecium HKLHS and Listeria monocytogenes EGD-e served as target strains 

for plantaricin 423 and for bacteriocin ST4SA, respectively. A clear zone of inhibition can 

be seen surrounding the fibers containing bacteriocins after incubation. 1: PEO 50:PDLLA 

50 blend fibers containing plantaricin 423, 2: PEO 50:PDLLA 50 blend fibers without 

plantaricin 423, 3: PEO 50:PDLLA 50 blend fibers containing bacteriocin ST4SA, 4: PEO 

50:PDLLA 50 blend fibers without bacteriocin ST4SA. 

  

Figure 8. Growth inhibition of Enterococcus faecium HKLHS by PEO 50:PDLLA 50 

blend nanofibers releasing plantaricin 423. 
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3. Experimental Section 

3.1. Isolation of Antimicrobial Peptides 

Lactobacillus plantarum 423 and Enterococcus mundtii ST4SA were cultured, separately, in MRS 

broth (Biolab, Biolab Diagnostics, Midrand, South Africa) for 24 h at 37 °C. Cells were harvested 

(8000× g, 10 min, 4 °C), the pH of the cell-free supernatant adjusted to between pH 6.5–7.0 with  

 3 

 4 
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10 M NaOH and then heated at 80 °C for 10 min to inactivate proteolytic enzymes. Peptides were 

precipitated from the cell-free supernatant with 70% saturated ammonium sulfate [32] and desalted 

against distilled water by using a 1000 Da cut-off dialysis membrane (Spectrum Inc., CA, USA). 

Protein concentrations were determined by using the Micro-bicinchoninic Acid (BCA) kit (Pierce, 

Rockford, IL). Readings were recorded at 562 nm. Samples were freeze-dried and stored at −20 °C. 

3.2. Electrospinning of Nanofibers 

Freeze-dried peptides were dissolved in N,N-dimethylformamide (DMF) and centrifuged (6000× g, 

1 min) to obtain the supernatants. From each of these supernatants, 2 mL was used as solvent for 

PDLLA (20–24%, w/v, Sigma-Aldrich) blended with poly(ethylene oxide) (PEO, 200,000 Da,  

Sigma-Aldrich) at a ratio of 10:90, 30:70 and 50:50, respectively. Solutions were heated to 40 °C on a 

hot plate and then electrospun using a gravity system described by [20]. A constant electric field of  

+10 kV was applied to the polymer solution and −5 kV to the collector. The collector was placed 

15 cm from the polymer solution. The relative humidity was kept constant between 50–55%. 

3.3. Scanning Electron Microscopy of Electrospun Fibers  

Images of the nanofibers were recorded with a Leo
®

 1430VP Scanning Electron Microscope 

(SEM). Samples were coated with a thin layer of gold to increase conductivity. Fiber diameter was 

determined by using the SEM Image Studio Software (version 10.1). 

3.4. Fluorescent Labeling of Antimicrobial Peptides and Polymers 

Freeze-dried plantaricin 423 (20 mg) was suspended in 1 mL DMF and the supernatant was reacted 

with 20 mg rhodamine B isothiocyanate (RBITC) or fluorescein isothiocyanate (FITC) from  

Sigma-Aldrich, dissolved in the same volume. The solution was placed on an orbital shaker and 

incubated in the dark at 4 °C for 48 h. Unbound fluorescent marker was removed by dialyzing against 

sterile distilled water for 3 weeks at 4 °C. Dialyses bags with 1000 Da cut-off (Spectrum Inc., CA, 

USA) were used. Labeled peptides were freeze-dried, dissolved in DMF and electrospun into 

nanofibers as described before. 

PEO (0.2048 mg) was dissolved in 2 mL sterile distilled water containing RBITC (20 mg/mL). The 

polymer solution was placed on an orbital shaker and incubated in the dark at 25 °C for 48 h. Unbound 

fluorescent marker was removed through dialysis as described before and freeze-dried. PDLLA 

(0.2048 mg) was dissolved in 2 mL DMF and was labeled with FITC (20 mg/mL) for 48h on an orbital 

shaker and incubated in the dark at 25 °C. 

The labeled peptides and polymer solution were electrospun into nanofibers as described before. 

Nanofibers were excited at 472 nm and 572 nm, respectively, by using a Xenon-Arc burner light 

source (Olympus Biosystems GMBH). Fluorescent images were captured with an Olympus Cell^
R
 

system attached to an IX-81 inverted fluorescent microscope. An Olympus Plan Apo N 60×/1.4 Oil 

objective was used. Images were taken with an F-view-II cooled CCD camera (Soft Imaging Systems) 

and the background subtracted using the Cell^
R
 imaging software. 
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3.5. Differential Scanning Calorimetry (DSC) 

Thermal analysis was carried out with a TA Q100 Differential Scanning Calorimeter (DSC) (TA 

Instruments) which was calibrated against an indium standard. An empty aluminium pan was the 

reference. Fiber samples (15–18 mg) were run at a 10 °C/min in three cycles under nitrogen 

atmosphere (flow rate 50 mL/min). In the first cycle, samples were heated from −80 °C to 180 °C and 

isothermed for 1 min; cooled back to −80 °C and isothermed for 5 min. Finally, the samples were 

heated for a second time at 10 °C/min to 180 °C. The crystalline melting temperature (Tm) and the 

glass transition temperature (Tg) were recorded in the second heating cycle. 

