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Abstract: Experimental pEC50s for 216 selective respiratory syncytial virus (RSV) 

inhibitors are used to develop classification models as a potential screening tool for a large 

library of target compounds. Variable selection algorithm coupled with random forests  

(VS-RF) is used to extract the physicochemical features most relevant to the RSV 

inhibition. Based on the selected small set of descriptors, four other widely used 

approaches, i.e., support vector machine (SVM), Gaussian process (GP), linear 

discriminant analysis (LDA) and k nearest neighbors (kNN) routines are also employed and 

compared with the VS-RF method in terms of several of rigorous evaluation criteria. The 

obtained results indicate that the VS-RF model is a powerful tool for classification of RSV 

inhibitors, producing the highest overall accuracy of 94.34% for the external prediction set, 

which significantly outperforms the other four methods with the average accuracy of 

80.66%. The proposed model with excellent prediction capacity from internal to external 

quality should be important for screening and optimization of potential RSV inhibitors 

prior to chemical synthesis in drug development. 
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1. Introduction 

Respiratory syncytial virus (RSV), a single-stranded RNA virus of negative genome polarity, is a 

member of the Pneumovirus genus of the Paramyxovirus family. RSV was first shown to occur in 

humans in 1957, after being recovered from two infants hospitalized with severe lower respiratory 

tract infections [1,2]. Today, RSV is recognized as the leading cause of virus-induced lower 

respiratory tract disease among infants and children [3]. Most children are infected with RSV before 

two years of age, re-infection is a common occurrence and morbidity due to complications is high 

among premature infants and those with underlying cardiopulmonary problems [4]. Moreover, RSV 

infections have been associated with increased prevalence of asthma in later childhood [5]. However, 

RSV was not recognized as a potentially serious problem in adults until the 1970s, when outbreaks of 

the virus occurred in long-term care facilities [6,7]. Until a safe and effective antiviral can be 

developed for treatment of RSV infections, prevention of the infection by use of anti-RSV antibodies 

appears to be the most acceptable approach. The main therapeutic agents include ribavirin [8] and 

RSV-IGIV [9]. However, both of them pose some disadvantages. For example, ribavirin is not a 

specific antiviral agent and is teratogenic, while RSV-IGIV is derived from blood, and consequently 

has the potential to transmit blood-borne pathogens. Thus, a search for more potent and selective 

inhibitors of RSV is clearly necessary. Recently, Nikitenko and co-workers have discovered a potent 

and selective inhibitor (RFI-641) [10]. Chapman et al. [11] also reported the discovery and initial 

development of RSV604, a novel benzodiazepine with submicromolar anti-RSV activity. In addition, 

with continuous efforts, Meanwell and colleagues have examined several of benzimidazole derivatives 

with highly potent RSV inhibition activity [12-18]. 

Traditionally, the biological activity of a drug candidate is obtained via costly and time consuming 

experiments. Thus the introduction of in silico methods, including the quantitative structure-activity 

relationship (QSAR) approaches in particular, has been explored in the drug development process for 

predicting the biological activity of drug candidates [19-23] prior to synthesis, thus attempting to 

eliminate undesirable compounds in a fast and cost-effective manner. However, to our best knowledge, 

there is still no report of any computational models to classify RSV inhibition activity. Therefore, it is 

necessary to develop a predictive model to fill this gap. 

Construction of a computational model often requires two conditions. The first factor is molecular 

descriptors, which are used to extract the structural information that is suitable for model development. 

The software Mold2 [24] enables the rapid calculation of a large and diverse set of descriptors 

encoding two-dimensional chemical structure information. Comparative analysis of Mold2 descriptors 

with those calculated by Cerius2, Dragon or MolconnZ on several data sets has demonstrated that 

Mold2 descriptors can convey a similar amount of information as those widely-used software  

packages [24]. Although a freely available software, it has been proven that Mold2 is suitable not only 

for QSAR [25], but also for virtual screening large databases in drug development [24]. 

Secondly, the adoption of appropriate classification approaches to establish models is another 

central element to obtain accurate prediction. Often used classification methods include the simple but 

interpretable linear discriminant analysis (LDA) and partial least square (PLS) [26], and nonlinear, 

relatively difficult to interpret but often highly predictive methods such as artificial neural networks 

