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Abstract: Stem cells, a special subset of cells derived from embryo or adult tissues, are 

known to present the characteristics of self-renewal, multiple lineages of differentiation, 

high plastic capability, and long-term maintenance. Recent reports have further suggested 

that neural stem cells (NSCs) derived from the adult hippocampal and subventricular 

regions possess the utilizing potential to develop the transplantation strategies and to 

screen the candidate agents for neurogenesis, neuroprotection, and neuroplasticity in 

neurodegenerative diseases. In this article, we review the roles of NSCs and other stem 

cells in neuroprotective and neurorestorative therapies for neurological and psychiatric 

diseases. We show the evidences that NSCs play the key roles involved in the pathogenesis 
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of several neurodegenerative disorders, including depression, stroke and Parkinson’s 

disease. Moreover, the potential and possible utilities of induced pluripotent stem cells 

(iPS), reprogramming from adult fibroblasts with ectopic expression of four embryonic 

genes, are also reviewed and further discussed. An understanding of the biophysiology of 

stem cells could help us elucidate the pathogenicity and develop new treatments for 

neurodegenerative disorders. In contrast to cell transplantation therapies, the application of 

stem cells can further provide a platform for drug discovery and small molecular testing, 

including Chinese herbal medicines. In addition, the high-throughput stem cell-based 

systems can be used to elucidate the mechanisms of neuroprotective candidates in 

translation medical research for neurodegenerative diseases. 

Keywords: stem cells; neural stem cells; neuroprotection; neurodegenerative diseases; 

stem cell-based strategy 

 

1. Introduction 

Stem cells are classified into three types according to their abilities to differentiate. The first type is 

totipotent stem cells, which can be implanted in the uterus of a living animal and give rise to a full 

organism. The second type is pluripotent stem cells such as embryonic stem (ES) cells and induced 

pluripotent stem (iPS) cells. They can give rise to every cell of an organism except extraembryonic 

tissues, such as placenta. This limitation restricts pluripotent stem cells from developing into a full 

organism. The third type is multipotent stem cells. They are adult stem cells which only generate 

specific lineages of cells [1]. Neural stem cells (NSCs) are multipotent stem cells which are derived 

from neural tissues, either from the central nervous system or peripheral nervous systems [1]. These 

cells are self-renewing and can give rise to all cell types (neurons, astrocytes and oligodendrocyes) of 

the nervous system through asymmetric cell division [1].  

In the adult brain, NSCs are primarily located in the subventricular zone (SVZ) of the lateral 

ventricle and the subgranular zone (SGZ) of the hippocampal dentate gyrus (Figure 1). In general, the 

quiescent or dormant NSCs might be present and can be derived from multiple areas of the adult brain 

[2-4]. The SVZ and SGZ niches have common cellular niche components which include astroglia, 

ependymal cells, vascular cells, NSC progeny and mature neurons, and common extracellular niche 

signals which include Wnt, Sonic Hedgehog, bone morphogenic protein antagonists, 

membrane-associated Notch signaling, leukemia inhibitory factor, transforming growth factor-alpha, 

fibroblast growth factors, neurotrophins and extracellular matrix. [3]. These cellular and extracellular 

components regulate the behaviors of NSCs in a region-specific manner [3]. For example, SVZ NSCs 

give rise to Dlx2+ Mash1+ intermediate progenitor cells which subsequently give rise to PSA-NCAM+ 

doublecortin+ (DCX+) neuroblasts and migrate towards the olfactory bulb (OB). In contrast, SGZ 

NSCs do not differentiate into interneuron-lineage cells like those in the OB, but give rise to local 

glutamatergic excitatory dentate granule cells [3]. The region-specific development of these NSCs is 
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not only due to intrinsic characteristics of the NSCs themselves, but also due to the dictation of local 

microenvironment (i.e., the niche). A detail summary of the neurogenic niche can be found in a recent 

review by Ma et al. [3].  

