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Abstract: The nociceptin/orphanin FQ (NOP) receptor is involved in a wide range of 

biological functions, including pain, anxiety, depression and drug abuse. Especially, its 

agonists have great potential to be developed into anxiolytics. In this work, both the  

ligand- and receptor-based three-dimensional quantitative structure–activity relationship 

(3D-QSAR) studies were carried out using comparative molecular field analysis (CoMFA) 

and comparative molecular similarity indices analysis (CoMSIA) techniques on 103  

N-substituted spiropiperidine analogues as NOP agonists. The resultant optimal  

ligand-based CoMSIA model exhibited Q2 of 0.501, R2
ncv of 0.912 and its predictive ability 

was validated by using an independent test set of 26 compounds which gave R2
pred value of 
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0.818. In addition, docking analysis and molecular dynamics simulation (MD) were also 

applied to elucidate the probable binding modes of these agonists. Interpretation of the 3D 

contour maps, in the context of the topology of the active site of NOP, provided insight into 

the NOP-agonist interactions. The information obtained from this work can be used to 

accurately predict the binding affinity of related agonists and also facilitate the future 

rational design of novel agonists with improved activity. 

Keywords: NOP agonist; N-substituted spiropiperidine analogues; 3D-QSAR; molecular 

docking; molecular dynamics 

 

1. Introduction 

NOP, the nociceptin/orphanin peptide, is a 17-amino acid neuropeptide which was discovered in 

1995 [1,2]. Though structurally related to the opioid peptidedynorphin A [3,4], NOP lacks the  

N-terminal tyrosine necessary for activation of μ-, κ- and δ- opioid receptors and therefore does not 

bind to the opioid receptors. Actually, as an endogenous ligand, it binds only to its own receptor,  

i.e., the NOP receptor (also known as ORL1, OP4 or LC132) which was cloned in 1994 [5] and named 

after this ligand. NOP receptor belongs to the transmembrane G-protein coupled receptor family, and is 

widely distributed in the central nervous system with the highest density in the forebrain, brainstem, 

dorsal and ventral horns of the spinal cord. Besides, it is also present in the peripheral nervous system 

as well as in some non-neural tissues (epidermis, immunocytes, and vascular endothelium) [6–8]. Due 

to the therapeutic potential of the NOP receptor, it has received considerable attention in research since 

it was cloned. 

The agonists of NOP receptor have a broad therapeutic potential [9] to be used as antitussives, 

anxiolytics, vasodilators, hypotensives and in the treatment of neuropathic pain, drug dependence, 

urinary incontinence, congestive heart failure, and anorexia [10]. Thus scientists have spared no effort 

in development of NOP agonists, ending up with a variety of reported agonists. Generally, they can be 

divided into two classes: the peptide ligand and non-peptide ligand. For the first class of peptide ligand, 

the most typical one is the NOP which not only binds to, but also activates, the normal function of 

NOP receptor. In addition, some nociceptin-related peptides were also reported with high NOP binding 

affinities as NOP agonists [11–18]. As to the second class of non-peptide agonists, several groups of 

NOP ligands based on structural differences have been discovered, including piperidines, nortropanes, 

spiropiperidines, 4-amino-quinolines and quinazolines, and others [10]. Among these, the most 

extensively studied is the triazaspirodecanone Ro 64-6198 synthesized by Roche group [19], which has 

indeed become a valuable pharmacological tool in determining the potential of the NOP receptor as a 

therapeutic target. Based on this triazaspirodecanone, a series of spiropiperidines were further 

synthesized by optimization of a high-throughput screening lead containing the triazaspirodecanone 

(comprising the A and B moieties of the proposed pharmacophore) and a substituted 2-tetralinyl 

moiety as the lipophilic C moiety directly linked to the basic piperidine nitrogen [20]. Intracerebral 

infusions of NOP or systemic injections of the NOP receptor agonist, Ro64-6198, were found to affect 

neuroendocrine function, feeding, locomotion, learning and memory, anxiety, stress response and 
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sexual behavior [21–28]. Due to the therapeutical potential of spiropiperidines, a series of  

N-substituted analogs based on the spiropiperidine analogues were synthesized by Caldwell JP, which 

exhibited high binding affinity to the NOP receptor [29,30]. 

The comparative molecular field analysis (CoMFA) method proposed in 1988 by Crammer et al. 

and the subsequently developed comparative molecular similarity indices analysis (CoMSIA) method 

have been extensively used in many present practices of drug discovery and development as  

three-dimensional quantitative structure-activity relationship (3D-QSAR) approaches [31–37], due to 

their outstanding advantages of time-saving, cost-reducing as well as the highly efficient in silico 

screening and prediction of candidate drugs. Until now, in silico studies on spiropiperidine analogues 

as agonists of NOP receptors are still very limited, especially 3D-QSAR studies. Therefore, a  

3D-QSAR analysis on this kind of NOP ligands should be of great significance. 

