
Int. J. Mol. Sci. 2010, 11, 2856-2863; doi:10.3390/ijms11082856 

 
International Journal of 

Molecular Sciences 
ISSN 1422-0067 

www.mdpi.com/journal/ijms 

Article 

Reactivation of Human Acetylcholinesterase and 
Butyrylcholinesterase Inhibited by Leptophos-Oxon with 
Different Oxime Reactivators in Vitro 

Daniel Jun 1,2,*, Lucie Musilova 3, Miroslav Pohanka 1, Young-Sik Jung 4, Pavel Bostik 1  

and Kamil Kuca 1,* 

1 Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic 
2 Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Praha,  

Czech Republic 
3 Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove,  

Czech Republic 
4 Medicinal Science Division, Korea Research Institute of Chemical Technology, Yuseong,  

Taejon, Korea 

* Authors to whom correspondence should be addressed; E-Mails: jun@pmfhk.cz (D.J.); 

kucakam@pmfhk.cz (K.K.); Tel.: +420-973-251-523; Fax: +420-495-518-094. 

Received: 29 June 2010; in revised form: 25 July 2010 / Accepted: 29 July 2010 /  

Published: 3 August 2010 

 

Abstract: We have evaluated in vitro the potency of 23 oximes to reactivate human 

erythrocyte acetylcholinesterase (AChE) and plasma butyrylcholinesterase (BChE) 

inhibited by racemic leptophos-oxon (O-[4-bromo-2,5-dichlorophenyl]-O-methyl phenyl-

phosphonate), a toxic metabolite of the pesticide leptophos. Compounds were assayed in 

concentrations of 10 and 100 µM. In case of leptophos-oxon inhibited AChE, the best 

reactivation potency was achieved with methoxime, trimedoxime, obidoxime and oxime 

K027. The most potent reactivators of inhibited BChE were K033, obidoxime, K117,  

bis-3-PA, K075, K074 and K127. The reactivation efficacy of tested oximes was lower in 

case of leptophos-oxon inhibited BChE. 
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1. Introduction  

Organophosphorus pesticides (e.g., chlorpyrifos, methamidophos) and nerve agents (e.g., sarin, 

tabun, VX) are highly toxic compounds for living organisms due to their ability to inhibit the enzymes 

acetylcholinesterase (AChE; EC 3.1.1.7) and butyrylcholinesterase (BChE; EC 3.1.1.8). Irreversible 

inhibition of AChE can result in cholinergic crisis and possible death of an intoxicated organism [1]. 

For the recovery of inhibited enzyme activity, oxime reactivators are usually used in combination with 

atropine [2,3]. The efficacy of reactivators is dependent on their chemical structure and also the type of 

inhibitor [4,5].  

A relatively new approach for prophylaxis against such intoxication is the administration of a 

suitable scavenger capable of neutralizing organophosphates rapidly after their penetration into the 

bloodstream of the organism [6]. For these purposes, catalytic (e.g., phosphotriesterase, human 

paraoxonase) and stoichiometric (AChE, BChE) enzyme scavengers are now targets of intensive 

investigation. Furthermore, combinations of BChE with a suitable reactivator could be used as 

pseudocatalytic scavengers of organophoshorus pesticides or nerve agents [7-9]. 

In this study, we have evaluated the in vitro potency of 23 structurally different reactivators to 

reactivate human erythrocyte AChE and plasma BChE inhibited by racemic leptophos-oxon  

(O-[4-bromo-2,5-dichlorophenyl] O-methyl phenylphosphonate). The reactivation of BChE was tested 

in order to recommend suitable reactivators for preparation of pseudocatalytic scavengers. Leptophos-

oxon used in our experiments is a toxic metabolite of the pesticide leptophos, which is a weak AChE 

inhibitor itself. Racemic leptophos was previously employed to control insects in rice paddy fields and 

has been banned since 1978, after it was found to be highly neurotoxic to mammals [10,11]. It has 

been shown that enzyme inhibition potencies are different for the (+)- and (–)-isomers of leptophos. 

Thus, while no significant differences in IC50 for horse serum BChe were found between the  

(–)-leptophos and (±)-leptophos forms, the IC50 of the (+)-leptophos form was four times lower. 