3.6. Release of Antimicrobial Peptides and Degradation of Nanofibers 

Nanofibers (25 mg) were placed in 2 mL sterile phosphate buffered saline (PBS, pH 7.4) and 

incubated at 37 °C on an orbital shaker (30 rpm). At pre-determined time intervals the PBS was 

replaced with 2 mL sterile PBS (pH 7.4). The protein concentration in each sample was determined by 

using the BCA protein assay kit as described before. The concentration of bacteriocin in the nanofibers 

was determined by dissolving 25 mg fibers in DMF. This suspension was diluted in PBS 7.4 before the 

protein concentration was determined by using the BCA protein assay kit as described before. 

Nanofibers were freeze-dried and then visualized by SEM. Changes in the weight of nanofibers 

were recorded. 

3.7. Antimicrobial Activity Tests 

In a separate experiment, 25 mg of PEO 50:PDLLA 50 nanofibers containing plantaricin 423 was 

placed in 50 mL MRS broth, inoculated with Enterococcus faecium HKLHS (10
5
 cfu/mL) and 

incubated at 37 °C for 12 h. Changes in optical density readings were recorded at 600 nm. 

4. Discussion 

Electrospinning is a versatile technique to produce large amounts of fibers, in the micrometer to 

nanometer range, in a short amount of time. A variety of natural and synthetic polymers have 

been electrospun into fibers and some have been used to control the release of various  

compounds [13,19,22,26,31,33]. Blending hydrophilic and hydrophobic polymers directly in a suitable 

solvent before electrospinning, is an easy way to change the hydrophobicity, thermal stability and 

mechanical strength of the fibers [34]. Since blending is an attractive way to modify polymer 

properties, this method was chosen to modify the hydrophobicity/hydrophilicity of the electrospun 

fibers by the addition of PEO, to help facilitate the release of the bacteriocin from the nanofibers.  

Fibers were all in the nanometer range and addition of bacteriocin did not influence the fiber 

structure as can be seen in Figure 1. 

Polymers were labeled to elucidate fiber morphologies after electrospinning. Fluorescent 

microscopy images showed that there is a large degree of miscibility between the PEO and PDLLA 

when these polymers are used in a 50:50 combination (Figure 2). However, to confirm these results 

and to determine the miscibility of the polymers, DSC analysis was performed on the PEO 50:PDLLA 

50 fiber blend, see Figure 3. This fiber blend was chosen as it retained its structure the best, had the 
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least amount of weight loss and still released enough bacteriocin to inhibit the growth of a sensitive 

strain. Nijenhuis et al. [34] have studied thermal properties using DSC of polymer blends containing 

various ratios of PEO and the poly L-lactide (PLLA) isomer. The results showed that blends containing 

up to 50 wt% PEO were miscible in the amorphous phase. In this work, PDLLA which is an 

amorphous grade unlike the semi crystalline poly (D-lactide) PDLA was used. A good indication of a 

miscible polymer blend is the shift of the Tg to a value between the Tgs of the pure polymers. The Tg 

value of a mixed phase is determined by the weight fraction of each polymer in that phase, and by the 

Tgs of the pure polymers. DSC curves of the second heating cycle of the PEO 50:PDLLA 50 blend and 

the corresponding homopolymers are shown in Figure 3. A single Tg (9 °C) can be seen that is between 

the Tgs values for PEO (−54 °C) and PDLLA (49 °C) which suggests that the PEO 50:PDLLA 50 

blend is miscible in the amorphous phase. DSC analysis performed on the PEO 50:PDLLA 50 blend, 

containing plantaricin 423, revealed that the Tg value still fell between the Tg of the component 

polymers and is therefore still miscible to an extent. It could be due to the peptide that is more 

associated with the PEO domains or simply restricting chain mobility. Investigation of the distribution 

of bacteriocins in the final fiber structure after electrospinning could yield important information in 

designing polymeric drug delivery systems for these peptides. 

Fluorescent microscopy images revealed that the bacteriocin was better associated with PEO than 

with PDLLA, even though the peptide was associated with both these polymers (Figure 4). 

Bacteriocins are amphiphilic peptides with both hydrophilic and hydrophobic residues [1]. Because of 

this amphiphilic nature it is possible for the peptide to interact better with one polymer than with the 

other. These results indicate that the bacteriocin is better associated with the hydrophilic polymer, in 

this case PEO, but were also associated with the PDLLA to a lesser extent. This would explain the 

high initial burst release within the first few hours.  