(ANN) [27], support vector machine (SVM), random forest (RF), Gaussian process (GP) and so  
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forth [28-31]. All of these methods have a proven record of many successful applications in 

computational modeling. However, several of these methods often suffer several limitations. For 

example, traditional statistical method like LDA can only handle data sets where the number of 

descriptors (p) is smaller than that of the molecules (n), unless again a pre-selection of the descriptors 

is executed (e.g., by using successive projections or genetic algorithms [32,33], etc.). Also they are not 

flexible enough and do not explain nonlinear behavior [28]. SVM, a relatively new nonlinear 

technique employed in classification problems [34,35], is not robust to the presence of a large number 

of irrelevant descriptors [28]. PLS is a popular computational method that expresses a dependent 

variable in terms of linear combinations of the independent variables commonly known as principal 

components. However, PLS may not be suitable for handling multiple mechanisms of action [28], such 

as the nonlinear biological behaviors. Random forest, a new classification and regression tool, has 

been reported as combining relatively high prediction accuracy and a collection of desired features that 

make RF uniquely suited for modeling in cheminformatics [28] including predicting a compound’s 

quantitative or categorical biological activity based on a quantitative description of the compound’s 

molecular structure. RF has shown excellent performance even when most predictive variables are 

noise, and be used when the number of variables is much larger than the number of observations, and 

returns measures of variable importance. 

It is well known that an ideal classification model should have high performance with a lower 

number of descriptors. Thus, in the present work, to optimize the 2D (two-dimensional) molecular 

descriptor subset, while simultaneously enhancing the statistical performance and efficiency of the 

model, the variable selection (VS) method by RF combined with backward elimination using  

out-of-bag (OOB) error is selected to perform a classification task for the current RSV inhibitors to 

investigate whether the proposed VS-RF method can construct an ideal prediction model (i.e., high 

performance with less descriptors) for this dataset. This method was proposed originally for gene 

selection. The authors have proven that the novel approach can return very small sets of genes 

compared to the other alternative variable selection methods, while retaining predictive performance 

comparable to that of seven alternative state-of-art methods [36]. Although this method has been 

successfully applied to gene selection and microarray data [36], there is still no record of attempts to 

develop computational models for small molecular inhibitors. To extend the range of application, we 

examined the VS-RF method to classify the current dataset of RSV inhibitors. In addition, based on the 

performance evaluation, this method has also been compared with four other popular ones, i.e., SVM, 

GP, LDA, and kNN (k nearest neighbors) on the basis of the selected descriptors within the same  

data sets. 

2. Results and Discussion 

2.1. Self-organizing Map 

As a special kind of neural network that can be used for clustering, visualization, and abstraction 

tasks, self-organizing map (SOM) is especially suitable for data survey due to its prominent 

visualization properties. In our previous work, this technology has been successfully applied to dataset 

split [22,31]. SOM creates a set of prototype vectors representing the dataset and carries out a topology 

preserving projection of the prototypes from the d-dimensional input space onto a low-dimensional 
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grid [37], which is a convenient visualization space for showing the cluster structure of the data. In the 

present work, based on the SOM visualization of the whole data, the construction of the training and 

test sets was made [38]. A small Kohonen network with 6 × 6 = 36 neurons was employed, producing 

a map with 36 positions. All the compounds with 272 molecular descriptors were placed onto the  

36 positions (neurons) of the Kohonen map. Figure 1 demonstrates the distribution of the molecules, 

where the number corresponds to the series number of the compounds in Table S1 (Supporting 

Information). The training set is labeled in black and the prediction set in red. The purpose of 

performing the SOM simulation on the dataset was to guarantee that the representative points of the 

training set are distributed evenly within the whole area of the descriptor space occupied by the dataset 

and the representative points of the training set are close to those of the test set, which ensures the 

reliability of the simulation results. 

Figure 1. Self-organizing map (SOM) top map indicating the distribution of the training 

and external prediction sets. The training set is labeled in black font and the prediction set 

in red font. The number corresponds to the series number of the compounds of the  

RSV inhibitors. 
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2.2. Selected Descriptors Using VS-RF 

A VS-RF strategy has been developed successfully, with the final number of descriptors being 

reduced to six from the original 272 for the further study. Since it is recommended that the number of 

compounds in the training set should be at least five-times larger than that of the selected independent 
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variables [39], the model developed by VS-RF obviously maintains the recommended ratio. Table 1 

lists the selected descriptors together with their definitions and their values are listed in Table S2 

(Supporting Information). 

Table 1. The selected 6 Mold2 descriptors using variable selection algorithm coupled with 

random forests (VS-RF) and their definition. 

Descriptor Definition Class 
D299 The largest eigenvalue Eigenvalue-based indices 
D347 Molecular topological path index of order 07 Walk and path counts 
D490 Moran topological structure autocorrelation length-4 

weighted by atomic van der Waals volumes 
2D autocorrelation 

D503 Moran topological structure autocorrelation length-1 
weighted by atomic polarizabilities 

2D autocorrelation 

D513 Molecular topological order-3 charge index Topological charge indices 
D528 Mean molecular topological order-8 charge index Topological charge indices 

2.3. Performance of Different Statistical Methods 

Based on the selected descriptors, five different statistical methods (VS-RF, SVM, GP, LDA, kNN) 

were performed to compare their performance, and the detailed statistics are summarized in Table 2. 

The results predicted by these methods are presented in Table S3 (Supporting Information). 

