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Abstract: Crude extracts of three actinomycetes species belonging to Saccharopolyspora 

(TR 046 and TR 039) and Actinosynnema (TR 024) genera were screened for antibacterial 

activities against a panel of several bacterial strains. The extracts showed antibacterial 

activities against both gram-negative and gram-positive test bacteria with inhibition zones 

ranging from 8 to 28 mm (TR 046); 8 to15 mm (TR 039); and 10 to 13 mm (TR 024). The 

minimum inhibitory concentrations ranged from 0.078 to 10 mg/mL (TR 046);  

5 to >10 mg/mL (TR 039); and 1.25 to 5 mg/mL (TR 024). Time-kill studies revealed that 

crude extract of TR 046 showed strong bactericidal activity against Bacillus pumilus 

(ATCC14884), reducing the bacterial load by 104 cfu/mL and 102 cfu/mL at 4× MIC and 

2× MIC, respectively, after 6 h of exposure. Similarly, against Proteus vulgaris (CSIR 

0030), crude extract of TR 046 achieved a 0.9log10 and 0.13log10 cfu/mL reduction at  

5 mg/mL (4× MIC) and 1.25 mg/mL (2× MIC) after 12 h of exposure. The extract was 
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however weakly bactericidal against two environmental bacterial strains (Klebsiella 

pneumoniae and Staphylococcus epidermidis); and against Pseudomonas aeruginosa 

(ATCC 19582): the extract showed bacteriostatic activities at all concentrations tested. 

These freshwater actinomycetes appear to have immense potential as a source of new 

antibacterial compound(s). 

Key words: actinomycetes; crude extract; antibacterial activity; time-kill 

 

1. Introduction 

Actinomycetes are Gram-positive bacteria, which are noteworthy for their antibiotic production, 

producing more than 70% of all currently known antibiotics [1,2]. The antibiotic substances they 

produce display antibacterial, antifungal, antitumor, antiprotozoic and antiviral properties [3]. These 

natural antibiotics have been shaped by evolution to make them effective in killing microorganisms as 

a competitive tool. Antibiotic production is often associated with sites of high nutrient content as in 

areas rich in decaying organic matter, with antibiotic production evolving in response to selective 

pressures created through increased competition [4], and this has been suggested to be related to 

increased biological activities among actinomycetes associated with detritus in aquatic environments 

as well as with sediments [5].  

Actinomycetes generally have major socioeconomic importance, which include human pathogens 

such as Actinomyces israelii [6,7], non-pathogenic strains which play essential roles as decomposers in 

terrestrial systems, and antibiotic producers like Streptomyces that produce commercially important 

antibiotics [8] and an array of other secondary metabolites. Antibiotics produced by actinomycetes are 

normally composed of heterogeneous and biologically active compounds [9].  

The antibiotic era is threatened by the relentless rise of resistance in Gram-positive bacterial 

infections. Much effort is being directed towards developing new compounds to overcome this 

problem [10]. Although considerable progress is being made within the fields of chemical synthesis 

and engineered biosynthesis of antimicrobial compounds, nature and actinomycetes in particular, still 

remain the richest and the most versatile source of new antibiotics [11] of improved efficacies. In this 

study we investigate antibiotic production by three freshwater actinomycete strains which were 

isolated from the Tyume River in the Eastern Cape Province of South Africa and identified to belong 

to the Saccharopolyspora (TR 046 and TR 034) and Actinosynnema (TR 024) genera [12]. 

Actinosynnema is an aerobic actinomycete that was first isolated from a grass (Carex species) blade in 

Shiga Prefecture, Japan, in September 1976 [13] and is a documented producer of ansamitocins (potent 

anti-tumor antibiotics). The genus Saccharopolyspora was named in 1975 by Lacey and Goodfellow 

[14]. The most extensively studied of this genus is Saccharopolyspora erythraea which is an industrial 

producer of the antibiotic erythromycin.  