Conversely, when leptophos-inhibited housefly head AChE was utilized, there was no significant 

difference in IC50 between the (+)-leptophos and (±)-leptophos forms, but the IC50 of the (–)-leptophos 

form was approximately two times higher [11]. We selected leptophos-oxon as a model 

organophosphorus inhibitor, as an appropriate representant of the organophosphorous pesticides that 

also belongs to the phosphonate group, which possess structural similarity with nerve agents. 

Oximes were assayed in concentrations of 10 and 100 µM, which are regularly attainable in plasma 

during antidotal treatment of pesticide intoxication [12]. Because this treatment requires administration 

of a fast and effective cholinesterase reactivator, we evaluated the reactivation ability of oximes over a 

10-minute interval, which enabled us to compare this data with our previous results. 

In this study we tested both commercially available AChE reactivators and structurally different 

representatives of oximes (mono- and bis-quaternary with one or two oxime groups) previously 

synthesized in our lab with the aim to examine and elucidate the structure-activity relationships. The 

structures of leptophos-oxon and the tested oximes are shown below in Figure 1. 

 

 



Int. J. Mol. Sci. 2010, 11             

 

 

2858

Figure 1. Structure of leptophos-oxon and tested oxime reactivators. 
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Figure 1. Cont. 

2 Br
N

N

HON=HC

CH=NOH 2 Br

N
N

HON=HC

CONH2

K075 K203 

N N
2 Br

H2NOC CH=NOH

2 Br

N
N

CONH2

HON=HC

K027 K206 

2 Br
N

N

H2NOC

CH=NOH

 

N
N

HON=HC

COOEt

2 Br

K048 K252 

2 Br
N

NHON=HC
CH=NOH

 2 Br

N
N

HON=HC

NH2

NOH

K101 K269 

2 Br
N

CH=NOH

N

CH=NOH

K033 

2. Experimental Section  

Cholinesterase reactivators used in this study were synthesized in our lab or purchased from Leciva 

(Czech Republic), Merck (Germany) and Phoenix Chemicals Ltd. (United Kingdom). Purity of all the 

AChE reactivators utilized was tested using TLC (DC-Alufolien Cellulose F; mobile phase  

n-butanol-acetic acid-water = 5:1:2; detection by Dragendorff reagent) and NMR (Varian Gemini 300, 

Palo Alto, CA, USA). Racemic leptophos-oxon (O-[4-bromo-2,5-dichlorophenyl] O-methyl 

phenylphosphonate) of 95% purity was purchased from Dr. Ehrenstorfer (Augsburg, Germany). All 

other chemicals used in this study were of analytical purity and were purchased from Sigma-Aldrich 

(Czech Republic). The reactivation activity of synthesized reactivators was tested using our in vitro 

reactivation test [7-9]. 

Human erythrocyte hemolyzate was used as a source of AChE and human plasma as a source of 

BChE. Blood samples were collected from healthy volunteers into 3.8% sodium citrate (the ratio of 

blood/citrate was 1:10 w/w), centrifuged for 20 min at 2,856 g and the plasma removed as supernatant 

was stored at -80 °C (source of BChE). Erythrocytes were washed three times with the 0.1 M 
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phosphate buffer (PB; pH 7.4), hemolyzed in the 0.01 M phosphate buffer (pH 7.4) in a ratio 1:10 

(w/w) and frozen at -80 °C (source of AChE). The enzymes were inhibited to 5% of their original 

activity using concentration corresponding to IC95 (4.16 × 10-7 M for AChE and 7.06 × 10-6 M for 

BChE) in order to avoid the excess of leptophos-oxon. The IC95 value was determined in a 

concentration range 10-3–10-9 M using experimental conditions (buffer, time of inhibition, enzyme 

activity) identical to those used for the cholinesterase inhibition (described below). Identical reaction 

conditions were utilized for a determination of half- life (T1/2) of reaction between the enzyme and 

leptophos-oxon. The concentration of an inhibitor was 5 × 10-6 M and the AChE or BChE activities 

were measured in 5 min intervals. The time of enzyme inhibition used in the reactivation test was 

equivalent to 7 × T1/2 (120 min for AChE and 45 min for BChE). The inhibition of cholinesterase was 

started in plastic cuvette by the addition of inhibitor solution in isopropanol to the mixture of the  