Table 2. The prediction performance of high and low active compounds as respiratory 

syncytial virus (RSV) inhibitors from VS-RF, SVM, GP, LDA and kNN statistical methods 

for the external prediction set and the 10-fold cross-validation a. 

 High active inhibitors Low active inhibitors     
Model TP FN SE (%) TN FP SP (%) Q (%) MCC F Qcv (%)
VS-RF 27 0 100 23 3 88.46 94.34 0.89 0.96 81.6 
SVM 23 4 85.19 21 5 80.77 83.02 0.66 0.84 79.1 
GP 27 0 100 20 6 76.92 88.68 0.79 0.9 78 

LDA 20 7 74.07 21 5 80.77 77.36 0.55 0.77 67.5 
kNN 22 5 81.48 17 9 65.38 73.58 0.48 0.76 72.9 

a, VS-RF, mtry = 4; SVM, C = 10, sigma = 0.284; GP, sigma = 0.284; kNN, k = 17; TP, true positives; FN, 

false negatives; SE, sensitivity; TN, true negatives; FP, false positives; SP, specificity; Q, the overall 

prediction accuracy; MCC, Matthews correlation coefficient; F, F-measure; Qcv, the prediction accuracy from 

10-fold cross-validation for the training set. 

VS-RF: Random forest effectively has only one tuning parameter, mtry. In the present work, the mtry 

value was tried from 1 to 6 and the optimal value determined by 10-fold cross-validation accuracy  

(Qcv = 0.816). Ultimately, optimal RF results are obtained based on the mtry = 4 and 500 trees in the 

forest. The efficiency and robustness of the derived models are further evaluated by using the external 

prediction set. As shown in Table 2, for the external prediction set, the prediction accuracies of VS-RF 

are 100% for high active RSV inhibitors and 88.46% for low active ones, with a total accuracy (Q) of 

94.34%. The values of MCC and F are 0.89 and 0.96, respectively. 
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SVM: Similar to other multivariate statistical models, the performance of SVM depends on the 

combination of several parameters including the capacity parameter C, the kernel type K and its 

corresponding indices. C is a regularization parameter which controls the tradeoff between maximizing 

the margin and minimizing the training error. In this work, the grid search technology was employed to 

obtain the optimum parameters (C and sigma) using the R package caret [40] on the basis of 10-fold 

cross validation. Here, the function sigest in the kernlab package [41] was used to provide a good 

estimate of the sigma parameter, so that only the C parameter was tuned. The final values used in the 

model are C = 10 and sigma = 0.284 with the highest 10-fold cross-validation accuracy (0.791). Using 

the determined optimal parameters, the SVM obtains statistical results of 85.19%, 80.77% and 83.02% 

for the sensitivity, specificity and Q of the test set, respectively. The MCC and F values are 0.66 and 

0.84, respectively. 

GP: The Gaussian process method, based on clearly defined statistical principles and easily 

programmed [42], was also adopted to classify the RSV-related compounds. The optimal inverse 

kernel width for the Radial Basis kernel function (sigma) was finally fixed to 0.284 based on sigest 

function including the R package kernlab. Based on the 10-cross-validation, the final Qcv of GP we 

derived is 0.78. As for the RF model, the GP model also presents 100% sensitivity, however, a low 

specificity of 76.92% for the test set. In addition, the values of Q, MCC and F are 88.68%, 0.79 and 

0.9, respectively. 

LDA: a widely used classification technology, LDA, was also performed to classify the current 

dataset based on the selected six descriptors. As shown in Table 2, no statistically satisfactory  

LDA-based model could be obtained, with the optimal one only depicting sensitivity of 74.07%, 

specificity of 80.77%, and overall accuracy of 77.36% for the test set. The value of Qcv was just 0.675. 

kNN: After 10-fold cross-validation, an optimal k = 17 was determined on the basis of the highest 

accuracy (Qcv = 0.729). As seen from Table 2, the sensitivity and specificity for the prediction set are 

81.48% and 65.38%, respectively. And the overall prediction accuracy for the test set is 73.58%. The 

values of MCC and F are 0.48 and 0.76. It is obvious that kNN, of the five statistical methods, is 

uniformly less able to predict than the others.  