In recent years there has been a growing awareness of the potential value of freshwater habitats as a 

source of actinomycetes that produce secondary metabolites of clinical importance [15]. Aquatic 

microbes are particularly attractive because they have not been as extensively exploited as their 

terrestrial counterparts, and because of the high potency required for bioactive compounds to be 
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effective in the aquatic environment, due to the diluting effect of water [16]. A review of literature 

reveals that little is known concerning the actinomycetes exhibiting antimicrobial properties from this 

habitat. The list of novel actinomycetes and products derived from poorly explored areas of the world 

stresses the importance of investigating new habitats [17]. In this paper, we report on the antibiotic 

production potential of three actinomycetes isolated from a freshwater environment in the Eastern 

Cape Province of South Africa as part of our exploration for new antimicrobial agents. 

2. Results and Discussion 

2.1. Results 

When the crude extracts of each of the test actinomycetes were assessed against a total of 32 test 

bacteria (seven Gram-positive and 25 Gram-negative) at a concentration of 10 mg/mL, extract 

obtained from Saccharopolyspora (TR 046) was observed to be active against nine test bacteria with 

zones of inhibition ranging from 8-28 mm (Table 1). Extract obtained from Saccharopolyspora (TR 

039) was active against eight of the test bacteria with zones of inhibition varying from 8-15 mm; while 

extract obtained from Actinosynnema (TR 024) was active against four test bacteria with zones of 

inhibition ranging from 10-13 mm. Extracts from Actinosynnema and Saccharopolyspora (TR 039) 

appeared to be active against only Gram-negative bacteria while extract from Saccharopolyspora (TR 

046) had a broad spectrum antibacterial activity. Proteus vulgaris CSIR 0030 was most susceptible to 

the extract obtained from Saccharopolyspora (TR 046) while the environmental Staphylococcus 

epidermidis was least susceptible. However, with extract from Saccharopolyspora (TR 039), 

Enterobacter cloacae ATCC 13047 was least susceptible, while Proteus vulgaris ATCC 6830 was 

most susceptible. There does not appear to be significant dynamics in the susceptibilities of the 

bacteria for which the extract from Actinosynnema was active. 

It was also observed that the referenced strains Pseudomonas aeruginosa ATCC 7700 and Proteus 

vulgaris CSIR 0030, and environmental strain Klebsiella pneumoniae were reactive to all three 

extracts. Results of the minimum inhibitory concentration (MIC) and minimum bactericidal 

concentration (MBC) of the test actinomycetes antibiotics are shown in Table 2. The MIC of extract 

from Saccharopolyspora (TR 046) ranged from 0.078 mg/mL to 10 mg/mL while its MBC varied 

between 1.25 mg/mL and >10 mg/mL. For the extract from Saccharopolyspora (TR 039), MIC ranged 

between 5 and >10 mg/mL while its MBC was generally >10 mg/mL. The extract from Actinosynnema 

on the other hand had MICs ranging between 1.25 mg/mL and 5 mg/mL and an MBC of >10 mg/mL.  

Time-kill studies revealed that the Saccharopolyspora (TR 046) extract had bacteriostatic effects on 

referenced bacterial strain Pseudomonas aeruginosa (ATCC19582) with no major changes in the 

bacterial load with time (Table 3). The extract was however, strongly bactericidal against another 

referenced bacterial strain (Bacillus pumilus ATCC 14884) at 4× MIC resulting in the killing of 

approximately 104 cfu/mL in 6 to 12 h and 102 cfu/mL at 2× MIC after 6 h of exposure to the extract 

suspension. It was however, weakly bactericidal at normal strength MIC (0.078 mg/mL). The extract 

also showed good bactericidal activity against the referenced strain Proteus vulgaris CSIR 0030 

achieving reductions of 0.9log10 and 0.13log10 cfu/mL at 4× MIC (2.5 mg/mL) and 2× MIC  

(1.25 mg/mL) respectively after 12 h of exposure. The extract showed limited bactericidal activity 

against both Klebsiella pneumoniae (environmental strain) and Staphylococcus epidermidis 
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(environmental strain) at all MIC levels after 6 h of exposure but showed bacteriostatic effects at all 

MIC levels after 12 h of exposure.  