0.05 M phosphate buffer (pH 7.4) and hemolyzate (activity before inhibition was set to 10 U/L) or 

plasma (activity was set to 13.3 U/L). The concentration of isopropanol in the sample was 5% and had 

no significant influence on the activity of both cholinesterases. Control samples with an uninhibited 

enzyme were incubated for the appropriate time with isopropanol in final concentration 5%. Then the 

inhibited enzyme was incubated for 10 min with a solution of the reactivator in 0.05 M phosphate 

buffer (pH 7.4) at concentrations of 10 µM and 100 µM. The activity of AChE (BChE) was measured 

spectrophotometrically by the method modified according to Ellman with acetylthiocholine 

(butyrylthiocholine) as a substrate [9,13]. The final concentration of acetylthiocholine or 

butyrylthiocholine in the mixture was 1 mM. All results were corrected for hydrolysis of substrate by 

reactivators (oximolysis). Reactivation potency was calculated from the formula:  

%R = [1 − (a0 − ar)/(a0 − ai)] × 100 

where%R is percent of reactivation, a0 is activity of intact enzyme, ai is activity of inhibited enzyme 

and ar is activity of reactivated enzyme minus oximolysis. 

Each measurement was repeated three times and was conducted at standard laboratory temperature 

(25 °C). All data are expressed as means with corresponding SD. Groups of data were compared using 

the one-way ANOVA test followed by the Tukey test. Calculations were performed using software 

GraphPad Prism version 4.00 for Windows (GraphPad Software, San Diego, CA, USA; 

www.graphpad.com). All experiments were carried out in compliance with the current applicable laws 

of Czech Republic. 

3. Results 

Measured values of reactivation potency of tested compounds are summarized in Table 1. Different 

superscript labels (e.g., a, b, c) of reactivation percentage values in comparisons of series of compounds 

denote that measured potency is significantly lower than value measured for preceding oxime at 

P < 0.001 level. 

The data showed that the reactivation potencies for AChE inhibited by leptophos-oxon at lower 

concentration of oximes (10 µM) decreased as follows: obidoxime (31.4%a), trimedoxime (26.4%b), 

K027 (16.4%c), K075 (14.2%c), K074 (12.6%c) and HI-6 (11.6%c). Other assayed oximes had 

reactivation potency below 10% at this concentration. 
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Table 1. Potency of tested oximes to reactivate leptophos-oxon - inhibited human 

erythrocyte AChE and plasma BChE at concentrations 10 µM and 100 µM. (%, mean 

value of three independent determinations, time of inhibition by leptophos-oxon 120 min; 

time of reactivation by AChE reactivators―10 min; pH 7.4; temperature 25 °C).  
* P < 0.05, ** P < 0.01, *** P < 0.001, ns: not significant - compared with potency at 10 µM 

concentration. 

  
  

Reactivation (%) 
AChE BChE 

Concentration      10 µM      100 µM     10 µM    100 µM 
Reactivator  Mean SD Mean SD Mean S.D. Mean SD 
HI-6  11.6 0.4 32.8** 8.0 0 0 5.6 ns 4.9 
Methoxime 12.0 0.9 52.7*** 0.5 1.9 1.8 6.4** 0.4 
Obidoxime  31.5 0 50.3*** 0.9 6.5 4.2 14.3** 0.6 
Trimedoxime  26.4 2.7 51.3*** 0.5 2.1 0.4 8.6* 2.4 
Pralidoxime  4.1 1.3 13.3ns 0.9 0 0 2.3 ns 1.8 
3-PAM 0 0 0.3** 2.2 0 0 3.2 ns 2.6 
4-PAM 2.8 0.4 0.3* 0.4 0 0 4.7*** 0.8 
bis-2-PA 1.9 0.9 4.7* 1.3 2.3 0.7 5.3* 0.6 
bis-3-PA 0 0 9.1 ns 1.3 2.7 5.1 13.1** 1.5 
K005 2.2 0.4 1.7*** 1.4 0 0 0 ns 0 
K027 16.4 0.9 49.3 ns 0.5 0 0 0 ns 0 
K033 6.3 0.9 4.1*** 1.3 4.2 3.8 14.5* 5.6 
K048 6.6 0.4 26.1*** 0.4 0 0 3.9*** 0.3 
K074 12.6 0.9 28.2*** 0.5 2.1 0.1 11.5*** 1.5 
K075 14.2 0.4 33.8 ns 0 1.8 0 12.4*** 1.9 
K099 2.5 0.9 4.0 ns 0.9 0 0 3.9*** 0.8 
K101 3.1 0.9 4.0 ns 0 0.5 0.4 5.9*** 0 
K117 2.2 0.4 12.0*** 1.8 2.7 0.1 13.9*** 1.5 
K127 0.6 2.7 12.6*** 1.8 1.4 2.8 11.0** 0.8 
K203 8.5 0.4 30.8*** 0.9 0 0 8.4*** 0.1 
K206 7.6 0 20.1** 1.8 0 0 4.2 ns 6.5 
K252 1.6 0.4 15.4*** 2.2 0 0 4.7** 0.6 
K269 6.3 0.9 21.4*** 0 0.5 0.4 10.7*** 0.7 

