
Supplementary Material

Table S1. Masses and sizes of the
particles in the coarse grained protein
model (including lipid and water).

Name Type Mass
(amu)

Radius
(nm)

Backbone BB 56.04 0.2512
(Gly) BG 57.05 0.2512
(Pro) BP 55.04 0.2512
Ala SA 15.04 0.1816
Cys SC 47.10 0.2107
Asp SD 58.04 0.2403
Glu SE 72.06 0.2767
Phe SF 91.13 0.3198
His SH 82.10 0.2888
Ile SI 57.12 0.2902
Lys SK 73.14 0.2926
Leu SL 57.11 0.2894
Met SM 75.15 0.2921
Asn SN 58.06 0.2542
Pro SP 42.08 0.2467
Gln SQ 72.09 0.2828
Arg SR 101.15 0.3198
Ser SS 31.03 0.1984
Thr ST 45.06 0.2369
Val SV 43.09 0.2620
Trp SW 130.17 0.3445
Tyr SY 107.13 0.3200
Lipid (head) H 56.11 0.2525
Lipid (tail) T 56.11 0.2525
Water W 72.05 0.2586

Table S2. Parameters for all bond in-
teractions in the coarse grained protein
model (including lipid and water).

Particles Bond length
(nm)

Force constant
(kJ/mol/nm2)

B*-B* 0.384 15733
BB-SA 0.077 5905
BB-SC 0.123 12748
BB-SD 0.171 14202
BB-SE 0.225 15704
BB-SF 0.223 17286
BB-SH 0.212 16591
BB-SI 0.176 14090
BB-SK 0.252 15805
BB-SL 0.194 14090
BB-SM 0.216 15991
BB-SN 0.167 14205
BB-SQ 0.225 15706
BB-SR 0.302 17964
BB-SS 0.117 9949
BB-ST 0.140 12442
BB-SV 0.140 12134
BB-SW 0.261 19515
BB-SY 0.248 18328
BP-SP 0.135 16761
SC-SC 0.289 4187
H-H 0.473 3156
H-T 0.473 3156
T-T 0.473 3156
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Table S3. Parameters for all angle potential interactions. The first two rows are for the
double angle potential and the last row is for the harmonic angle potential.

Particles θ1 θ2 VA (θ1)

(kJ/mol)
VA (θ2)

(kJ/mol)
VA (ξ)

(kJ/mol)

B*-B*-B* 91.25◦ 123.25◦ 0.0 23.0 23.7
B*-B*-S* 118◦ 135◦ 0.0 0.0 0.003

Particles θ0 Force constant
(kJ/mol/rad2)

T-T-T 180.0◦ 5.408
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Table S4. Non-bonded interaction energies for the coarse grained model. All energies are in
units of kJ/mol. To represent the use of the truncated shifted Lennard-Jones potential (with
only a repulsive part) a R is used and the associated energy is 1.97 kJ/mol.
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Double angle potential

In Figure 3(a) the general shape of the double angle potential is shown, indicating all parameters. In
this part of the supplementary material the functions that describe the double angle potential are derived.
From the curve some important observations can be made. For instance, the reference angle ξ lies in
between the two other reference angles: θ1 < ξ < θ2. Because the curve has a maximum at V (ξ), it
follows that V (θ1) and V (θ2) are the minima of the polynomial. Thus, the form of the derivative of the
fourth power polynomial V ′ (θ) describing the double angle potential is easily determined

V ′ (θ) = A (θ − θ1) (θ − θ2) (θ − ξ) ,

where A is a yet undetermined constant. The above equation can be expanded to become

V ′ (θ) = A

[
θ3 − (θ1 + θ2 + ξ) θ2 + (θ1θ2 + θ1ξ + θ2ξ) θ − (θ1θ2ξ)

]
.

Integrating this equation gives the desired fourth power polynomial

V (θ) = A

[
1
4
θ4 − 1

3
(θ1 + θ2 + ξ) θ3 + 1

2
(θ1θ2 + θ1ξ + θ2ξ) θ

2 − (θ1θ2ξ) θ

]
+ D ,

where D is an arbitrary constant of integration and is not yet determined. Renaming the part within the
square brackets in the above equation as g (θ) allows to simplify the integrated function to

V (θ) = Ag (θ) + D .