Table 1. Antibacterial activities of crude extracts obtained from Saccharopolyspora  

(TR 046 and TR 039) and Actinosynnema (TR024) isolates. 

Test organism 
Gram 

reaction 

Antibacterial activity  

[mm of inhibition zone diameter] 

A B C 

Enterococcus faecalis ATCC 29212*  + - - - 
Bacillus cereus ATCC 10702* + - - - 
Bacillus pumilus ATCC 14884* + + (27) - - 
Micrococcus kristinae™ + - - - 
Bacillus subtilis™ + - - - 
Micrococcus luteus™ + - - - 
Staphylococcus epidermidis™ + + (8) - - 
Pseudomonas aeruginosa ATCC 7700* - + (17) + (10) + (13) 
Enterobacter cloacae ATCC 13047* - - + (8) - 
Klebsiella pneumoniae ATCC 10031* - - - - 
K. Pneumoniae ATCC 4352* - - - - 
Proteus vulgaris ATCC 6830* - - + (15) + (13)
Proteus vulgaris CSIR 0030* - + (28) + (12) + (12)
Serratia marcescens ATCC 9986* - + (20) + (14) - 
Staphylococcus aureus ATCC 6538* - - - - 
Acinetobacter calcoaceticus* - + (17) - - 
Acinetobacter calcoaceticus anitratus* - - - - 
Klebsiella pneumoniae™ - + (20) + (12) + (10)
Escherichia coli ATCC 8739* - - - - 
Shigella flexineri™ - - - - 
Escherichia coli ATCC 25922* - - - - 
Salmonella sp™ - - + (13) - 
Pseudomonas aeruginosa ATCC 9582* - + (16) - - 
Pseudomonas aeruginosa™ - + (12) - - 
Proteus vulgaris™ - - - - 
Enterobacter faecalis™ - - - - 
Escherichia coli™ - - - - 
Staphylococcus aureus™ - - - - 
Staphylococcus aureus OKOH 1® - - + (13) - 
Staphylococcus aureus OKOH 2a® - - - - 
Staphylococcus aureus OKOH 2b® - - - - 
Staphylococcus aureus OKOH 3® - - - - 

A = extract obtained from TR 046 (concentration 10 mg/mL). 

B = extract obtained from TR 039 (concentration 10 mg/mL). 

C = extract obtained from TR 024 (concentration 10 mg/mL). 

Diameter of zones of inhibition exclude the perimeter of the well;  

(-) denotes no activity; (+) denotes activity; * denotes referenced strains;  

™ denotes environmental strains; ® denotes clinical isolates.  
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Table 2. MIC and MBC results for extracts obtained from Saccharopolyspora (TR 046 and 

TR 039) and Actinosynnema (TR 024). 

Extract Test organism Gram MIC MBC 
TR 046 Staphylococcus epidermidis™ + 0.078 1.25 

Bacillus pumilus ATCC 14884* + 0.078 10 
Acinetobacter calcaoceticus* - 1.25 >10 
Pseudomonas aeruginosa ATCC 7700* - 0.625 5 
Pseudomonas aeruginosa ATCC 19582* - 0.625 2.5 
Proteus vulgaris CSIR 0030* - 0.625 5 
Serratia marcescens ATCC 9986* - 0312 10 
Klebsiella pneumoniae™ - 1.25 5 
Pseudomonas aeruginosa™ - 10 >10 

TR 039 Pseudomonas aeruginosa ATCC 7700* - >10 >10 
Enterobacter cloacae ATCC 13047* - >10 >10 
Proteus vulgaris ATCC 6830* - 10 >10 
Proteus vulgaris CSIR 0030* - 5 >10 
Serratia marscens ATCC 9986* - 5 >10 
Klebsiella pneumoniae™ - >10 >10 
Salmonella spp™ - 5 >10 
Staphylococcus aureus OKOH1®  - 5 >10 

TR 024 Pseudomonas aeruginosa ATCC 7700* - 5 >10 
Proteus vulgaris ATCC 6830* - 5 >10 
Proteus vulgaris CSIR 0030* - 1.25 >10 
Klebsiella pneumoniae™ - 1.25 >10 

 *denotes referenced strain; ™ denotes environmental strain; ® denotes clinical isolate;  

MIC = minimum inhibitory concentration; MBC = minimum bactericidal concentration. 

