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Abstract: Five potential reference genes for RT-qPCR application, namely histone H3, 

beta-actin, GAPDH, ubiquitin and 18S rRNA, were evaluated for normalization of gene 

expression in four selected tissues (liver, kidney, thyroid and abdominal fat). Tissues were 

derived from fattening pigs exposed to different amounts and type of dietary iodine. Two 

software applications (geNorm and NormFinder) were used to evaluate the stability of  

the potential reference genes. All studied genes displayed high expression stability but 

different stability patterns between the investigated tissues. The results suggest GAPDH 

and 18S rRNA as reference genes applicable in all tissues investigated. Beta-actin and 

histone H3 are suitable reference genes for all tissues investigated except fat. In contrast, 

ubiquitin should be excluded from use as a reference gene in the porcine tissues analyzed 

due to variations in expression levels, despite the good expression stability. 
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1. Introduction 

Iodine is an essential trace element for humans and animals. Iodine deficiency disorders like goiter, 

cretinism, reproductive failure or hypothyroidism are highly abundant. This is due to native iodine 

contents in feeds and food, often being too low to match requirements. Hence, efforts have been taken 

to fortify feedstuffs with iodine. Currently, the maximum permitted iodine content to add to pig feed 

has been set to 10,000 µg I/kg within the EC. Modern feeding practice actually fully utilizes this legal 

range to a high degree [1]. In context with high dietary iodine supply to pigs, the rise in iodine content 

of pork meat has often been highlighted as a beneficial side effect for human nutrition [2]. However, 

data from pigs as well as from laboratory rodents indicate a concomitant accumulation of iodine in 

tissues [3], the biological impact on the organism remains unknown. 

The reverse transcription real-time PCR (RT-qPCR) technique provides the possibility to detect 

effects of iodine administration on the organism at the mRNA level. For relative quantification of the 

mRNA using the RT-qPCR technique, the activity of a target gene is expressed in relation to a 

reference gene (RG) in order to exclude general variations in transcript levels of the cell. Appropriate 

candidates for RGs should show stable and unregulated expression in the tissue sample under 

investigation [4]. Hence, before a gene may be chosen as reference, an exhaustive search is needed to 

ensure that no significant regulation occurs. However this can be a circular problem, as the expression 

data of the tested standard, as well, has to be standardized [5]. 

Numerous papers reported that beta-actin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 

histone H3, ubiquitin, and 18S rRNA are expressed constitutively and are involved in basic reference 

functions required for cell maintenance [6–10]. Thus, they are commonly used as endogenous internal 

controls to normalize gene expression in molecular biology studies. However, precondition for their 

proper use are constant expression levels among different cells of one tissue and different types of 

tissues, as well as stability of expression levels against varying ambient factors such as experimental 

treatments (e.g., nutritional challenges). Nevertheless, it is important to note that constitutive 

expression in cells does not preclude regulation [11]. Furthermore, transcript levels of RGs may vary 

between different types of tissue and under different ambient conditions acting on the entire organism, 

as has been demonstrated, e.g., for tissues derived from experimental animal studies [12–20].  

In 2009, Bustin et al. [21] published the minimum information for publication of RT-qPCR (MIQE 

guidelines). Many former RT-qPCR studies dealing with RGs did not provide the required information 

in the material and methods section. In this context, the aim of the present study was to investigate the 

stability of five potential RGs (histone H3, beta-actin, GAPDH, ubiquitin and 18S rRNA)  

in different tissues derived from nutritionally challenged fattening pigs, using two software applications 

(geNorm and NormFinder) to analyze a single data set under consideration of the MIQE guidelines. 

2. Results and Discussion 

2.1. RNA Quality and Integrity 

RNA quality and integrity was controlled to prove the suitability of the sample material for  

RT-qPCR: The determination of OD260/230 and OD260/280 ratios produced mean values of 1.99 ± 0.07 

and 1.67 ± 0.52, respectively (liver 2.03 ± 0.02 and 1.91 ± 0.17; kidney 2.04 ± 0.05 and 1.96 ± 0.23; 
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thyroid 1.97 ± 0.04 and 1.71 ± 0.41; fat 1.90 ± 0.07 and 1.10 ± 0.59). Samples of different tissues 

showed a mean 28S/18S ratio of 0.87 ± 0.25 (liver 0.97 ± 0.13, kidney 0.82 ± 0.20, thyroid 0.75 ± 0.37,  

fat 0.93 ± 0.12).  

2.2. Gene Expression Results 

No template control and no RT-control were negative, indicating suitable PCR runs. 

When comparing the results of both software applications, geNorm and NormFinder produced 

identical ranking orders of stability (Table 1 and Table 2). All genes studied reached a high expression 

stability with M values (average expression stability) below the default limit of M = 1.5 [22]. 

However, different ranking orders of reference genes between the investigated tissues were observed 

(Table 1 and Table 2). Ubiquitin showed comparably low M and stability values in all tissues. Thus, it 

always ranked first or second position. In contrast, histone H3 showed the highest M and stability 

values in abdominal fat tissue and liver. In liver and abdominal fat, GAPDH and beta-actin, respectively, 

were ranked in the first position.  