In the present work, a total of 103 N-substituted spiropiperidine analogues were computationally 

studied to build 3D-QSAR models using CoMFA and CoMSIA methodologies [38]. The predictive 

abilities of the obtained models were validated statistically by an independent test set of compounds. 

Furthermore, a combined in silico approach including docking analysis, and molecular dynamics (MD) 

simulation was also employed to elucidate the probable binding modes of these agonists at the active 

site of the NOP receptor. We hope this study will support the use of spiropiperidine analogues as a 

potential therapeutic agent by targeting NOP and be helpful in designing novel and more effective 

NOP agonists as desired. 

2. Results and Discussion 

2.1. CoMFA and CoMSIA Statistical Results 

Since the alignment of compound structures plays an important role in developing successful  

3D-QSAR models [39], two rules (both ligand-based and docking-based) were adopted to align the 

dataset to derive reliable models. The results obtained from both models using the same training  

set of 81 compounds are summarized in Table 1. A number of statistical parameters, i.e., the Q2,  

non-cross-validated correlation coefficient (R2
ncv), SEE, and F-statistic values, are analyzed to evaluate 

the quality of the models. 

In both CoMFA and CoMSIA analyses, ligand-based alignment modeling leads to models with 

larger R2
cv, R

2
ncv, R

2
pred values than the corresponding models obtained by the receptor-based alignment 

modeling. Therefore, we mainly focussed on the ligand-based 3D-QSAR models for further analysis. 

In addition, since the five (steric, electrostatic, hydrophobic, and H-bond donor and acceptor) field 

descriptors may not be completely independent of each other and such dependency among individual 

fields may reduce the model significance and generalization [40,41], all possible combinations of the 

descriptors were used to derive models for avoiding the risk of omitting possible optimal model and to 

explore the best combination use of the descriptors for model generation. Finally, a CoMSIA model 

established by using the steric, electrostatic, hydrophobic and hydrogen bond donor field descriptors 

appears to be superior to all other models derived, whose statistical results are listed in Table 1. Using 

seven PLS components, this model yields statistical results of Q2 = 0.501, R2
ncv = 0.912, SEE = 0.250 

and F = 108.309 with steric (12.4%), electrostatic (38.7%), hydrophobic (24.4%) and H-bond donor 

(24.5%) field contributions, proving its correct internal predictive capability. 
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Table 1. Summary of CoMFA and CoMSIA results. 

PLS Statistics 
Ligand-Based Model Receptor-Based Model 

CoMFA CoMSIA CoMFA CoMSIA 

Q2 0.229 0.503 0.047 0.111 

R2
ncv 0.621 0.921 0.196 0.527 

SEE 0.507 0.237 0.728 0.559 

F 41.472 120.623 19.064 86.880 

R2
pred 0.712 0.788 0.227 0.385 

SEP 0.723 0.596 0.793 0.766 

PLS components 3 7 1 1 

Contribution  

Steric 0.528 0.122 0.435 0.172 

Electrostatic 0.472 0.355 0.565 0.242 

Hydrophobic  0.258  0.249 

H-bond donor  0.266  0.337 

Q2: Leave-one-out cross-validated correlation coefficient; R2
ncv: non-cross-validated correlation coefficient; 

SEE: standard error of estimate; F: ratio of R2
ncv explained to unexplained R2

ncv/(1 − R2
ncv); R

2
pred: predicted 

correlation coefficient for the test set of compounds; SEP: standard error of prediction; PLS components: the 

optimal number of principal components. 

Generally speaking, a Q2 > 0.5 is considered proof of acceptable internal predictive ability [42]. 

What’s more, the high R2
ncv and F values along with the low SEE values should also be considered as 

the foundation of a reliable QSAR model [43]. However, due to chance correlation or structural 

redundancy, sometimes it is found that some models derived from the training set molecules with 

randomized activity possess high Q2 values, but show unfavorable predictivity for prediction of 

unknown molecules [33,44]. Hence, the extensively accepted leave-one-out (LOO) cross-validated Q2 

is insufficient to assess the predictive power of the QSAR models [45]. In light of such risks, we 

validated the models by predicting the activity of an external test set composed of 22 NOP agonists. As 

a result, a predictive coefficient R2
pred of 0.818 was achieved verifying the good external predictive 

efficacy of the model (Table 1). Figure 1 illustrates the correlation plot of experimental versus 

predicted pKi values of the training (filled red square) and test (filled green triangle) sets based on the 

optimal CoMSIA model. Clearly, a good correlationship is observed from this figure since the 

predicted values are almost as accurate as the experimental activities for the whole dataset, and all 

points are rather uniformly distributed around the regression line, indicating no existence of systematic 

errors in the method. This good agreement between the predicted and experimental activity data proves 

the satisfactory predictive ability of the CoMSIA model. 
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Figure 1. The correlation plots of predicted versus actual pKi values using the training 

(filled red squares) and test (filled green triangles) sets based on the optimal CoMSIA 

model. The solid lines are the regression lines for the fitted and predicted bioactivities of 

training and test compounds, respectively. 