 

2.2. Discussion 

When the antibacterial activity of the three freshwater actinomycetes extracts was observed against 

a series of bacterial isolates, Gram positive test bacteria showed limited susceptibility to the extracts 

while the Gram negative bacteria were more susceptible. Whilst our findings confirm antibiotic 

production in the Saccharopolyspora and Actinosynnema isolated from the freshwater habitat, 

nevertheless, the Saccharopolyspora (both TR 046 and TR 039) species appear to exhibit consistently 

greater antibacterial activity than Actinosynnema (TR 024). The limited antibacterial activity of 

Actinosynnema extract is in agreement with previous findings [13] which reported that actinomycetes 

belonging to the genus Actinosynnema mainly produce maytansinoid antibiotics (potent anti-tumor 

agents) although it is worth noting that they still do produce antibacterials, howbeit against a limited 

range of bacteria, whereas Saccharopolyspora is a well documented producer of antibiotics [18], with 

Saccharopolyspora erythraea well known for the industrial production of the antibiotic erythromycin. 

Of the two Saccharopolyspora strains (TR 046 and TR 039), extract obtained from TR 046 

produced consistently larger inhibition zone diameters than that of TR 039. This result suggests that 

the extract from TR 046 has greater efficacy compared to the extract from TR 039. This result is 
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further proven by the MIC and MBC results which show that for the extract from TR 039 MIC values 

ranged from 5 mg/mL to >10 mg/mL while the MBC values were all >10 mg/mL. The observed 

differences in the antibiotic producing potentials of the two Saccharopolyspora strains, TR 046 and 

TR 039, can possibly be explained in terms of the ecological conditions from where they were isolated. 

Actinomycetes isolated from a habitat richer in microorganism (competing bacterial species) tend to 

produce more antagonistic substances as a competitive tool for survival compared to those isolated 

from places with low numbers of competing microorganisms [19]. In this regard, it can be suggested 

that Saccharopolyspora TR 046 was isolated from a habitat richer in competing species of 

microorganisms compared to Saccharopolyspora TR 039. 

Extracts obtained from both Saccharopolyspora TR 046 and TR 039 were active against five 

referenced bacterial strains each and whereas the extract from TR 046 was active against three 

environmental strains and showed no activity against clinical isolates, the extract from TR 039 showed 

activity against two environmental strains and one clinical isolate, a result which emphasizes the 

similarities in the genotypic origin of the two organisms. Their limited activity against clinical isolates 

confirms that these clinical strains of bacteria may possess characteristics that differ or are absent from 

the non-pathogenic strains [20]. Pathogenic strains may possess specific virulence determinants (toxins 

and adhesions, etc.) encoded by monocistronic genes, plasmids, or pathogenicity islands as well as 

plasmids that code for drug resistance [21,22], which may partially account for the ineffectiveness of 

the extracts against clinical strains.  

Our findings suggest limited activity against Gram-positive bacteria by all the actinomycetes 

extracts used although it is worth noting that seven Gram-positive bacteria were tested as compared to 

25 Gram-negative test bacteria and it can therefore be deduced that it may not be necessarily correct to 

suggest that the extracts lacked broad spectrum activity. Besides, Gram-negative bacteria are 

inherently more resistant to antimicrobials than Gram-positive bacteria due to the combined exclusion 

of the antimicrobial compounds by the double membrane barrier and transmembrane efflux present in 

this group of organisms [23], hence sourcing actinomycetes that produce effective antimicrobials 

against Gram-negative bacteria is a step in the right direction for the war against antibiotic resistance. 