Table 1. Candidate reference genes according to the expression stability (calculated  

as the average M value after stepwise exclusion of worst scoring genes) by the  

geNorm VBA applet. 

 Liver  Kidney  Thyroid  Abdominal Fat  

Ranking 

Order 
Gene Name 

Average 

M value 
Gene Name

Average 

M value 
Gene Name

Average 

M value 
Gene Name 

Average M 

value 

1 GAPDH 0.846 Ubiquitin 0.760 18S rRNA 0.948 Beta Actin 0.764 

2 Ubiquitin 0.876 Histone H3 0.820 Ubiquitin 0.975 Ubiquitin 0.894 

3 18S rRNA 1.040 Beta Actin 0.835 Histone H3 0988 18S rRNA 0.950 

4 Beta-actin 1.071 GAPDH 0.860 Beta Actin 1.072 GAPDH 0.990 

5 Histone H3 1.115 18S rRNA 0.971 GAPDH 1.536 Histone H3 1.051 

The results of the present study are in accordance with previous studies, where variation in gene 

expression stability between different types of tissue from the same organism has been reported [22–24].  

In porcine liver, our study as well as other authors [25,26], showed that the commonly used RG 

GAPDH was the most stable one, whereas in kidney GAPDH proved to be more unstable. Hence, 

evaluation of tissue specific RGs is essential.  

Ubiquitin showed significantly different relative expression rates (p < 0.05) between all 

investigated tissues (data not shown). For histone H3 and beta-actin an up-regulation in fat tissue was 

observed between the treatment groups (p < 0.05). Additionally, treatment specific expression in liver 

was detected for ubiquitin (p < 0.05). Variations in expression levels of potential RGs in relation to 

type of tissue and ambient conditions (e.g., experimental treatments) [27,28] gave rise to the necessity 

to use a set of more than one RG [22]. 
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Table 2. Candidate reference genes for normalization of RT-qPCR listed according to their 

expression stability calculated by NormFinder VBA. 

 Liver  Kidney  Thyroid  
Abdominal 

Fat 
 

Ranking 

Order 
Gene Name 

Stability 

Value * 
Gene Name

Stability 

Value * 
Gene Name

Stability 

Value * 
Gene Name 

Stability 

Value* 

1 GAPDH 
0.258 

(±0.082) 
Ubiquitin 

0.291 

(±0.071) 
18S rRNA 

0.281 

(±0.096)
Beta Actin 

0.133 

(±0.101) 

2 Ubiquitin 
0.318 

(±0.081) 
Histone H3 

0.391 

(±0.077) 
Ubiquitin 

0.368 

(±0.095)
Ubiquitin 

0.407 

(±0.081) 

3 18S rRNA 
0.569 

(±0.099) 
Beta Actin 

0.396 

(±0.078) 
Histone H3

0.381 

(±0.096)
18S rRNA 

0.491 

(±0.088) 

4 Beta-actin 
0.584 

(±0.100) 
GAPDH 

0.425 

(±0.080) 
Beta Actin 

0.534 

(±0.106)
GAPDH 

0.538 

(±0.093) 

5 Histone H3 
0.627 

(±0.105) 
18S rRNA 

0.557 

(±0.094) 
GAPDH 

0.989 

(±0.159)
Histone H3 

0.601 

(±0.100) 

* The numbers in brackets denote the standard error for the stability value. 

Table 3. Details of primers used for each of the five evaluated genes. 

Gene Accession No.  Sequences[5'→3'] TM 
Product 

length [bp] 

GAPDH sus AF017079 
for gccatcactgccacccagaa 

60 °C 153 
rev gccagtgagcttcccgttga 

Ubiquitin sus U72496 
for accctgacgggcaagaccat 

60 °C 143 
rev cggccatcctccagctgttt 

Histone H3 sus NM_213930 
for actggctacaaaagccgctc 

60 °C 232 
rev acttgcctcctgcaaagcac 

Beta-actin bov AY141970 
for aactccatcatgaagtgtgacg * 

60 °C 229 
rev gatccacatctgctggaagg 

18S rRNA sus DQ437859 
for tggagcgatttgtctggtta 

60 °C 200 
rev acgctgagccagtcagtgta 

* incorrect sequence in forward primer (real CDS sequence in AY141970 aattccatcatgaagtgtgacg). 

3. Experimental Section 

3.1. Animals and Tissues 

The tissue samples were derived from a feeding trial with fattening pigs (n = 15 × 4), exposed to 

different amounts (400 vs. 4000 mg iodine per kg of feed) and chemical composition (iodide vs. 

iodate) of added dietary iodine in a 2 × 2 factorial arrangement. Animals were housed under common 

practical conditions and were fed conventional diets modified only in view of the iodine supply levels 

and sources. At the end of fattening (mean body weight approximately 112 kg), the animals were 

slaughtered under standardized conditions. 
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Samples from liver (left lobe of the liver), kidney (marrow), thyroid and abdominal fat tissue were 

isolated from the pig carcass. The tissue samples were immediately snap frozen in liquid nitrogen and 

stored at −80 °C until total RNA extraction starting three month after slaughtering. 