 

2.2. 3D-QSAR Contour Maps 

The 3D-coefficient contour plots are beneficial to identify important regions where some changes in 

the interaction fields can affect the biological activity, and may also be of help to identify the possible 

interaction sites of the biochemical system. Thus presently, the optimal ligand-based CoMSIA model 

is selected for each conformation to construct the stdev*coeff contour maps to view the field effects on 

the target features due to its good internal and external predictive powers. The maps generated depict 

regions having scaled coefficients greater than 80% (favored) or less than 20% (disfavored). To aid in 

visualization, the most active compound 32 is shown as template molecule with the contour maps (Figure 2). 

The CoMSIA steric contour plot for the most active compound 32 is displayed in Figure 2A, where 

the sterically favored regions are shown in green and disfavored regions in yellow, respectively. As 

seen from this picture, some green contours are mapped near position-1 of ring A, positions-11 and -12 

of ring D and positions-19 and -20 of ring E, suggesting that bulkier groups are favored at these 

positions. The green contour around position-1 is well consistent with the higher potency of compound 53 

with a bulkier substituent (CH3OC(O)CH2-) (pKi = 7.71) than compound 15 without substituent  

(pKi = 7.63) at position-1 of ring A. The higher potency of compound 38 (pKi = 8.85, with a CH3 group) 

than 36 (pKi = 7.96, without substituent) is also such a case. A few residues located around positions-11, 

-12, -19 and -20 lead to a large empty space at these positions (as shown in Section 2.3), which can 

interpret the presence of green contours at these positions. Two yellow contour maps appeared above 

ring C and between ring C and ring D, respectively, implying that bulkier substituents at these 



Int. J. Mol. Sci. 2011, 12 
 

8966

positions may decrease the activity; the reason may be that there is no such bulky substituent at these 

positions of both rings C and D in all molecules of the dataset. 

Figure 2. CoMSIA stdev*coeff contour plots for NOP in combination with compound 32. 

(A) Steric (green/yellow) contour map. Green contours indicate regions where bulky 

groups increase activity; yellow contours indicate regions where bulky groups decrease 

activity; (B) Electrostatic contour map (blue/red). Blue contours indicate regions where 

positive charges increase activity; red contours indicate regions where negative charges 

increase activity; (C) Hydrophobic contour map (yellow/white). Yellow contours indicate 

regions where hydrophobic substituents enhance activity; white contours indicate regions 

where hydrophobic substituents decrease activity; (D) CoMSIA contour maps illustrating 

hydrogen-bond donor features. The cyan contour represents the H-bond donor favored 

region, purple indicates the disfavored region. 

 

Figure 2B depicts the electrostatic contour maps obtained from the CoMSIA model, where blue 

contours represent the favorable electropositive regions and red contours account for the favorable 

electronegative regions, respectively. A large blue contour extending from position-1 to position-4 

indicates that electropositive groups are preferred here. Compound 62 with substituent of 

(CH3)2N(CH2)2- at position-1 shows higher activity than compound 56 with substituent of NH2(CH2)2- 

due to the stronger electronegativity of the former substituent. Besides the large blue contour, a red 

contour can be seen near position-1 of ring A indicating that this position is sensitive to electrostatic 

substituents. This phenomenon may have something to do with the atom N (electronegative atom) of 

ligand 32 at position-1. In addition, the atom O (electronegative atom) of ligand 32 at position-5, may 

be the reason for the small red contour showing around here. The function and location (next to 
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position-1) of atom O at position-5 may lead to the red contour appearing around position-1. Also a 

blue contour located at positions-11 of ring D, suggests the possible help of electropositive substituents, 

improving the binding affinity. Actually, this may be due to the existence of the electro-negative 

amino acids Asp130 and Asp209 in the binding pocket, as discussed later in Section 2.3, because of 

the lack of any substituents in these areas. In addition, a large red contour map is seen around position-8, 

which is caused by the electronegative atom N and an electro-positive amino acid Arg302  

(as discussed later in Section 2.3). 

Figure 2C shows the CoMSIA hydrophobic contour map, where the yellow (hydrophobic favorable) 

and white (hydrophobic unfavorable) contours represent 80% and 20% contributions respectively. 