In the above equations some constants (A and D) still need to be determined. Based upon the param-
eters supplied to the double angle potential, the following set of equations can be expressed

V (θ1) = Ag (θ1) + D and V (ξ) = Ag (ξ) + D

¿From the first equation the constant A can be isolated

A =
V (θ1) − D

g (θ1)
,

which can subsequently be reinserted into the second equation to give

D =
g (θ1)V (ξ)− g (ξ)V (θ1)

g (θ1)− g (ξ)
.

with another substitution this yields

A =
V (ξ)− V (θ1)

g (ξ)− g (θ1)
.

Although the constants A and D are now expressed in terms of the fourth power polynomial g (θ) and
the parameters θ1, V (θ1) and V (ξ), the variable g (ξ) is still unknown, since ξ is an unknown parameter
of V (θ). In order to compute the variable g (ξ), it is necessary to determine ξ. For this purpose it is
useful to take a close look at the derivative function V ′ (θ) again. While constructing the fourth power
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polynomial belonging to this derivative, V ′ (θ) has been integrated completely. However, integrating
parts of the derivative (for example between θ1 and ξ) allows for the computation of ξ. Therefore, the
following two equations can be constructed

AI1 = A

ξ∫
θ1

(θ − θ1) (θ − θ2) (θ − ξ) dθ and AI2 = A

θ2∫
ξ

(θ − θ1) (θ − θ2) (θ − ξ) dθ

where I1 and I2 are the areas under the curve (normalized with respect to the constant A). Since in-
tegrating the derivative finally gives the full fourth order polynomial, the area under the curve can be
alternatively expressed as

AI1 = V (ξ)− V (θ1) and AI2 = V (θ2)− V (ξ)

from which the constant A can be calculated in two ways

A =
V (ξ)− V (θ1)

I1
and A =

V (θ2)− V (ξ)

I2

Since these two equations yield an equality, the quotient Q = I1/I2 is given by

Q =
I1
I2

=
V (ξ)− V (θ1)

V (θ2)− V (ξ)
,

which uses the three known parameters V (θ1), V (θ2) and V (ξ). Consequently, the value of Q is also
known. Inserting the simplified form of the fourth power polynomial eliminates the constants A and D
embedded within V (θ1), V (θ2) and V (ξ) from the expression of the quotient and gives

Q =
g (ξ)− g (θ1)

g (θ2)− g (ξ)
.

Rearranging the above equation gives us an expression for the variable g (ξ) in terms of the quotient Q,
and the variables g (θ1) and g (θ2)

g (ξ) =
Qg (θ2) + g (θ1)

Q+ 1
.

Since, this equality has only one unknown parameter, namely ξ, it is possible to determine this parameter.
The first step is to move all terms to one side, resulting in a quartic equation in ξ,

Qg (θ2) + g (θ1)− (Q+ 1) g (ξ) = 0 .

Now the definition for g (θ) can be used to expand each of the three functions in terms of θ1, θ2, ξ and Q
only. After rearranging the resulting quartic equation in ξ is given by

− 1
12
(Q+ 1) ξ4 + 1

6
(Q+ 1) (θ1 + θ2) ξ

3 − 1
2
(Q+ 1) θ1θ2 ξ

2

+
[
1
2

(
Qθ1θ

2
2 + θ21θ2

)
− 1

6

(
Qθ32 + θ31

)]
ξ +

[
1
12

(
Qθ42 + θ41

)
− 1

6

(
Qθ1θ

3
2 + θ31θ2

)]
= 0 .

Although this equation can be solved in the general case, using for instance Ferrari’s method, its com-
putation is very tedious and laborious. However, from the choice that V (θ) has two minima, and one
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maximum, it follows that the maximum has to be located in between the two minima: θ1 < ξ < θ2.
From this requirement it can be seen that the quartic equation has a solution.

In order to compute the location of ξ the Newton-Raphson numerical analysis method can be used.
This method is an efficient algorithm for finding approximations of the roots a real-valued function f (x).
The basic idea of the method is to start with an initial guess x0 which is reasonably close to the true zero.
The tangent of the function f (x) at x0 is given by f ′ (x0), which is equal to tanφ, where φ is the
angle the tangent line makes with the x-axis. Using elementary algebra it can be shown that tanφ =

f (x0) / (x0 − x1), where x1 is the point where the tangent line crosses the x-axis. Consequently, it
follows

x1 = x0 −
f (x0)

f ′ (x0)
.

The zero of the tangent, x1, typically is a better approximation to the function’s root. Arrived at this
point all steps can be repeated until convergence, and the root of the function is found. Using the
Newton-Raphson method on the previously determined quartic equation gives a very good estimate
for ξ. Typically only a few iterations are needed for the method to converge.
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