2.4. Comparison of Different Approaches 

From the above discussion, it can be concluded that the developed VS-RF model performed 

comparably with SVM and GP, demonstrated by the Qcv(%) of VS-RF, SVM and GP of 81.6%, 79.1% 

and 78%, respectively, in terms of cross-validation. These models outperform those of the LDA and 

kNN, whose Qcv(%) are 67.5% and 72.9%, respectively. High cross-validation accuracy is necessary, 

but not sufficient for a model with high predictive ability [43], thus an external validation is a better 

way to estimate the performance of the models. Therefore, a further investigation of Q(%) in the 

external prediction set was performed, where the VS-RF model increases about 11.32% and 5.66% 

compared to the SVM and GP models, respectively. It should be noted that although GP shares the 

same prediction ability for high active compounds, for low active inhibitors the prediction accuracy 

decreases by 11.54% compared with VS-RF. From this point of view, one can consider that the VS-RF 

model is more favorable than others for the RSV inhibitors. 
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In addition, when comparing the other four models, it is observed that the LDA model is 

comparable to that of kNN, both of them presenting less overall accurate (Q) (77.36% for LDA and 

73.58% for kNN) in the test set than the other models. The reason for LDA’s failure may be due to the 

existence of some nonlinear relationship between the molecular structures and the corresponding 

activity. For kNN, a possible reason for the low accuracy is that the method—based on the Euclidean 

distance—may not be the most effective approach for every problem just like the present one. 

Furthermore, for SVM and GP, their internal prediction ability is comparable, while the performance 

of GP is slightly better than SVM in terms of the external prediction. The area under the ROC 

(receiver operating characteristic) curve (AUC) [44,45] is also considered as an important criterion for 

measuring the performance of the model. An AUC value of 1 indicates a theoretically perfect 

performance, while a value of 0.5 denotes no prediction ability. Clearly, the closer the AUC value is 

to 1, the better the model performance is. Figure 2 gives the ROC curves of VS-RF, SVM, GP, LDA 

and kNN for the prediction set. The computed AUC values for the five statistical methods are 0.96, 

0.89, 0.94, 0.86 and 0.78, respectively, also proving the good prediction ability and reliability of the 

VS-RF model. Thus, our further analysis is only restricted to the VS-RF model for prediction of  

RSV inhibition. 

Figure 2. The ROC (receiver operating characteristic) curves of VS-RF, SVM, GP, LDA 

and kNN for the prediction set. 

 

It should be noted that RF, as a new classification and regression tool, can well solve the small n 

and large p (n < p, that is the number of samples is smaller than that of descriptors) problems [28] even 

without variable selection. Keeping this in mind, in order to estimate the effect of VS-RF, we have 

compared both the statistical performance with and without variable selection. As shown in Table 3, 

for the training set, the statistical performance obtained with or without variable selection makes no 

difference, while the time cost of RF is approximately 20-times more than that of VS-RF. It must be 

pointed out that for the RF model without variable selection, the optimal mtry is obtained using grid 
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search technology including the R package caret, and the search length is set to 10. For the test set, one 

can see that the statistics of VS-RF outperform RF. The VS-RF presents a sensitivity of 100%, while 

RF gives that of 92.59%, that is to say there are two high active compounds misclassified to low active 

ones by RF. According to above analysis, one can conclude that the VS-RF model depicts not only 

high computation efficiency but also enhances prediction ability. Therefore, for the RSV inhibitor 

classification, the VS-RF model gives very high statistical results with total accuracies of 100% and 

94.34%, for the training and test set, respectively. In the final VS-RF model, three compounds (No. 68, 

120 and 124) are misclassified (Tables S1 and S3; Supporting Information). The reason for 

misclassification of compound 68 is unclear, since by comparison with compound 39, the former 

introduces a polar substituent CH2COOH instead of Et, however, the activity decreases sharply 

suggesting the atomic polarizabilities may play a role in the RSV inhibition. Compounds 120 and 124 

are misclassified as high active molecules by the VS-RF model. By investigation of the correctly 

classified compounds, i.e., 115, 116, 118, 119, 123 and 125~132 in Tables S1 and S3 (Supporting 

Information), it is revealed that all of them possess a linear R1 group at position 5. However, 

compounds 120 and 124 have a ring-based substituent at the same location, which we suppose may be 

the reason for the misclassification. 

Table 3. Comparison of random forest (RF) statistical performance with and without 

variable selection based on the respiratory syncytial virus (RSV) inhibitor dataset a. 

 High active 
inhibitors 

Low active 
inhibitors 

   

Model TP FN SE(%) TN FP SP(%) Q(%) Qcv Time 
cost (s) 

Training set RF 82 0 100 81 0 100 100 0.816 171.42 
VS-RF 82 0 100 81 0 100 100 0.816 8.06 

Test set RF 25 2 92.59 23 3 88.46 90.57 - - 
VS-RF 27 0 100 23 3 88.46 94.34 - - 

a, for RF, mtry = 62; for VS-RF, mtry = 4; TP, true positives; FN, false negatives; SE, sensitivity; TN, true 

negatives; FP, false positives; SP, specificity; Q, the overall prediction accuracy; MCC, Matthews correlation 

coefficient; F, F-measure; Qcv, the prediction accuracy from 10-fold cross-validation for the training set. 