Substitutions by hydrophobic groups like -Cl and -F at positions-18 and -19 are extended to the yellow 

contours resulting in a higher NOP activity, which can be illustrated by the example that compound 33 

with -F at position-18, and compound 32 with -F at position-19 all exhibit higher activities than 

compound 29 without any substituent at either positions-18 or -19, respectively. The existence of atom F at 

position-19 may be the reason for the yellow contour extending. Furthermore, two large yellow regions 

are observed above positions-6 and -7 and around position-9 of ring C, respectively. Also some white 

regions are observed close to position-1 of ring A, ring B, positions-11 and -12 of ring C and position-17 of 

ring E indicating that hydrophilic groups here are helpful for the activity. The fact that compound 83 

with hydrophilic group -(CH2)2OH has higher potency than compound 103 with hydrophobic group  

-NHBu at position-1 verifies this conclusion. What’s more, compound 54 with hydrophilic  

substituent-(CH2)2OH at position-1 shows higher binding affinity than both compounds 51 (with 

hydrophobic group -Bu) and 52 (with hydrophobic group i-Amyl-). The white contour around 

positions-11 and -12 of ring C and position-17 of ring E may be attributed to the existence of the 

hydrophilic residues (Asp110, Asp209, Asp130, Thr103, Thr305, Tyr309, Gln107 and Arg302) in 

binding pocket, as discussed later in Section 2.3 and shown in Figure 3B. 

In Figure 2D, the CoMSIA hydrogen-bond donor plot, the cyan contours indicate regions where 

hydrogen bond donor substituents on the ligands are favored and the purple contours represent areas 

where hydrogen bond donor substituents on agonists are disfavored. As seen from the picture, a large 

cyan contour appears around position-1. Its appearance was due to the atom N at position-1 acting as 

an H-bond donor and interacts with the key amino residues around the position (as discussed later in 

Section 2.3). The only structural difference of compounds 72~79, lies in the substituent at position-1 

(such as the EtNHCH2CH2- and BuNHCH2CH2- groups) which can serve as the H-bond donor for 

interaction with the surrounding environment. Thus, they all exhibit higher pKi values than compound 80 

with H-bond accepter substituent (
Cl

) at position-1, providing powerful proof for the 

conclusion. The atom N and atom O located at position-1 and position-5 respectively, both of which 

can act as H-bond donors, may be the reason for the large purple area around these positions. 

2.3. Docking Studies 

Due to the important role in the rational design of a drug, docking is often used to find the optimal 

orientation of a ligand in the binding to its pharmaceutical target [46]. In our work, the whole dataset 

of 103 compounds were docked into the possible active site of NOP receptor crystal structures, and the 

optimal conformations of these compounds were determined. The results show that all molecules in 
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the series were well placed in the active site demonstrating the rationality and reliability of the docking 

model. The binding mode of the highly potent compound 32 docked into the receptors is taken as an 

example and shown in Figure 3. As observed from this figure, the ligand core is anchored in the 

binding site via hydrophobic interactions and two H-bonds are identified as potential factors 

influencing the high binding affinity of compound 32. The specific binding interactions are analyzed in 

detail as follows. 

Figure 3. The binding site formed around compound 32. (A) Interactions with the key 

amino acids in the binding pocket. The dashed lines show the formation and distance (in Å) 

of the hydrogen bonds. Active site amino acid residues are represented as lines, the agonist 

is shown as stick model, respectively; (B) The pink cylinders represent the polar residues, 

where, especially the ones with red circles, represent the acid residues and the one with a 

blue circle represents basic residue. The green cylinders represent non-polar residues. Dash 

lines represent the H-bond interactions. 
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As seen from the picture, compound 32 is actually docked into a basically hydrophobic pocket 

which is formed by Trp116, Trp211, Trp276, Val126, Pro207, Phe106, Phe220, Ile127, and Phe106. 

This finding reaches good agreement with the previous CoMSIA hydrophobic contour maps analysis 

in Figure 2C, that most hydrophobic residues around the binding ligand are consistent with those 

yellow contours appearing around position-9 of ring C and positions-18 and -19 of ring E. In addition, 

the presence of several hydrophilic residues (Asp209, Asp130, Thr103, Thr305, Tyr309 and Arg302) at 

positions-1, -11, -12 and -17 also conforms well with the white contours in Figure 2C. 

In addition, altogether two H-bonds are observed in Figure 3 playing crucial roles in anchoring the 

ligand in the binding site. The -NH- of ring A as the hydrogen bond donor forms an H-bond with 

Thr103 with a distance of 2.28 Å. This observation correlates well with the cyan contour located 

around position-1 (representing the H-bond favored region) in previous CoMSIA hydrogen bond 

donor contour maps (Figure 2D). Besides this, another H-bond is also observed in the docking pocket,  

the one between the F atom at position-19 and Tyr309 (3.37 Å), which acts as a supplement for the 

contour map. 