Figure 1. The two niches of neural stem cells (NSCs). The subventricular zone (SVZ) of 

the lateral ventricle and the subgranular zone (SGZ) of the hippocampal dentate gyrus have 

common cellular niche components and extracellular niche signals. The development of 

NSCs of the two niches is different in a region-specific manner. SVZ NSCs give rise to 

Dlx2+ Mash1+ intermediate progenitor cells which subsequently give rise to PSA-NCAM+ 

doublecortin+ (DCX+) neuroblasts (NB) and migrate towards the olfactory bulb (OB). SGZ 

NSCs give rise to local glutamatergic excitatory dentate granule cells. RMS: 

rostro-migratory stream; GL: granular layer. Adapted from Ma et al. [3] and Taupin and 

Gage [5]. 

 
Neurogenesis derived from adult NSCs is critical for a plethora of central nervous functions, such as 

spatial learning and memory, mood regulation and motor controls. Growing evidence also suggests the 

significant contribution of adult NSCs to pathological conditions like seizures, brain tumors, mood 

disorders or neurodegenerative diseases [3]. If the biopathological role of adult NSCs can be better 

understood, therefore, the therapeutic strategies that assist neuroprotection and neurorestoration can be 

framed and tested through collaborative efforts of both basic and translational research. In the 
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following sessions, we will introduce the roles of NSCs in the pathogenesis in some psychiatric and 

neurological diseases, and the application of stem cell-based therapies. 

2. Depression and Neurogenesis: Evidence from Neural Stem Cells 

Depression is one of the most common psychiatric disorders, with 10-20% lifetime prevalence [6,7]. 

However, the etiology and pathophysiology of depression still remain unclear. Preclinical and clinical 

studies suggest the involvement of hippocampus in the pathogenesis of depression. Hippocampus 

plays an important role in learning, memory and emotionality [8,9]. It is also one of the primary niches 

of NSCs. Reduction of hippocampal volume was found in patients with posttraumatic stress disorders 

[10]. Magnetic resonance imaging studies also showed a consistent reduction in hippocampal volume 

in patients with depression [11]. Two meta-analyses have demonstrated a reduction in hippocampal 

volume in patients with recurrent depression in comparison to age- and sex-matched controls [12,13]. 

In addition, most antidepressants and environmental interventions that confer antidepressant-like 

behavioral effects stimulate adult hippocampal neurogenesis [11].  

Based on these findings, impaired hippocampal neurogenesis was considered to be one of the 

etiologies of depression. However, recent studies have shown some controversial evidences against the 

previous findings. First, preclinical and pathohistological studies showed that the reduction of 

hippocampal volume might be a result of decreased dendritic complexity and changes in neurophil and 

glial number rather than impaired hippocampal neurogenesis [14-16]. Besides, the ablation of 

neurogenesis did not induce or affect depression-like or anxiety-like behaviors in animals [14,17-19]. 

To date, hippocampal neurogesis is not thought to be involved in the pathogenesis of depression 

[11,20], although the regulation of neurogenesis in adult brain may be required for antidepressant 

treatment [11]. 

Most antidepressant drugs increase the levels of monoamines serotonin (5-hydroxytrytamine; 5-HT) 

and/or noradrenaline (NA); this suggests that biochemical imbalances within the 5-HT/NA systems 

may cause mood disorders. In addition to the regulation of neurotransmitters, antidepressants also have 

both neuroprotective and neurorestorative effects on hippocampal cells. For example, monoamine 

oxidase-A inhibitor moclobemide (MB) can upregulate proliferation of hippocampal progenitor cells 

in chronically stressed mice [21]. MB can also provide neuroprotection by reducing intracellular pH 

and neuronal activity of CA3 hippocampal neurons [22]. A selective serotonin reuptake inhibitor, 

fluoxetine, was used to treat rats with maternal separation. Compared to the rats that did not receive 

fluoxetine, cell proliferation was increased and apoptosis was decreased in the dentate gyrus of the rats 

that receive fluoxetine [23]. To elucidate the molecular mechanism of the neuroprotective and 

neurorestorative effects of antidepressants, NSCs derived from the hippocampal tissues of adult rats 

can be used as a model for the in vitro drug–effect test [24]. 