3.2. One Step RT-qPCR Methods 

Approximately 50 mg of tissue sample was homogenized in 0.5 mL TriFastTM reagent (PeqLab, 

Germany) with a Precellys 24 homogenizer (PeqLab, Germany). Total RNA from liver tissue samples 

was isolated using TriFast (Peqlab, Germany) applying the method of Fleige et al. [29]. In comparison 

to the general RNA extraction method [29], the homogenization time was increased by 10 s and only 

30 µL DEPC-dH2O (Sigma Chemical Co, USA) was applied to dissolve the RNA pellet in kidney 

tissue. Thyroid tissue samples were homogenized at 6,500 rpm for 15 s, thereafter further 0.5 mL of 

TriFastTM reagent was immediately added to the homogenate and then incubated for 5 min at room 

temperature. 200 µL chloroform was added into each tube, 400 µL of upper aqueous solution was 

transferred to a sterile microtube (VWR, Germany) with equivalent volume of isopropanol. Finally, 

only 30 µL DEPC-dH2O was added to the RNA pellet. All other steps were performed according to the 

general RNA extraction method. Fat tissue samples were homogenized at 5000 rpm for 10 s, 

centrifuged (Centrifuge 5810R, Eppendorf, Germany) thereafter at 12,000 rpm for 15 min at 4 °C and 

incubated for 5 min at room temperature. 200 µL chloroform was added into each tube, 300 µL of 

upper aqueous solution was transferred to a sterile microtube with equivalent volume of isopropanol. 

Finally, 20 µL DEPC-dH2O was added to the RNA pellet. The other steps were kept the same as in the 

general RNA extraction method. 

To quantify the extracted RNA concentration, the optical density was determined using a UV 

spectrophotometer (NanoDrop Technologies, USA). OD260/230 and OD260/280 ratios were checked 

considering sample purity. In addition, RNA integrity was analyzed by a micro-fluidic capillary 

electrophoresis in the Experion system (Bio-Rad Laboratories, USA). From each tissue investigated, 

extracted total RNA of high quality of six samples per treatment was used for RT-qPCR. 

Until RT-qPCR total RNA was stored for three weeks at −80 °C. RT-qPCR analysis was performed 

using the primers shown in Table 3. Primer for GAPDH, 18S rRNA and ubiquitin were designed  

with Primer 3 software (http://frodo.wi.mit.edu/), histone H3 and beta-actin were obtained from 

literature [30,31]. Amplification was carried out as one-step PCR with the Corbett Rotor-GeneTM  

3000 (Corbett, Australia) using the QuantiFastTM SYBR® Green RT-qPCR Kit (Qiagen, Germany). 

The PCR reaction consisted of 5 μL 2 × QuantiFast SYBR Green PCR Master Mix, 0.5 μL each for 

forward and reverse primers (10 pmol), 3.8 μL diluted template RNA (10 ng/μL), 0.1 μL QuantiFast 

RT Mix and 0.1 μL RNase-free water in a total volume of 10 μL. The following cycling protocol was 

used: 10 min at 50 °C, 5 min at 95 °C, followed by 40 cycles of 10 seconds at 95 °C and 30 s at 60 °C. 

To verify consistency of the amplicon, the product was tested in a melting point analysis conducted 

directly after amplification, for determining dissociation of the PCR products from 65 °C to 95 °C. 

Data on mRNA expression for each sample and gene analyzed were obtained as quantification cycle (Cq) 

and single run efficiencies (E), using the Rotor-Gene 3000 software version 6.0 (Corbett, Australia). 

To clarify that samples were free of genomic DNA, a negative RT-control was performed. 

Additionally, a no template control was included in the PCR runs.  
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3.3. Data Evaluation 

Of each treatment group six samples with the highest 28S/18S ratio were used for statistical 

analysis and a single-run-specific, efficiency-corrected expression model was applied [32]. Data were 

transferred into Excel-based files and geNorm [22] and NormFinder [33] were used to identify the 

most appropriate RG. The GLM procedure of SAS (SAS Inst., Inc., Cary, NC) was used to determine 

treatment and tissue effects by analysis of variance. A p-value of <0.05 was regarded as significant. 

4. Conclusions 

We report on an experiment that was performed in order to identify appropriate reference genes to 

be used for relative gene quantification by RT-qPCR in pigs using MIQE standards. Not one single RG 

always manifests stable expression levels in all tissue types under investigation, thus emphasizing the 

necessity to characterize the suitability of various RGs to serve as internal controls in the respective 

tissue type where transcription effects are tested. Our study suggests 18S rRNA and GAPDH as RGs 

applicable on all tissues investigated. Beta-actin and histone H3 are suitable RGs for all tissues 

investigated except fat, whereas ubiquitin should be excluded from use as a RG in the porcine tissues 

analyzed due to variations in expression levels, despite the good expression stability. The present 

results should act as an addition to similar studies such as Nygard et al. [24] and can be used as a 

guideline for future feeding studies with trace elements applying the pig as an animal model. 
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