Cumulative release studies revealed that fibers with a higher PEO content showed a higher release 

of the bacteriocin than those with a lower PEO content (Figure 5). An initial burst release was seen 

within 2 h, after which a more sustained release was seen. This could be an ideal release profile in the 

control of infections. A rapid release of antimicrobial peptides during the first 2 h would kill most of 

the pathogens, whereas a slow and constant release over the following few days would keep infection 

under control. The PEO 70:PDLLA 30 and PEO 50:PDLLA 50 blends released lower amounts of the 

peptide, with the PEO 70:PDLLA 30 and PEO 50:PDLLA 50 blends releasing 69% and 60% of the 

peptides, respectively (Figure 5). Blends of different polymers have earlier shown to facilitate the 

release of molecules from electrospun fibers. Lysozyme release from nanofibers was facilitated by 

blending PEO and poly(ε-caprolactone) (PCL), with a 90:10 blend releasing most of the lysozyme with 

a high initial burst release [22]. Higher concentrations of cytochrome C were also released from fibers 

consisting of poly(L-lactide) PLLA and high concentrations of both poly(L-lysine) (PLL) and 

poly(ethylene imine) (PEI), respectively [26]. Fibers containing 50% PLL released most of the protein 

(75%) with a high initial burst release. 

SEM images revealed that as the PEO content increased, significant morphological changes can be 

seen as the incubation time increased (Figure 6) The PEO 90:PDLLA 10 blend showed the most 

significant morphological changes over the 8 day period. This could be due to the high content of PEO 

in the fibers as PEO swells readily in an aqueous environment and dissolves easily. The resulting 

destruction of the nanofiber scaffold explains the higher release of antimicrobial peptide as observed 
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over 8 days (Figure 5). Fibers retained their structure better in the PBS buffer (pH 7.4), as the PEO 

content in the fibers decreased. This can be observed in the PEO 50:PDLLA 50 blend, with this blend 

showing no significant signs of structural changes or deterioration in the buffer medium  

(Figure 6I–L). Slight structural changes were seen for the PEO 70:PDLLA 30 blend after 8 days 

(Figure 6E–H). These results suggest that the PEO 50:PDLLA 50 blend nanofibers would be stable for 

at least 8 days and show no significant signs of degradation. The ideal nanofiber drug delivery systems 

has to retain its structure, have high oxygen permeability, variable pore size and a high surface to 

volume ratio. Nanofibers prepared from the PEO 90:PDLLA 10 blend showed very high weight loss 

over the 8 days period, which is not very desirable. The PEO 70:PDLLA 30 showed lower weight loss, 

however the PEO 50:PDLLA 50 showed the best results and lost the least amount of its original 

weight. It is very important that the nanofiber scaffolds retain their integrity and with this in mind, the 

PEO 50:PDLLA 50 would be the preferred choice as drug delivery system in this work. 

Bacteriocins retained their activity after electrospinning and were able to inhibit the growth of a 

sensitive strain on solid media as well as in liquid broth (Figures 7 and 8). The bacteriocins showed 

activity on the solid media for at least 6 days of incubation. Growth inhibition in liquid broth was 

observed and may be obtained over longer periods of time by electrospinning higher concentrations of 

bacteriocin in the fibers, by using more fibers (weight), or by replacing the fibers in the broth with new 

fibers at certain time intervals. Only 25 mg of fibers, containing plantaricin 423, was able to inhibit 

actively growing cells of Enterococcus faecium HKLHS, indicating the potent antimicrobial effect of 

this bacteriocin. The difference in antimicrobial activity and release on solid media and in liquid broth 

gives an indication that there is a big difference in release profile on solid media and in a buffer/liquid 

medium. During release studies in a buffer medium, a high concentration gradient is created (such as 

in the case of the method used for determining release) by replacing the old buffer with new buffer at 

each sampling point. This can increase the rate of diffusion of the peptide from the nanofiber scaffold 

to the buffer medium. The detection limit of the protein assay is also in µg/mL, whereas the 

bacteriocins can still be active at lower concentrations of ng/mL. However, the concentration gradient 

can be much lower on solid media, resulting in lower release profiles and thus leads to increased 

periods of antimicrobial activity. 

5. Conclusion 

Bacteriocins remained active after electrospinning into nanofiber scaffolds. This technique provides 

the option to electrospin high concentrations of antimicrobial peptides into nanofibers. The rate at 

which these peptides are released is controlled by selection of the correct combination of polymers. 

The degradation rate and mechanical properties of PDLLA can be improved by blending with a 

hydrophilic polymer such as PEO. Antimicrobial peptides electrospun into nanofibers may have 

potential applications in the pharmaceutical and food industries to control microbial growth. 
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