 

Antidepressant and Neuroprotection: Interaction with Neural Stem Cells 
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Clinical findings have shown evidence that hippocampal volume in patients with depression is 

reduced in comparison to the volume in healthy people [10]. Furthermore, the clinical studies and 

magnetic resonance imaging (MRI) survey demonstrated that the hippocampal volume decreases in 

patients with depression and post-traumatic stress disorder [6,10]. Increased neurogenesis in the 

hippocampus by the administration of antidepressant drugs can result in altered behavior in 

stress-induced models and patients [14,23]. Moreover, Chen et al. showed the evidence that 

desipramine can promote neurogenesis in hippocampus and reverse the learned behavior in learned 

helplessness rats [25]. Taken together, these observations implicated that adult hippocampal 

neurogenesis is decreased by stress and this process of neuron loss may be involved in both the 

pathogenesis and treatment of mood disorders. 

Neural stem cells (NSCs), derived from hippocampus and other germinal centers of the brain, have 

been isolated and defined as cells with the capacity of self-renewal and multilineage differentiation [1]. 

NSCs also possess the utilizing potential to develop the transplantation strategies and to screen the 

candidate agents for neurogenesis in neurodegenerative diseases [26]. By using in vitro culture of 

NSCs from hippocampus of adult rats, antidepressants of different classes are proved to have 

neuroprotective effects and can assist neurogenesis [27-31].  

Antidepressants can increase the viability and promote the differentiation of NSCs. They also 

decrease the level of proinflammatory cytokines. [27-31]. Antidepressants are able to prevent Fas 

ligand (FasL)- or lipopolysaccharide (LPS)-induced apoptosis of NSCs through the upregulation of 

Bcl-2 and Bcl-XL expression [27-31]. Higher expression level of phosphorylated ERK 1/2 in addition 

to Bcl-2 was detected in NSCs treated with MB, and the expression was inhibited by a MAPK/ERK 

kinase inhibitor PD98059 [29]. The MAPK inhibitor U0126 also enhances the apoptotic activities and 

decreases cell viability in LPS- and imipramine-treated NSCs [30]. These results suggest 

antidepressants upregulate Bcl-2 expression through the MAPK/ERK pathway. 

In addition to MAPK/ERK signaling modulation, cellular FLICE-inhibitory protein (c-FLIP) may 

also be involved in the prevention of apoptosis of NSCs by antidepressant [28]. C-FLIP is a 

cytoplasmic protein that has sequence homology to FLICE (FADD-like IL-1β-converting enzyme) [32]. 

c-FLIP is capable of binding to FADD, but is unable to be cleaved to an active caspase because of a 

substitution of tyrosine from an active site cysteine. The substitution of tyrosine prevents the initiation 

of the death pathway [32,33]. Chiou et al. demonstrated that fluoxetine upregulated the expression of 

c-FLIP [28]. This upregulation involved PI3k/AKT pathway, since administration of PI3-K inhibitor 

LY294002 dose-dependently reduced fluoxetine-mediated activation of c-FLIP promotor and protein 

expression of c-FLIP [28]. 

It has been well-documented that antidepressants present the potential to upregulate the expression 

of brain-derived neurotrophic factor (BDNF) in animal models as well as the patients with depression 

[30,34-37]. BDNF is the most abundant neurotrophin in the brain. It regulates neuronal cell survival, 

differentiation, synaptic strength and morphology [38]. Blocking endogenous BDNF activity leads to 

aggravated death of a subpopulation of hippocampal neurons after global forebrain ischemia [39]. The 

neuroprotective role of endogenous BDNF is further supported by the observed correlation between 

BDNF protein levels and resistance to ischemic damage in hippocampal subregions [40]. Peng et al. 
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demonstrated that imipramine, a tricyclic antidepressant, increased Bcl-2 expression and 

differentiation of rat hippocampal NSCs [30].  