2.5. Interpretation of the Selected Descriptors 

By using feature selection, the most appropriate sets of molecular descriptors for predicting the 

RSV low and high active inhibitors are extracted from the VS-RF models, some of which probably 

provide new insights into the physicochemical characteristics of RSV inhibition by specific classes of 

compounds. D299, one of the topological descriptors, is a molecular branching index that is calculated 

from the algebraic formulas derived by Lovasz and Pelikan for special types of trees such as path or 

star and for particular eigenvalues [46]. The highest molecular branching corresponds to the most 

branched graphs. This is in agreement with the previous result that the topology of the side chain is 

important to modulate physical properties [12]. D347 stands for molecular topological path index of 

order 07. The path counts are molecular descriptors obtained from an H-depleted molecular graph and 

are vertex invariants encoding that molecular environment, defined as the number of path lengths m 
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starting from the ith vertex to any other vertex in the graph. A path (or self-avoiding walk) is a walk 

without any repeated vertices [47]. The path length is the number of edges associated with the path, 

and this value is increased with the ring size, ring numbers, and the ramification number [48]. Of the 

selected six descriptors, D503 and D513 belong to 2D autocorrelation classes, which represent the 

topological structure of the compounds but are more complex in nature than the classical topological 

descriptors. Computation of these descriptors involves the summations of different autocorrelation 

functions corresponding to different structural lags and leads to different autocorrelation vectors 

corresponding to the lengths of sub-structural fragments. Hence, it can distinguish the details of 

important sub-structural differences. In the previous work, the 2D autocorrelation descriptors have 

been proven advantageous for establishing a QSAR model [49-53]. For the present work, the Moran’s 

index I [53,54] is employed for the classification of RSV inhibitors:  

( )( )

2 ( )

ij ki k kj k
ij

ki k
i

p p p p
n

I
L p p

  







      (1) 

where n is the total number of data points; kip and kjp are the values of physicochemical properties 

(i.e., atomic van der Waals volumes, and atomic polarizabilities in the present work) k of atoms i and j, 
respectively; kp is the average value of property k; and ij  is a Dirac-delta function defined as 

11

10
ij

ij
ij

dif

dif



  

        (2) 

where dij is the topological distance of spatial lag between atoms i and j. 

The 2D autocorrelation descriptors can be obtained by summing up the products of certain 

properties of the two atoms located at a given topological distance or spatial lag. The most important 

factor in interpreting them in the model is the topological distance, once weighted equally. In point of 

this fact, the best model selected an optimum descriptor combination, which includes van der Waals 

volumes and atomic polarizabilities as the most relevant key features (Table 1). This result illustrates 

that a certain distribution of these properties is necessary to distinguish the RSV inhibitors. 

The last selected two descriptors (D513 and D528) belong to topological charge indices. D513, 

molecular topological order-3 charge index (GGI3) represents the three eigenvalues of the corrected 

adjacency matrix of a molecule. D528, the mean molecular topological order-8 charge index (JGI8), is 

a kind of Galvez topological charge index which evaluates the charge transfers between pairs of atoms 

and the global charge transfers in the molecule [55]. Galvez charge indices GGIK and JGIK are 

computed as follows: 
1,

1, 1

( , )
i N j N

ij ij
i j i

GGIK CT k D
  

  

        (3) 

1

GGIK
JGIK

N



       (4) 

where N is the number of vertices (atoms different to hydrogen) in the molecular graph, and k the 

length of each path. CTij = mij – mji m stands for the elements of M matrix, M = A   D* where A is the 

adjacency (N   N) matrix of the molecular graph and D* is the inverse square distance matrix in which 
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their diagonal entries are assigned as 0, and  is Kronecker’s delta. Thus, JGIK represents the average 

of the CTij terms with Dij = k, being Dij the entries of the topological distance matrix (D). In the Charge 

Indices terms, the presence of heteroatoms is taken into account by introducing their electronegativity 

values in the corresponding entry of the main diagonal of the adjacency matrix. These indices 

represent a strictly topological quantity plausibly correlating with the charge distribution inside the 

molecule. This distribution is an important property, which conditions the behavior of many 

physiochemical and biological properties. This index describes topological characteristics of  

the molecules. 

From the aforementioned discussion, it can be seen that the activity of these RSV inhibitors is 

mainly influenced by several factors including the molecular branching index and atomic 

polarizabilities. These results are to some extent in agreement with the corresponding related 

experimental conclusions [12,13,18]. For example, Yu et al. reported that the topology of the side 

chain of RSV inhibitors is important, while we also find that the corresponding descriptors (D299 and 

D347) play a part in RSV inhibition. The studies on a series of benzotriazole derivatives as RSV 

inhibitors [13] revealed a broad tolerance for substituent size and functionality, our selected 2D 

autocorrelation descriptors also disclose such information. In reference [12], the authors reported that 

the polar functionality provides considerable latitude to modulate both the pharmaceutical and 

pharmacokinetic properties, which is found also to be of considerable importance in the quest for 

orally effective RSV inhibitors. In addition, reference [18] illustrated polarity in the oxime substituent 

in a series of compounds with potent antiviral activity in cell culture that combined good metabolic 

stability in vitro with high cell membrane permeability, and the descriptor D503 also depicts the role 

that atomic polarizabilities plays in RSV inhibition.  