Our docked model also shows a comparatively large empty space around positions-11 and -12 of 

ring D and positions-19 and -20 of ring E, indicating that in these regions the steric interaction may be 

favorable. The conclusions are similar to the previous CoMSIA contour maps in Figure 2A that large 

blue contours show around positions-11 and -12 of ring D and positions-19 and -20 of ring E, 

respectively. From Figure 3A, we can see many key amino acid residues around rings C and D, which 

correlates well with the two yellow contours as shown in Figure 2A. Quite a lot of residues appear 

around position-1 creating no empty space, in contrast to the result obtained from the analysis of 

CoMSIA steric contour maps. The fact that position-1 plays a key role in CoMSIA field analysis 

(discussed in Section 2.2) may account for the difference, which in turn leads to its interaction with 

many residues (Trp116, Thr103, Val126 and Phe106). Several residues are also observed around rings 

B and C, giving supplement for the steric interactions around them, which indicates that bulky 

substituents around rings B and C should be harmful to the increase of binding affinity. 

All in all, the docking results and the 3D contour maps complement and validate each other, 

indicating that the QSAR models generated in the present study are reasonable and could be used to 

derive useful information in the future rational design of NOP agonists. 

2.4. Molecular Dynamics Simulations 

Since our molecular docking process does not take the protein flexibility into consideration, 

presently 5 ns molecular dynamics simulations of NOP receptor with ligand 32 were carried out on the 

basis of the docked complex structure for the purpose of “drawing” a dynamic picture of the 

conformational changes in the NOP receptor binding site. 

The RMSDs (root-mean-square deviation) of the trajectory in regard to the initial structure ranging 

from 2.5 to 4.5 Å are presented in Figure 4A. As a result, after 2500 ps the RMSD of the complex 

attains about 4.0 Å and almost remains this value for the whole process. This clearly indicates 20 

metastable conformations after 2500 ps of simulation for the docked complex structure. Figure 4B 

depicts a superposition of the average structure for the last 1 ns and the docked structure. The right 

hand side picture of Figure 4B is an enlarged view of the superposition of an average structure for the 

last 1 ns, and the docked structure of ligand 32, where the cyan stick represents the initial structure of 



Int. J. Mol. Sci. 2011, 12 
 

8970

the docked complex and the green stick represents the MD-simulated structure, respectively. Ligand 32 

is shown in blue for the initial complex and, separately, in green for the final average complex. 

Obviously, there are no significant changes in both the protein and ligand 32 superpositions between 

the docked structure and the average structure obtained from MD simulations, which verifies the 

reasonability of the docking model. 

Figure 4. MD simulation results: (A) Plot of the root-mean-square deviation RMSD of 

docked complex versus the MD simulation time in the MD-simulated structures; (B) 

Structural superposition of the MD simulation and the initial structure for NOP receptor. 

The projection highlights the superimposed backbone atoms of the average structure of the 

last 1 ns of the MD simulation (green) and the initial structure (cyan) for compound 32 

with NOP complex. 

 

3. Discussion 

The development of nociceptin/orphain FQ receptor agonists has been a hot topic in research fields 

for a long time. However, until now the in silico study on N-substituted spiropiperidine-based NOP 

agonists is seldomly reported except for the work of Luo HB et al. in 2010, where a dataset composed 

of 67 spiropiperidine analogues was investigated using the CoMFA approach [47]. By comparing the 

results of their work with ours, both similarities and differences exist, including the quantitative 

change of the number of molecules used in the dataset (67 in theirs, which is actually a subset of our 

dataset composed of 103 NOP agonists). 

In detail, both theirs and our skeletons of the molecules consist of heterocyclic ring A with 

variations of substituents at position-1, benzene ring B and heterocyclic ring C with variations of 

substituents at position-3. In activity (pKi), their activity ranges from 0.4 to 234 nM while ours varies 

from 0.3 to 824 nM, respectively. Although both theirs and our work adopts the molecular docking 
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method, they only docked their highly potent molecular P67 while we docked the whole dataset of 103 

compounds into the binding pocket of the target. Furthermore, based on the molecular dynamics 

analysis we carried out, the interaction features of these spiropiperidine analogues with the NOP 

receptor were further investigated and validated. Figure 5 summarizes the binding modes of each work, 

where the similarities and differences of the two papers are easily observed. 

Figure 5. Comparison of the interaction features of (A) ligand 32 and (B) compound P67 [47] 

with NOP receptor. 