Imipramine also decreased apoptotic activities and proinflammatory cytokines, and improved cell 

viability of LPS-treated NSCs. These effects were all achieved through the upregulation of BDNF [30]. 

Taken together, hippocampal neurogenesis is required for antidepressant therapies. Using cultured rat 

hippocampal NSCs, the molecular mechanisms of antidepressant effects are explored, which include 

the MAPK/ERK pathway, the PI3k/AKT pathway, and the upregulation of BDNF, Bcl-2 and c-FLIP. 

3. Diseases of Central Nervous System and Neural Stem Cells – Stem Cell Therapy and the 

Development of New Target Drug 

Diseases of the central nervous system (CNS) such as stroke, traumatic brain injury, dementia, 

Parkinson’s disease or multiple sclerosis, usually cause morbidity and mortality as well as increase 

social and economic burdens of patients and caregivers. However, most treatments for these diseases 

are symptomatic or preventive, and are not effective. Many attempts have been made to develop a 

neuroprotective treatment to reduce the volume of brain injury, but the translation of neuroprotection 

from experimental therapies to clinical use has not been very successful [41]. Along with the 

development of stem cell studies and the discovery of neural stem cells in the adult brain, 

transplantation of stem cells or their derivatives, and mobilization of endogenous stem cells within the 

adult brain have been proposed as future therapies for the CNS diseases [42]. We herein introduce the 

role of stem cell-based therapies in the possible treatment for Parkinson’s disease and ischemic stroke. 

The two diseases have different etiologies and pathophysiologies, and therefore, different strategies of 

treatment are required. 

3.1. Parkinson’s Disease 

Parkinson’s disease (PD) is a neurodegenerative disease. Its main pathology is cellular loss of the 

substantia nigra pars compacta dopamine neurons that project to the striatum [43]. Clinical signs of PD, 

which include rest tremor, rigidity and bradykinesia, are evident when about 80% of striatal dopamine 

and 50% of nigral neurons are lost [44]. Because PD results from the loss of dopaminergic neurons, the 

prospect of utilizing cell replacement therapies has attracted substantial interests. The first attempt was 

to use fetal mesencephalic tissue for transplantation, and the results were successful in the earliest 

reports [42,45,46]. However, not all trials showed beneficial outcomes. The sham surgery-controlled 

study also demonstrated some clinical benefits in younger but not in older patients [47]. Another study 

showed no significant treatment effects [48]. Moreover, fetal mesencephalic transplantation is 

associated with several problems. First, off-medication dyskinesia increased 6-12 months after the 

transplantation in 15-56% of patients [47-49]. Second, graft-induced inflammatory responses might 

influence the longevity of transplanted cells [50]. Third, tissue availability limits the clinical use [42]. 

As a result, fetal mesencephalic transplantation is not recommended as a conventional therapy for PD. 

Graft-induced dyskinesia is thought to be caused by unfavorable composition of the fetal 

mesencephalic grafts. The fetal mesencephalic tissue includes not only dopaminergic but also 
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non-dopaminergic neurons [42]. The exclusion of serotonin and GABA neurons, and enrichment of 

substantia nigra dopamine neurons may decrease the occurrence of dyskinesia [50]. To achieve this 

goal, probable solutions include refinement of dissection methods for fetal tissue transplantation, 

isolation of desired cell types and/or removal of unwanted cellular populations using fluorescence- 

and/or magnetic-activated cell sorting (FACS/MACS), and using stem cells (ES cells and iPS cells) as 

an alternative cell source [50]. Recent evidence has shown that dopamine neurons derived from ES 

cells and bone marrow-derived neural progenitors are functional when grafted into parkinsonian rats 

[42,51-52]. Several methods are able to improve the effectiveness of midbrain dopamine neuron 

generation and/or retrieval from stem cells. These include manipulating transcription factor like Nurr1, 

Pitx3 or Lmx1a, co-culture with astrocytes and using fluorescence-activated cell sorting [50]. The 

replacement of fetal tissue by stem cells also solve the problem of availability and ethical issue [50]. 