The rate of kill of the test organisms by the extract from Saccharopolyspora TR 046 appears to be 

both concentration and time dependent. Results suggest that the extract was mostly bactericidal at  

2× MIC and 4× MIC up to 6 h of exposure with the effect waning off after 6 h. This might suggest that 

dosing frequency needs to be increased to once after every 6 h to maintain the bactericidal effect of the 

extract at its optimum. Complete eradication of the test organisms was not achieved. In view of the 

knowledge that actinomycetes produce secondary metabolites, especially antibiotics, in order to 

overcome other competing microorganisms by killing them [19], this could be attributed to the fact 

that the sediments from which the actinomycetes isolates were obtained have a small bacterial 

population which competes with them and hence rely less on antibiotic production as a competitive 

tool against other bacteria. 

However, the extract exhibited a strong bactericidal efficacy against Bacillus pumilus (ATCC 

14884) achieving a 1.26log10 reduction in counts of the test organism after 6 h of exposure at  

0.312 mg/mL (4× MIC) and moderate bactericidal efficacy against Proteus vulgaris CSIR 0030 

achieving a 0.9log10 reduction in counts of the test organism after 12 h of exposure at 2.5 mg/mL  

(4× MIC). The extract exhibited bacteriostatic effects on two test bacteria (Klebsiella pneumoniae 
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{KZN} and Staphylococcus epidermidis {KZN}) with no major changes on the bacterial load with 

time. Pseudomonas aeruginosa showed persistive response to the extract, with a marked delay in its 

growth at 2.5 mg/mL (4× MIC) after 6 h of exposure increasing by 0.01log10 counts as compared to an 

increase of 1.02log10 counts after 6 h of exposure at 0.625 mg/mL (MIC). A 3log10 or 99.9% reduction 

in viable bacterial density in an 18-24 h period is the generally accepted definition of bactericidal 

activity in antibiotics [24].  

2.3. Statistical Analysis 

Results were analyzed under Minitab Release 14.2 using a 2-sample T-test and One-way 

Analysis Of Variance (ANOVA) as the statistical packages. Mean zone diameters were compared 

for all the three actinomycetes extracts. Analysis was carried out at 95% confidence interval.  

Table 3. Time kill results for extract obtained from Saccharopolyspora (TR 046). 

Susceptible isolate MIC 
(mg/mL) 

 
 4xMIC 

Log10 Kill 
2xMIC 

  
MIC 

 6 h 12 h 6 h 12 h 6 h 12 h 

Bacillus pumilus ATCC 14884* 0.078 1.26 0.31 1.13 0.12 0.20 -2.41 
Klebsiella pneumoniae™ 1.25 0.26 -0.05 0.25 -1.00 0.77 -0.27 
Pseudomonas aeruginosa ATCC 19582* 0.625 -0.01 -0.30 -0.09 -0.12 -0.92 -1.31 
Staphylococcus epidermidis™ 0.078 0.74 -0.19 0.54 -0.27 0.02 -0.45 
Proteus vulgaris CSIR 0030* 0.625 0.09 0.90 0.08 0.13 -0.11 -0.04 

* denotes referenced strain; ™ denotes environmental strain; (-) denotes bacteriostatic effect;  

MIC = minimum inhibitory concentration. 

 

3. Methods and Materials 

3.1. Test Actinomycetes  

Three actinomycetes strains belonging to the genera Saccharopolyspora (TR 046 and TR 039) and 

Actinosynnema (TR 024) were obtained from the culture collections of the Applied & Environmental 

Microbiology Research Group (AEMREG), University of Fort Hare, Alice, South Africa. The strains 

were isolated from the Tyume River in the Eastern Cape Province of South Africa [12]. The organisms 

were maintained on agar slants and in 20% glycerol (at -80 °C). 

3.2. Preparation of Actinomycetes Inocula  

The stock culture of the test actinomycetes used in this study were prepared by streaking the 

actinomycetes from the agar slants onto starch casein agar (SCA) which was prepared as follows (per 

liter of filtered freshwater): soluble starch, 10 g; potassium phosphate dibasic, 2 g; potassium nitrate,  

2 g; sodium chloride, 2 g; casein, 0.3 g; magnesium sulfate.7H2O, 0.05 g; calcium carbonate,  

0.002 g; ferrous sulfate.7H2O, 0.01 g and bacteriological agar, 16 g. Each of these compounds was 

added to the diluents and allowed to dissolve completely using a magnetic stirrer. The medium was 
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then autoclaved at 121 °C and 15 mm Hg for 15 minutes and allowed to cool down to 50 °C before 

being poured into 90 mm Petri dishes. The test actinomycetes were streaked on the prepared medium 

and incubated at 28 °C for between 7 and 14 days under aerobic conditions. Actinomycetes inocula 

were then prepared by transferring several colonies into sterile normal saline (10 mL) and the 

suspensions vortexed for 20 seconds to ensure homogeneity.  