As expected, besides the robust, sparse and predictive features, an ideal classification model would 

still be interpretable. In many cases, gaining an intuitive interpretation of important features from the 

two-dimensional QSAR is not always simple. For the present work, it should be pointed out that our 

explanations for the current descriptors are just broad due to nonlinear model types and abstract 

descriptors. However, in terms of developing a highly predictive classification model, the proposed 

VS-RF model in this work could allow this task. 

3. Material and Experimental Methods 

3.1. Data Sets 

A large, diverse dataset of 216 RSV inhibitors collected from the literature [12-18] published by the 

same research group with converted molar pEC50 (−logEC50) values ranging from less than 3.563 to 

8.699 mole were used as the dataset in the present study. These EC50 values were the results of two 

experiments performed on consecutive weeks with the data from individual experiments shown in 

parentheses. Based on the inhibitory activity, the dataset is split into two classes, i.e., 107 low active 

compounds with pEC50 < 6.5 and 109 high active ones with pEC50 > 7.5. Table 4 depicts several 

representative compounds together with their classification labels. All information of the dataset with 

their diverse scaffolds of structures is provided in Table S1 (Supporting Information). 
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Table 4. Representative compounds with their chemical names, activities and classes used 

in the dataset. 

No. Structure pEC50 Classb Ref.a 

1 4.507 L 12 

2 6.328 L 12 

3 5.174 L 12 

4* 6.222 L 12 

5 5.959 L 12 

7 5.959 L 12 

8* N

N
N N
N

4.81 L 12 

9 N

N
N N
N

5.481 L 12 

 



Int. J. Mol. Sci. 2011, 12             

 

 

1270

Table 4. Cont. 

No. Structure pEC50 Classb Ref.a 

10 N

N
N N
N

OH

5.114 L 12 

11 N

N
N N
N

CN

5.570 L 12 

12* 
N

N
N N
N

C
O

6.284 L 12 

29 6.125 L 13 

30 8.398 H 13 

31 7.959 H 13 

32* 7.796 H 13 

34 7.602 H 13 
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Table 4. Cont. 

No. Structure pEC50 Classb Ref.a 

35 7.745 H 13 

36 7.921 H 13 

37 7.678 H 13 

38 8.046 H 13 

39* 8.000 H 13 

41 
N

N
N N

O

HO

7.959 H 13 

42* N

N
N N

O

HO

7.854 H 13 

43 N

N
N N

O

NC

7.824 H 13 

*, test set;  
a, from the corresponding reference; 
b, H denotes high active compounds, L denotes low active compounds. 
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3.2. Descriptors Calculation and Pre-processing 

In the present work, the two dimensional structures of all RSV inhibitors were built with the 

ISIS/Draw 2.3 program [56], and converted to SDF format by Open Babel software package 

(http://openbabel.sourceforge.net/). The final structures were transferred into Mold2 [24], a free 

program available to public to calculate molecular descriptors. The Mold2 software package can 

calculate 777 molecular descriptors solely from 2D chemical structures, and the models generated 

using Mold2 descriptors were reported comparable to those generated using descriptors from the 

compared commercial software packages [24]. In our work, all original 777 Mold2 molecular 

descriptors were calculated, and then underwent a pre-processing process (also called unsupervised 

selection of descriptors) as follows: (1) descriptors containing larger than 85% zero values were 

removed; (2) zero- and near zero- variance predictors were removed because such descriptors may 

cause the model to crash or the fit to be unstable; and (3) one of the two descriptors that have the 

absolute correlations above 0.95 was omitted. After these steps, the number of original descriptors was 

reduced to 272 for further research. 

3.3. Split of the Training and Test Sets 

Rational division of an experimental SAR (structure-activity relationship) dataset into the 

respective training and test sets for model development and validation is very important. The methods 

often used include random sampling (RS), Kennard-Stone (KS), K-mean clustering, and  

self-organizing map, etc. The basic rule should be that the points of the training set are distributed 

evenly within the whole area covered by the dataset, and that the condition of closeness of the test set 

points to those of the training set is satisfied [57]. 

For the independent prediction set, we performed our selection on the basis of their distribution in 

the chemical space, which is defined by Kohonen neural network [58]. The Kohonen neural network of 

dimension 6 × 6 was applied, which enables one to map objects into 36 positions. Similar objects were 

mapped into the same position (x, y coordinates in a Kohonen map). Only one part of a representative 

object from each position in the Kohonen map was chosen for the training set, respecting the original 

proportion among the different classes and the predefined 3:1 ratio between the training and the test 

objects. The rest were put into the test set. The self-organizing map simulations were carried out using 

internally developed C-language program. The training set was used for the development of the 

classification models, and the independent prediction set was used for the assessment of the system. 