The ability of deriving large quantities of correctly differentiated dopamine neurons makes stem cells 

promising cell sources for transplantation in PD. 

3.2. Ischemic Stroke 

Ischemic stroke is a major cause of morbidity and mortality worldwide. The only effective 

treatment for acute ischemic stroke is thrombolytic agents such as rt-PA [53]. For patients receiving 

thrombolytic therapy shortly after the stroke (3–4.5 h), only 31-50% of them obtained favorable 

outcomes, and 6.4% of patients developed brain hemorrhage [54]. New therapeutic strategies with 

neuroprotection or neurorestoration are crucial for improving the prognosis of patients with stroke. 

Ischemia affects the behavior and proliferation status of NSCs. For example, focal ischemia of brain 

enhances endogenous neurogenesis, angiogenesis, axonal sprouting and synaptogenesis [41,55]. 

However, the proportion of damaged or dead neurons replaced by the new neurons is small [55]. 

Besides, neurogenesis does not occur in some ischemic regions. This is probably either due to an 

unfavorable microenvironment of the ischemic sites, or because these sites are distant from the SVZ 

and SGZ, which are most abundant in NSCs [55]. Pharmacological treatments aimed at enhancing 

neurogenesis, angiogenesis and axonal outgrowth were successful in animal studies. These included 

erythropoietin, statins, phosphodiesterase 5 inhibitors, granulocyte-colony stimulating factor, nicotinic 

acid and minocycline [41]. Limited clinical data have indicated beneficial therapeutic potential of these 

drugs in human [56], but further clinical survey is required. The difficulties of the cell-replacement 

therapy are due to variable cell types involved in ischemic stroke, which include neurons, astrocytes, 

oligodendrocytes and endothelial cells of blood vessels [41]. Although transplantation of bone 

marrow-derived mesenchymal stem cells promoted functional recovery, the effect was caused by 

activation of endogenous restoration of injured brain rather than cell replacement [41,42,57]. ES cells 

have been demonstrated to have greater developmental potential and more significant survival rate 

than adult stem cells after transplantation [58]. Transplantation of ES cells also recovered behavioral 

dysfunction induced by middle cerebral arterial occlusion in an animal model [59]. However, the 

ethical consideration, the limited availability and the possibility of immune rejection after 

transplantation restrict the accessibility of ES cells.  
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3.3. The Hope and Hype of Induced Pluripotent Stem Cells in Cell Replacement Therapy of 

Neurological Diseases 

The recent progresses in stem cell research have demonstrated that induced pluripotent stem (iPS) 

cells could be generated from mouse embryonic fibroblasts as well as from adult human fi broblasts 

via the retrovirus-mediated transfection of four transcription factors, that is, Oct3/4, Sox2, c-Myc, and 

Klf-4 [60-62]. The development of iPS cells provides an additional option for replacement therapy. 

They are indistinguishable from ES cells in morphology, proliferative abilities, surface antigens, gene 

expression, epigenetic status of pluripotent cell-specific genes, and telomerase activity [62,63]. They 

are also capable of self-renewal and differentiation into three germ layers, offering potential for 

clinical cell therapies [64,65]. Because iPS cells can be derived from the somatic cells, potential 

immune rejection and ethical consideration can be avoided by autologous transplantation. Recently, 

Wernig et al. demonstrated that neuronal and glial cell types could be derived from iPS cells in vitro 

and that transplantation of iPS cell-derived neuronal cells into the brain was able to improve behavior 

in a rat model of PD [66]. We also demonstrated an efficient method to differentiate iPS cells into 

astrocyte-like and neuron-like cells which displayed functional electrophysiological properties [67]. 

Our in vivo study showed that direct injection of iPS cells into damaged areas of rat cortex 

significantly decreased the infarct size, improved the motor function, attenuated inflammatory 

cytokines, and mediated neuroprotection after middle cerebral artery occlusion (MCAO) [67]. 