3.3. Preparation and Inoculation of Fermentation Broth 

The fermentation broth was prepared following a method outlined by Muiru et al. [25] as follows 

(per liter of distilled water): 10 g starch, 4 g yeast extract, 2 g peptone, 5 ml potassium bromide  

(20 g/L) and 5 mL iron (iii) sulfate tetrahydrate (4.76 g/L). The medium was divided into 500 mL 

aliquots into 1 L Erlenmeyer flasks and sterilized by autoclaving at 121 °C and 15 mm Hg for  

15 minutes. After the medium cooled, 100 µL volumes of actinomycetes suspensions (standardized to 

McFarland 0.5) were used to inoculate the flasks. The flasks were then incubated at 27 °C on a shaker 

at 300 rpm for 10 days. For quality control, confirmation of purity was done by streaking the 

fermentation cultures onto nutrient agar (NA), potato dextrose agar (PDA) and starch casein agar 

(SCA) plates.  

3.4. Extraction of the Crude-Antibiotic Extracts from Fermentation Cultures 

Crude antibiotic extracts were recovered from the broth culture filtrate by solvent extraction using 

ethyl acetate in accordance with the description of Liu et al. [26]. Ethyl acetate was added to the 

filtrate in the ratio 1:1 (v/v) and shaken vigorously for 1 h for complete extraction. The ethyl acetate 

phase that contained the antibiotic was separated from the aqueous phase and concentrated in vacuo at 

60 °C using a rotary evaporator. The residue obtained was weighed and reconstituted in 50% methanol 

to make a working concentration of 10 mg/mL for the antibacterial assays. 

3.5. Test Bacteria and Inocula Preparation 

The test bacteria used in this study were obtained from the culture collection of the Applied and 

Environmental Microbiology Research Group (AEMREG) laboratory at the University of Fort Hare, 

Alice, South Africa and included the following: 

Referenced strains: Escherichia coli ATCC 8739, Pseudomonas aeruginosa ATCC 19582, 

Staphylococcus aureus ATCC 6538, Enterococcus faecalis ATCC 29212, Bacillus cereus ATCC 

10702, Bacillus pumilus ATCC 14884, Pseudomonas aeruginosa ATCC 7700, Enterobacter cloacae 

ATCC 13047, Klebsiella pneumoniae ATCC 10031, Klebsiella pneumoniae ATCC 4352, Proteus 

vulgaris ATCC 6830, Proteus vulgaris CSIR 0030, Serratia marcescens ATCC 9986, Acinetobacter 

calcoaceticus, Acinetobacter calcoaceticus anitratus, Escherichia coli 25922.  

Environmental strains: Klebsiella pneumoniae, Bacillus subtilis, Shigella dysenteriae, 

Staphylococcus epidermidis, Pseudomonas aeruginosa, Proteus vulgaris, Enterococcus faecalis, 

Staphylococcus aureus, Micrococcus kristinae and Micrococcus luteus, Shigella flexineri, Salmonella 

sp. 
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Clinical isolates: Staphylococcus aureus OKOH 1, Staphylococcus aureus OKOH 2A, 

Staphylococcus aureus OKOH 3, and Staphylococcus sciuri OKOH 2B. 

The test bacteria were confirmed for purity by streaking onto nutrient agar plates. These pure 

bacterial isolates were then inoculated into nutrient broth and incubated at 37 °C for 24 h. The turbid 

broths were later centrifuged at 7000 rpm and the supernatant discarded. The pellets of cells were 

resuspended and double washed in sterile normal saline and standardized to OD600nm 0.1. The washed 

and standardized cells were subsequently used for various experiments described below. 