The training and independent test sets contain 163 (81 low active and 82 high active) and 53 (26 low 

active and 27 high active) compounds, respectively, with approximately one-fourth of the respective 

groups assigned in the independent prediction set. 

3.4. Statistical Methods 

VS-RF: Random forest model was constructed according to the described original RF algorithm [59]. 

RF is an ensemble of single decision trees, whose assembly produces a corresponding number of 

outputs and the outputs of all trees are aggregated to obtain one final prediction. The training algorithm 

of the RF for classification can be briefly summarized as follows: (1) Draw N bootstrap samples from 
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the original training set. (2) Construct an unpruned tree Tp (p = 1, …, N) with each training set Bp. At 

each node, rather than choosing the best split among all predictors, randomly sample mtry of the 

predictors and then choose the best split from among those variables. The tree is grown to maximum 

size and not pruned back. (3) Predict the N trees by majority vote for classification. RF algorithm is the 

same as Bagging when mtry = p and the tree growing algorithm used in RF is CART (classification and 

regression tree). The RF algorithm can be efficient especially when the number of descriptors (p) is 

very large. This is because RF only tests the mtry of the descriptors rather than the p, where the default 

mtry is the square root of the number of descriptors for classification. Thus, mtry is very small, so that 

the search is very fast.  

RF possesses its own reliable statistical characteristics based on OOB set prediction, which could 

be used for validation and model selection with no cross-validation performed. It was shown that the 

prediction accuracy of an OOB set and a 5-fold cross validation procedure was nearly the same [28]. 

Although RF performs relatively well “off the shelf’’ without expending much effort on parameter 

tuning or variable selection [28], it is also important for carrying out some tentative investigations on 

the changes of mtry or descriptor selection to optimize the performance of RF. In the current study, the 

optimal mtry was determined when the prediction accuracy reached the highest based on the 10-fold 

cross-validation. 

Random forest, as a new classification and regression tool, has not been frequently applied in 

QSAR, QSPR (quantitative structure-property relationship) [25,28,60,61]. Thus it should be of value 

to investigate whether the RF can be applied to obtain better statistical performance for the current 

dataset of RSV inhibitors. Here, only a brief introduction about RF is presented, since more details can 

be found in corresponding literatures [28,59]. In the present work, the RF algorithm was employed 

using the R package randomForest [62]. 

As expected, an ideal classification model should possess high prediction ability with a small set of 

descriptors. Thus, variable selection with random forest was used to implement this task. Here, we 

simply introduce the VS-RF. To select optimal descriptors, random forests were iteratively fitted, at 

each iteration building a new forest after discarding those descriptors with the smallest variable 

importance; the selected set of descriptor is the one that yields the smallest OOB error rate. In this 

algorithm, all forests result from eliminating, iteratively, a fraction, fraction.dropped, of the 

descriptors (the least important ones) used in the previous iteration. By default, fraction.dropped = 0.2, 

which allows for relatively fast operation, coherent with the idea of an “aggressive variable selection” 

approach, and increases the resolution as the number of descriptors considered becomes smaller. After 

fitting all forests, the OOB error rates from all the fitted random forests were examined. And the 

solution with the smallest number of descriptors whose error rate is within μ standard errors of the 

minimum error rate of all forests is chosen. Setting μ = 0 is the same as selecting the set of descriptors 

that leads to the smallest error rate. Setting μ = 1 is similar to the common “1 s.e. rule”, used in the 

classification trees [36]. In our work, the μ = 1 was adopted, since this strategy can lead to solutions 

with fewer descriptors than selecting the solution with the smallest error rate, while achieving an error 

rate that is not different, within sampling error, from the “best solution”. More details on the VS-RF 

can be found in literature [36]. The variable selection from random forest was performed using the R 

package varSelRF [63]. All parameters were adopted by default. 
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SVM: Support vector machines are a relatively new type of learning algorithm originally 

introduced by Vapnik and co-workers [64]. Due to its many attractive features and promising 

empirical performances, SVM is gaining increasing popularity in many fields [65,66], and thus was 

also performed in the present work. Since there have been a number of excellent introductions into 

SVM [35,64,67], only a briefly description of the main idea of SVM classification is presented here.  
For the classification task, briefly, this involves the optimization of Lagrangian multipliers i  with 

constraints 0 i C  and 0i iy  to yield a decision function as follows: 

1

( ) ( ( , ) )
l

i i i
i

f x sign y K x x b


        (5) 

where iy  are input class labels that take a value of −1 or 1, ix  are a set of descriptors, and ( , )iK x x  is a 

kernel function, whose value is equal to the inner product of two vectors x  and ix  in the feature space 