 

Figure 5A displays the key structural features impacting the activity obtained from our present work 

and Figure 5B displays the features obtained by Luo et al., respectively. The most active NOP agonist 

in each respective dataset, i.e., ligand 32 in ours and compound P67 in Luo’s dataset is shown as  

a template in Figure 5A and B respectively. In Figure 5, green dash lines represent H-bond interaction 

regions and other curved lines represent the specific interaction regions. 
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As seen from the figure, the two works draw two similar conclusions that: (i) areas around position-1 of 

ring A are electrostatic-sensitive, which have both electropositive and electronegative favored regions; 

(ii) Area around ring D is the bulky electropositive favored region. 

Despite the above similarity, the difference in structural features of the two works is also distinct:  

(i) the interactions and main amino acid residues around the atom N of ring A are different. The reason 

might be that compound P67 (in Figure 5B) has a substituent of an electropositive group  

(i-AmylNH(CH2)2-) at the position, which affects the interactions between compound P67 and relevant 

residues greatly; (ii) A minor electronegative hydrophobic favored region is observed around ring C 

for compound 32 while it does not exist for compound P67. The reason is that our results are based on 

the optimal CoMSIA model derived by using of steric, electrostatic, hydrophobic and hydrogen-bond 

donor field descriptors while Luo’s results were obtained from a CoMFA model with only the steric 

and electrostatic field descriptors employed; (iii) The size of the binding spaces for the two datasets are 

different, due to the fact that compound 32 is surrounded by more amino residues (Asp130, Thr305, 

Ile127 and Pro207) than compound P67 [48,49]; (iv) The interactions around ring E are different for 

the two compounds. Compound P67 has a minor electronegative favored region around ring E while 

compound 32 has a bulky hydrophobic favored region around ring E, which may be due to the fact that 

compound P67 has two polar residues Asp290 and Tyr 210 surrounding this region in the pocket, while 

compound 32 is surrounded by some non-polar residues such as Phe220, Trp211 and Trp276; (v) As 

for the H-bonds, ligand 32 forms two H-bonds, while compound P67 produces three. The two H-bonds 

of ligand 32 are explained in Section 2.3. The three H-bonds of compound P67 are formed by atom N 

at the substituent of ring A with related key amino residues, one is formed with Asp110 and the other 

two are formed with Arg302. The difference in both the molecular structure and the surrounding amino 

residues of ligands 32 and P67 leads to the different H-bond interactions. All in all, these conclusions 

would help guide the further development of N-substituted spiropiperidine-based NOP agonists with 

improved potency. 

4. Materials and Methods 

4.1. Database and Biological Activity 

Discarding those compounds with unspecified agonistic activity and/or with undefined 

stereochemistry, a total of 103 spiropiperidines analogues with a wide spectrum of activities against 

the nociceptin/orphanin FQ receptor synthesized by Caldwell JP et al. were used as the dataset for 

molecular modeling in this study [29,30]. In vitro biological activities were converted into 

corresponding pKi (-lgKi) values and used as dependent variables in the QSAR analysis.  

In approximately a ratio of 4:1, all molecules was divided into training (81 compounds) and test (22) 

sets. The selection of the test set chemicals obeys the rule that their pKi values are randomly but 

uniformly distributed in the range of the values for the whole set so that the model’s predictive power 

could be effectively evaluated. Table 2 shows the representative skeletons and activities of the 

molecules, with all structures and binding affinity values of the dataset listed in supporting  

information Tables S1–S3. 

During the modeling process, the 3D structures of all compounds were subjected to full geometry 

optimization using the sketch molecule module of Sybyl 6.9 package [50]. Partial atomic charges were 
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calculated by the Gasteiger-Huckel method [51], and energy minimizations were performed by using 

the Tripos force field [52] and the Powell conjugate gradient algorithm with a convergence criterion of 

0.05 kcal/mol. 

Table 2. Representative skeleton, molecular structure and binding affinity (Ki, nM) of 

spiropiperidine analogues. 

N

N

N

R

O

R1  

No. R R1
 Ki No. R R1

 Ki 

5 H 824.0 44 # Bu 
 

57 

6 H H

S  
14.0 47 c-BuCH2- 

 
53 

11 H 
 

2.4 54 # HO(CH2)2- 
Cl Cl

 
18.5

16 H 

 

225.0 69 N ( CH2 )3一

 

Cl Cl

 
3.2

19 H 
Cl

 
9.0 75 c-BuNH(CH2)2- 

Cl

Cl  
0.5

26 # H 
F F

 
250.0 79 Et2N(CH2)2- 

Cl

Cl  
1.0

30 H 14.5 87 c-Pentyl NH(CH2)2- 
 

0.9

32 H 
F

0.3 90 # CH2=CHCH2NH(CH2)2- 
 

0.9

36 # H 
Cl

 
10.8 97 i-AmylNH(CH2)2- 

 
0.4

39 # H 
F

8.4 103 BuNH(CH2)2- 
Cl

Cl

 
12.2

# Molecules belonging to the test set. 

4.2. Conformational Sampling and Alignment 

Molecular alignment of compounds is a crucial step in the development of 3D-QSAR models [44]. 