Subdural injection of iPS cells with fibrin glue was as effective and as the direct-injection method, and 

provided a safer choice for cell replacement therapy [67]. 

The ability to form teratomas in vivo has been a landmark and routine assay for evaluating the 

pluripotency of ES as well as iPS cells [64,68]. However, teratoma or tumor formation is a 

unacceptable adverse effect for cell transplantation therapy. Preventing teratoma formation or 

tumorgenesis has become an emergent issue [69-73]. One of the methods is elimination of nonneural 

progenitors, which can be achieved by the elaboration of differentiation protocols that allow maximal 

homogeneity of the transplant [74] or by cell sorting before transplantation [75-78]. Exclusion of 

poorly-differentiated ES or iPS cells can also reduce the rate of teratoma or tumor formation [79]. 

Some antioxidants may prevent tumorgenesis after cell transplantation. Resveratrol, a natural 

polyphenol antioxidant, is demonstrated that it can inhibit teratoma formation in vivo [65]. Our recent 

study result also found that docosahexaenoic acid can inhibit teratoma formation in addition to 

promoting dopaminergic differentiation in iPS cells in PD-like rats [80]. It has been only two years 

since the development of iPS cells. Enhancement of effectiveness and eliminating adverse effects of 

this cell-transplantation therapy required more extensive studies. 

 

 

4. Diet and Neurogenesis 
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Recent reports suggested that the environmental factors, especially the detrimental factors induced 

by neuronal injury, have a critical impact on adult neurogenesis. Several environmental factors are also 

involved in adult neurogenesis, diet being one of them. Interested readers can refer to a recent 

comprehensive review by [81]. Briefly, The influence of diet on adult neurogenesis comes from four 

domains: meal content, meal texture, meal frequency and calorie intake [81]. With regards to meal 

content, zinc, thiamine and vitamine-A deficiencies decrease cell proliferation in adult hippocampus 

[81]. Similarly, excess in retinoic acid and increased homocysteine levels also decrease or inhibit cell 

proliferation in adult hippocampus. In contrast, low-dose curcumin and flavonoids have beneficial 

effects on adult hippocampal cell proliferation in rodents [81]. It is worthy noting that most flavonoids 

are extensively metabolized in vivo and the bioavailability of flavonoids after the consumption of 

flavonoid-rich food can only reach very low concentrations in human plasma [82]. In order for adult 

hippocampal neurogenesis to take place, the purity of flavonoid intake needs to be high. An example is 

the extract from a traditional Chinese herbal decoction Xiaobuxin-Tang [83]. It is also interesting that 

calorie restriction and extending the time between meals increase adult hippocampal neurogenesis 

while diets with high-fat content are noxious and weaken neurogenesis in male rates [81].  

5. Neural Stem Cell, Chinese Herbs, and New Drug Screening 

Natural plant products and phytochemicals have been used as medicinal agents for hundreds of 

years in oriental medicine [84]. Based on clinical experiences and recent studies, Chinese herbs and 

their constituents can be the sources for the development of new drugs for many important human 

disorders, such as cancers [85,86]. Accumulating evidences have pointed to the fact that some 

herb-derived substances have neuroprotective effects. For example, Lee et al. reported that wogonin, a 

flavonoid derived from the root of Scutellaria baicalensis Georgi, is neuroprotective in vitro and in 

vivo [87]. It has an anti-inflammation effect by inhibiting the activation of TNF-α, interleukin-1β, and 

nitric oxide (NO) production induced by LPS in cultured brain microglia, and protects co-cultured 

PC12 cells against microglial cytotoxicity [87]. In two experimental brain injury models, transient 

global ischemia by 4-vessel occlusion and excitotoxic injury by systemic kainite injection, wogonin 

reduced induction of inflammatory mediators (ex. iNOS and TNF-α) in hippocampus, inhibits 

micorgial activation, and attenuates ischemic death of hippocampal neurons [87]. Tetramethylpyrazine 