3.6. Antibacterial Susceptibility Tests 

Antibacterial activities of the crude extracts were determined using agar well diffusion technique as 

described by Pandey et al. [27]. Test organism cultures were grown overnight (18 h) in nutrient broth 

and standardized to OD600nm 0.1. Test organisms were then spread-plated onto Muller Hinton agar 

(MHA) plates using sterile cotton swabs. A flame sterilized cork borer with a diameter of 6 mm was 

used to bore wells into the agar and 100 µL of the extract (10 mg/mL) loaded into the wells. Control 

wells were loaded with 100 µL of 50% methanol. The extract was allowed to diffuse into the agar 

before the plates were incubated under aerobic conditions at 37 °C for 24 h. At the end of the 

incubation period, the plates were observed for zones of inhibition around the wells. Inhibition zone is 

defined as the area free of growth in a bacterial lawn which results from the effect of antibiotic that has 

diffused into the medium from its applied source [28].  

3.7. Determination of the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal 

Concentration (MBC) 

The MICs were determined using test organisms that showed susceptibility to the crude extracts by 

the broth microdilution method as outlined by the EUCAST Discussion Document [29]. Sterile plastic, 

disposable microtiter plates with 96 flat-bottom wells were used. The medium used in the plates was 

prepared at double the final strength to allow for a 50% dilution once the inoculum and solvents or 

antimicrobial were added. A 100 µL volume of double strength Muller Hinton broth was introduced 

into all the 96 wells and varying concentrations of the antibiotic were added in decreasing order along 

the wells after which wells were loaded with 50 µL of the test organism suspension. The plates were 

then incubated at 37 °C for 18-24 h. Wells in column 12 were used as the growth controls and 

contained 50 µL of test organism and 50 µL of sterile distilled water. Results were read using a 

microtiter plate reader (BIO-RAD model 680) at 490 nm. Visual reading of results was also done by 

first adding resazurin dye into all the wells. Wells with no growth turned blue in color while those with 

growth turned pink, and this helped to give a clear visual demarcation of the MIC wells. The MIC was 

estimated as the lowest concentration of the extract that inhibited growth of the test organisms.  

The MBC was determined from the MIC plate following a method outlined by the CLSI [30], and is 

defined as the lowest concentration of an antibiotic that under defined in vitro conditions reduces by 

99.9% the number of organisms in a medium containing a defined inoculum of bacteria, within a 

defined period of time [28]. It was determined by inoculating the broths in the MIC range into drug-
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free nutrient agar medium. The MBC was determined as the antibiotic concentration at which no 

growth was observed after incubation for 48 h. 

3.8. Determination of the Rate of Kill of the Crude Extract 

The rate of kill assay was done only for TR 046 extract, which appeared to exhibit more 

antibacterial potency than the other actinomycetes. This was done by monitoring bacterial cell death 

over time in accordance with the description of Okoli and Iroegbu [31]. Also, five test bacteria were 

selected for this assay based on their susceptibility and Gram’s reaction. The inocula were prepared 

following the described guidelines of the EUCAST Discussion Document [29]. The resultant cell 

suspension was diluted 1:100 with fresh sterile broth and used to inoculate 50 mL volume of nutrient 

broth incorporated with the extract at multiples of the MIC to a final cell density of 5 × 105 cfu/mL 

[32,33]. The flasks were then incubated with shaking at 37 °C on an orbital shaker at 120 rpm and 

samples of 100 µL were then withdrawn at 6 h and 12 h intervals and diluted appropriately. 

Approximately 100 µL volumes of the diluted samples were then plated out in triplicate on nutrient 

agar. Plates were incubated at 37 °C for 24 h, after which the numbers of surviving cells were 

enumerated [33]. Controls consisted of extract free nutrient broth inoculated with test organism. 

4. Conclusions  

In conclusion, this study has shown that freshwater environments could serve as potential reservoirs 

for actinomycetes of antimicrobial importance with varying spectra of activities. A detailed 

characterization of the active principles of the antibacterial extracts is the subject of ongoing 

investigation in our group.  
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