In order to obtain the best possible 3D-QSAR statistical model, two different alignment rules were 

adopted. The first rule is the ligand-based alignment. During the process, the most potent molecule 

(compound 32) was chosen as a template to fit the remaining training and test sets of compounds by 

using substructure-alignment function available in Sybyl. The common substructure for the alignment 

is described in Figure 6A, and the resulting ligand-based alignment model is shown in Figure 6B. The 

alignment result based on another rule, the receptor-based one, is shown in Figure 6C. 

H

N
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Figure 6. Molecular alignment of compounds in the dataset. (A) Common substructure of 

the molecules is shown in bold based on template compound 32; (B) Ligand-based 

alignment of all the compounds; (C) Receptor-based alignment of all the compounds. 

 

4.3. CoMFA and CoMSIA Field Calculation 

The CoMFA and CoMSIA models were generated by using Sybyl 6.9 with the default parameters. 

Detailed algorithms of CoMFA and CoMSIA can be easily referred to many literatures, thus we only 

introduce the modeling parameters in this work. 

To derive the CoMFA and CoMSIA descriptor fields, a 3D cubic lattice with grid spacing of 2 Ǻ in 

x, y, and z directions, was generated automatically to encompass the aligned molecules. In CoMFA, the 

steric and electrostatic fields were calculated separately for each molecule using sp3 carbon atom probe 

with a charge of +1.00 and energy cut-off values of 30 kcal/mol for both the steric and electrostatic 

fields. The probe atom was placed at each lattice point, and its steric and electrostatic interactions with 

each atom in the molecule were computed using the CoMFA standard scaling. 

CoMSIA similarity index descriptors were derived using the same lattice boxes as those used in 

CoMFA calculations. In CoMSIA, the steric, electrostatic, hydrophobic, and hydrogen-bond (H-bond) 

donor and acceptor descriptors were calculated using a probe atom of radius 1.0 Ǻ, charge +1.0, and 

hydrophobicity +1.0. A Gaussian function is used to evaluate the mutual distance between the probe 

atom and each molecule atom. Because of the different shape of the Gaussian function, CoMSIA 

similarity indices (AF) for molecule j with atom i at grid point q are calculated by equation: 

  2

,k,
iqejA ikkprobe

q
F

   (1)

where k represents the steric, electrostatic, hydrophobic, or hydrogen-bond donor or acceptor descriptor. 

ωprobe,k is the probe atom with radius 1.0 Ǻ, charge +1, hydrophobicity +1, H-bond donating +1,  
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H-bond accepting +1; ωik is the actual value of the physicochemical property k of atom i; γiq is the 

mutual distance between the probe atom at grid point q and atom i of the test molecule. The 

attenuation factor was set to 0.3. 

4.4. 3D-QSAR Model Generation 

In order to generate statistically significant 3D-QSAR models, partial least squares (PLS) 

regression was adopted to analyze the training set by correlating the variation in their pKi values  

(the dependent variable) with variations in their CoMFA/CoMSIA interaction fields (the independent 

variables). PLS is a statistical approach that generalizes and combines features from principal 

component analysis and multiple regressions. When the matrix of predictors has more variables than 

observations (multicollinearity), PLS is particularly a useful way to predict a set of dependent variables 

from a large set of independent variables. 

Leave-one-out (LOO) cross-validation analysis that one compound was moved away from the 

dataset and its activity was predicted by the model derived from the rest of the dataset, was performed 

to evaluate the reliability of the models generated from the PLS analysis. A cross-validated correlation 

coefficient, Q2, was subsequently obtained and provided as a statistical index of the predictive power. 

Then, a non-cross-validation analysis was carried out with the Pearson coefficient (R2
ncv) and standard 

error of estimate (SEE) calculated. Finally, the CoMFA/CoMSIA results were graphically represented 

by field contour maps, where the coefficients were generated using the field type “Stdev*Coeff”. 

In order to evaluate the real predictive ability of the best models generated by the CoMFA/CoMSIA 

analyses using the training set, the 26 compounds not used in the model generation are used as the 

external validation set. A predictive R value was then obtained with the following formula: 

-
pred

SD PRESS

SDR 
 

(2)

where SD denotes the sum of squared deviation between the biological activities of the test set 

molecule and the mean activity of the training set molecules; PRESS represents the sum of squared 

deviations between the experimental and predicted activities of the test molecules, respectively. 