(TMP) is another example. It is an alkaloid extracted from the Chinese herbal plant Ligusticum 

wallichii Franchat (chuanxiong). Previous experimental studies have demonstrated its beneficial 

effects on cardic and cerebral blood flow and reperfusion, as well as its role on calcium antagonism, on 

vascular tissues, on ROS scavenger and on inhibition of inflammation [88]. In addition, systemic 

administration of TMP protects neuronal cells from ischemic or traumatic brain or spinal cord injury, 

promotes functional recovery and attenuates learning and memory impairment induced by D-galactose 

in animals [89-92]. Furthermore, systemic administration of TMP following the onset of seizure 

induced by kainite significantly reduced the number of TUNEL-positive cells in hippocampus and 

piriform cortex, indicating TMP attenuates neuronal degeneration and has neuroprotective efficacy 

against neuro-excitotoxic attack [88]. Another popular plant which is used in oriental food and 
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medicine, ginger, is able to inhibit β-amyloid peptide-induced cytokine and chemokine expression in 

cultured monocytes [93]. This in vitro study suggests the potential role of ginger in delaying the onset 

and progression of neurodegenerative disorder involving chronically activated microglial cells in 

CNS [93].  

It is also interesting to review the evidence of phytochemicals as sources of antidepressants. Lim et 

al. showed that ginger oil possessed antidepressant-like action by reducing immobility in the forced 

swim test (FST) in mice after the inhalation of ginger oil [94]. Xu et al. also showed that the mixture 

of honokiol and magnolol had an antidepressant effect because the mixture significantly attenuated the 

reduction of 5-HT levels in frontal cortex, hippocampus, striatum, hypothalamus and nucleus 

accumbens, and raised serum corticosterone concentration induced by chronic mild stress (CMS) in 

rats [95]. The mixture of honokiol and magnolol also decreased immobility time in the mouse FST and 

tail suspension test (TST) significantly, and reversed CMS-induced anhedonia in rats [95]. In our 

experiments, we also found that mice treated with Scutellaria baicalensis, Phellodendri Cortex and 

Ligusticum wallichii had increased number of Brd-U positive cells in dentate gyrus and reduced serum 

levels of corticosterone after the exposure to CMS. Compared with those which were exposed to CMS 

alone without the three traditional Chinese medicinal herbs, these animals had increased body weight 

and reduced immobility time in FST [96]. The cellular, biochemical and behavioral effects of the three 

herbs were similar to the effects of fluoxetine and duloxetine [96]. Furthermore, we also found that the 

three traditional Chinese medicinal herbs increased the cell viability of NSCs, with superior effect on 

the index than fluoxetine treatment [96]. These recent progresses not only support the future niche of 

Chinese medicinal herbs as the useful antidepressants, but also indicate the potential of the use of 

NSC-based screening system for new drug discovery and characterization from Chinese herbs and 

medicines. 

6. Conclusions 

The development of stem cell studies has provided a promising future for the treatment of 

neurological and psychiatric diseases in several ways. First, understanding the biology and pathology 

of NSCs will help us elucidate the pathophysiology of several neurological and psychiatric diseases, 

such as depression, Parkinson’s disease or ischemic stroke. The growing knowledge also helps us 

develop neuroprotective and neurorestorative therapies. Second, NSCs can provide a platform to 

clarify the mechanism and to test the efficacy of drugs, including Chinese herbal medicines. Third, the 

development of ES cells and iPS cells make cell transplantation therapies promising in the treatment of 

ischemic stroke or neurodegenerative diseases. There are still lots of unsolved problems like the 

formation of teratomas from implanted stem cells, or the viability and the ability of differentiation of 

implanted cells. In addition, the collaborative efforts of both basic and translational research are 

needed in the future. Finally, stem cell-based neuroprotective and neurorestorative strategies preserve 

the utilizing potential to develop the transplantation strategies and to screen candidate agents for 

neurogenesis, neuroprotection, and neuroplasticity in neurodegenerative diseases. 
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