( )x  and ( )ix , i.e., ( , ) ( ) ( )i iK x x x x   . The elegance of using a kernel function lies in the fact 

that one can deal with feature spaces of arbitrary dimensionality without having to compute the ( )x  

explicitly. Any function that satisfies Mercer’s condition can be used as the kernel function. The sign 
function ( )sign   returns 1 when 0  , and −1 when 0  . In support vector classification, the 

Gaussian kernel 
2 2( , ) exp( / )K         was used. And the R package kernlab was used to 

develop the SVM classification model. 
GP: Preliminarily used in QSAR field, the Gaussian process (GP) was also introduced in the present 

study to classify the RSV inhibitors. Pioneering work was made by Burden [42] who demonstrated GP 

applications in QSAR modeling of data sets of compounds active at the benzodiazepine and 

muscarinic receptors, etc. In addition, the authors of these references [68-71] have also reported the 

successful use of GP in statistical predictions of a series of pharmacokinetic properties. Recently, GP 

was also reported to be applied both in an automatic QSAR modeling of ADME (absorption, distribution, 

metabolism, excretion) properties [72], and the multivariate spectroscopic calibration [73]. All these 

works confirmed the possibility of GP as a promising machine learning tool, to be used in QSAR 

studies. In view of this, the present study is dedicated to introducing GP in classification modeling of 

RSV inhibitors.  

A Gaussian process is defined simply as a collection of random variables which have a joint 

Gaussian distribution. It is completely characterized by its mean and covariance function. In the GP, 

the kernel function used in training and prediction contains (1) Radial Basis kernel function 

“Gaussian”; (2) Polynomial kernel function; (3) Linear kernel function; (4) Hyperbolic tangent kernel 

function; (5) Laplacian kernel function; (6) Bessel kernel function; (7) ANOVA RBF kernel function; 

and (8) Spline kernel. In the present work, the popular Radial Basis kernel function was chosen, with 

the kernel parameters determined by sigest function implemented in the R package kernlab. 

LDA: LDA is a pattern recognition method providing a classification model based on the 

combination of variables that best predicts the category or group to which a given compounds belongs. 

The basic theory of LDA is to classify the dependents by dividing an n-dimensional descriptor space 

into two regions that are separated by a hyperplane defined by a linear discriminant function. In this 

study, the independent variables were the calculated molecular descriptors, and the discrimination 
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property was EC50 (represented by either high active or low active). Statistical analyses were 

performed using the R package MASS [74]. 

kNN: kNN measures the Euclidean distance between a to-be-classified vector x and each individual 

vector xi in the training set [75]. A total of k number of vectors nearest to the vector x are used to 

determine its class, f(x): 

1

ˆ ( ) arg max [ , ( )]
k

V i
i

f x f x  


       (6) 

where ( , ) 1a b   if a = b and ( , ) 0a b   if a b , argmax is the maximum of the function, V is a 

finite set of vectors  1,... sv v , and ˆ ( )f x is an estimate of f(x). Here, estimate refers to the class of the 

majority of the kNNs. Here, the kNN computation was performed by R package caret [40]. 

3.5. Evaluation of the Statistical Performance 

As in the case of all discriminative methods [22,31], the performance of statistical learning methods 

can be measured by a series of parameters including the quantity of true positives (TP), true negatives 

(TN), false positives (FP), false negatives (FN), sensitivity (SE) (also called recall), SE=TP/(TP + FN), 

which is the prediction accuracy for the high active compounds in this work, and specificity (SP),  

SP = TN/(TN + FP), which is the prediction accuracy for the low active inhibitors,  

Precision = TP/(TP + FP), which is the positive predictive value. The overall prediction accuracy (Q), 

Matthews correlation coefficient (MCC) and F-measure, a function of recall and precision which 

indicated the accuracy of real and estimated class, respectively, are also used to measure the prediction 

accuracies and can be given as follows: 

TP TN
Q

TP TN FP FN




  
      (7) 

( )( )( )( )

TP TN FN FP
MCC

TP FN TP FP TN FN TN FP

  


   
    (8) 

2 recall precision
F measue

recall precision

 
 


     (9) 

4. Conclusions 

In the present work, based on the up-to-date largest dataset (to our best knowledge) of 216 

structurally diverse RSV inhibitors, a VS-RF classification model with good predictive performance 

(the overall Q = 94.34% for the prediction set) has been built.  

By explanation of the selected descriptors, we conclude that the topological structure and electronic 

factors play a central role in the RSV inhibition. Moreover, a comparison with four other statistical 

methods, i.e., SVM, GP, LDA and kNN, demonstates that the VS-RF model presents better statistics 

both for the training and test sets. Through a comparison of RF statistical performance with and 

without variable selection based on these RSV inhibitors, the proposed VS-RF method not only 

improves the prediction ability but also enhances computational efficiency. Therefore, we hope that 
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this method and the derived model will be of help for predictive tasks to screen new and potent RSV 

inhibitors in early drug development. 
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