4.5. Molecular Docking 

Molecular docking was carried out by the Surflex-dock module (V 2.51) [53] of an advanced 

version of Sybyl-X 1.1 [54] to understand the detailed binding model for the active site of NOP 

receptor with its ligands. In Surflex-docking, protomol was a computational representation of the 

intended binding site to which putative ligands were aligned and its construction was based on the 

protein residues proximal to the native ligand and on parameter settings to produce a small and buried 

docking target. Up to now, the protein structure has not been resoluted and the identities of our 

homology modeling models are below 30%. However, Luo HB from School of Pharmaceutical 

Sciences, Sun Yat-Sen University, who has done the similar studies on NOP receptor and used 

homology modeling to make a protein, is very kind to provide us his protein structure for our study. 

The molecular docking process is summarized as the following steps: First, the template protein 

structure was imported into Surflex. Then the protomol was generated using a ligand approach. Two 
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parameters, protomol_bloat and protomol_threshold, which respectively determine how far from a 

potential ligand the site should extend and how deep into the protein the atomic probes used to define 

the protomol can penetrate, are set at 0 and 0.60 respectively. Finally, each conformer of all 103 

agonists was docked into the binding site 20 times. The Hammerhead scoring function [55] is used to 

score the molecules in the putative poses. During the present molecular docking process, the protein 

was considered to be rigid, and the ligand molecules were flexible. All other parameters were setting at 

default values. 

4.6. Molecular Dynamics Simulations 

After docking analysis, the docked structure of compound 32 was applied in the MD simulations 

using the Amber 10 [56]. The general atom force field (GAFF) [57] and the standard AMBER force 

field for bioorganic systems (ff03) [58] were used to model the ligand and protein respectively.  

The docked structure was neutralized with 9 counter chloridion ions and solvated in a rectangular box 

of TIP3P [59] water, which kept a minimum distance of 12 Å between the solute and each face of the 

box (74.984 × 97.951 × 67.771 Å3). The total number of the atoms of the simulation system was  

40091 including the complex and waters. The cutoff distance was kept to 10 Å to compute the  

non-bonded interactions. All simulations were performed under periodic boundary conditions. To 

remove possible bad contacts, the complex was energy minimized by a multistep procedure including 

9500 conjugate-gradient steps followed by 500 steepest-descent steps. Constant volume dynamics with 

a cutoff of 10 Å was chosen. SHAKE [60] was turned on for bonds involving H-atoms. 

In the simulation process, first, the minimized system was heat up to 300 K at a constant rate of  

6 K/ps while the protein atoms were constrained. The second step depended on a 50 ps  

pressure-constant period to raise the density and keep the complex atoms constrained. The third step 

was a 500 ps Langevin dynamics calculation with a collision frequency of 1 ps−1, which was performed 

with a 2 fs time step at a constant temperature of 300 K. Finally, the production phase was run for 5 ns 

with a 2 fs time step. The long-range electrostatics was treated by using the particle-mesh-Ewald (PME) 

method [61] with default values. 

5. Conclusion 

In this paper, the ligand- and receptor-based 3D-QSAR studies of 107 spiropiperidines analogues as 

agonists of nociceptin/orphanin FQ receptor have been performed using CoMFA and CoMSIA tools. 

From the resultant model, the high Q2, R2
ncv, and R2

pred values prove that the 3D-QSAR models 

developed in this work are statistically reliable and predictable. The resulting contour maps produced 

by the best CoMSIA model provide useful information about the intermolecular interactions of 

agonists with the surrounding environment. The good consistency between the 3D-QSAR, the docking 

and MD modeling results, once again, demonstrates the reliability of the model. The newly obtained 

3D model of NOP may serve as a basis for development of novel agonists with enhanced affinity. 

Overall, the conclusions are summarized as follows (with compound 32 as a reference): 

(1) Substituents with bulky, electro-sensitive, hydrophilic, H-bond donor at position-1, bulky 

hydrophilic substituents at positions-11 and -12 and minor hydrophobic substituents at 

positions-6, -7 and -9 of ring C may be helpful to enhance potency. Electronegative  
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H-bond acceptor at position-5, bulky hydrophobic substituents at position-19, bulky 

substituents at position-20, electropositive substituents at positions-4 and -11, electronegative 

substituents at position-8 and hydrophilic substituents at position-17 and ring B can all enhance 

the activity. 

(2) The binding site of N-substituted spiropiperidine-based NOP agonists is mostly a large 

hydrophobic pocket formed by Trp116, Trp211, Trp276, Val126, Phe220, Phe106, Ile127 and 

Pro207 residues. The H-bonds formed by polar residues Thr103 and Tyr309 can be identified 

as potential factors greatly impacting the binding affinity of compound 32. 
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