 

Different values were obtained, however, when a higher concentration of reactivators (100 µM) was 

used. At this concentration the best reactivation potency was achieved for methoxime (52.6%a), 

followed by trimedoxime (51.3%a), obidoxime (50.3%a), K027 (49.3%a), K075 (33.8%b), HI-6 

(32.8%b), K203 (30.8%b), K074 (28.1%b) and K048 (26.1%b). Reactivation efficacy of other 

compounds was below 25%. 

The results indicate that the most active reactivators were symmetrical bisquaternary compounds 

with two aldoxime or one aldoxime and one carbamoyl group at position 4 on each pyridinium ring. 

The optimal number of members in connecting chain was one or three, as the potency of oximes with 

four-member connecting chains was lower. Conversely, the monoquaternary compounds or 

bisquaternary compounds with oxime groups in position 2 on pyridinium rings (regardless of the 
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length of the connecting chain) had relatively low potency. Out of the monoquaternary compounds 

tested, the most efficacious was pralidoxime (13.2% at 100 µM) with an aldoxime group in position 2, 

while other tested oximes were practically inactive (though they had the aldoxime group in position 4). 

From commercially available AChE reactivators, methoxime, trimedoxime, obidoxime and oxime HI-

6 were sufficiently effective. 

Comparison of this data with the data from out previous study focused on the reactivation of  

AChE–inhibited by paraoxon shows, that obidoxime (96.9% of reactivation), trimedoxime (86.0%) [7] 

and compound K027 (86.0%) are the most effective reactivators evaluated in both studies [9]. 

The results obtained with the BChE showed that for this enzyme the best reactivation potency was 

achieved for obidoxime (6.5%a), followed by oximes K033 (4.2%a), bis-3-PA (2.7%a) and K117 

(2.7%a) when lower concentration of the reactivators was used, while the other assayed oximes had 

reactivation potency below 2.5% at this concentration. 

Similarly to the results obtained with AChE, different reactivation potencies were measured when 

higher a concentration of the reactivators was tested. Under these conditions, the reactivation ability of 

tested compounds decreased as follows: K033 (14.5%a), followed by obidoxime (14.3%a), K117 

(13.9%a), bis-3-PA (13.1%a), K075 (12.4%a), K074 (11.5%a), K127 (11.0%a) and K269 (10.7%a). The 

reactivation efficacy of other compounds was below 10%. 

Further analysis of this data together with our previous data on BChE inhibited by paraoxon 

showed that compounds K117 (16.4%), trimedoxime (12.2%), compound K269 (10.6%) and K075 

(10.3%) were the most effective reactivators at the concentration of 100 µM [9]. The results also 

indicate that the most active reactivators of inhibited BChE were symmetrical bisquaternary 

compounds with two aldoxime groups and that the optimal number of members in connecting chain 

was three or four, while the monoquaternary compounds had low reactivation potency. 

The likely reason for the significantly lower BChE reactivation ability at a higher concentration in 

comparison with AChE (P < 0.001) is that BChE lacks the reactivator aromatic binding pocket found 

in AChE, which itself is a part of the AChE peripheral anionic site. This difference finally renders the 

current AChE reactivators, when used with BChE, non-functional [14,15]. Overall reactivation ability 

of tested compounds at lower concentration was comparable for both cholinesterases with no 

significant difference found. 

4. Conclusions  

According to our results, human erythrocyte AChE inhibited by leptophos-oxon possesses very 

good ability for reactivation. Therefore, commercially available reactivators, commonly used in the 

therapy of OP intoxications, could provide sufficient efficacy in the treatment of poisonings. However, 

results obtained with BChE clearly showed, that none of the tested re-activators exhibited sufficient 

reactivation potency needed for the construction of a pseudocatalytic scavenger and therefore new 

compounds for this purpose need to be developed.  
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