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Abstract: Canister integrity and radionuclides retention is of prime importance for 

assessing the long term safety of nuclear waste stored in engineered geologic depositories. 

A comparative investigation of the interaction of uranyl ion with three different mineral 

surfaces has thus been undertaken in order to point out the influence of surface 

composition on the adsorption mechanism(s). Periodic DFT calculations using plane waves 

basis sets with the GGA formalism were performed on the TiO2(110), Al(OH)3(001) and 

Ni(111) surfaces. This study has clearly shown that three parameters play an important role 

in the uranyl adsorption mechanism: the solvent (H2O) distribution at the interface, the 

nature of the adsorption site and finally, the surface atoms’ protonation state. 
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1. Introduction  

 

Knowledge and understanding about radionuclide retention processes are required for the safety 

assessment of nuclear waste repository systems. During the transport, radionuclides may be retained by 

adsorption on highly reactive and divided materials, or transported as dissolved ions or complexes, or 

in some cases as colloids. Minerals are accordingly important for radionuclide retention in the deep 
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geological repository concepts for high level waste and spent fuel [1,2]. On the other side, the water 

chemistry in nuclear power plants has been the subject of several studies for many years, because of its 

influence on the materials degradation, the fuel failures and the radiation fields as well [3]. Materials 

degradation has to be frequently checked since some components of the plant are very difficult to 

repair and potentially life limiting. The risk of fuel failures could increase due to heat transfers and the 

corrosion of the fuel cladding, which depend on the purity of water. Considering a severe reactor 

accident scenario, corrosion products located near the reactor core could be released into the coolant 

system. Nickel compounds could be found among the corrosion products in the primary circuit of 

PWR (Pressurized Water Reactor). Colloidal suspensions could be deposited on pipe walls [4] or float 

in water. Ni-based corrosion products can have retention properties relative to radionuclides present in 

the coolant circuit.  

In this study, uranium was selected as adsorbate, existing as uranyl cation UO2
2+ (uranium in formal 

oxidation state +VI) in aqueous solution and acidic pH conditions (between 3 and 4) [5]. In this 

investigation we propose to describe uranyl interaction with three chemically and structurally different 

substrates: a transition metal oxide TiO2, an aluminum hydroxide Al(OH)3, and a transition metal (Ni), 

using periodic DFT (Density Functional Theory) calculations. Both rutile TiO2 and gibbsite Al(OH)3 

were used here: i) as methodological surfaces and ii) because many experimental data on adsorption 

process are available. Once the theoretical methodology was established, it will be performed on Ni 

substrate. Since no retention experiments have been carried out on this system, this particular study 

will point out the predictive aspect of the presented work. 

From a theoretical point of view, very few works have been devoted to studying the interaction(s) 

of uranyl on mineral surfaces. Moskaleva et al. [6] examined uranyl adsorption on the hydrated α-

Al2O3(0001) surface. An outer-sphere adsorption mechanism seemed favored on the fully protonated 

surface, but no experimental data could be correlated with this result. DFT calculations were also 

performed with respect to uranyl surface complexation on goetithe (α-FeOOH) and combined with 

EXAFS (Extended X-ray Absorption Fine Structure) data to validate the surface complex structure [7]. 

Bidentate uranyl complexes could form on edge and corner surfaces (however, EXAFS measurements 

were not able to identify the second complex), allowing explanation of the retention properties of 

goethite. Molecular dynamics studies were also carried out to describe uranyl’s interaction with quartz 

(010) [8]. Both inner-sphere and outer-sphere complexes were detected, depending on the protonation 

state of the surface. Last, Monte Carlo simulations were achieved to characterize uranyl surface 

complexes on montmorillonite [9,10]. The uranyl cation adsorption configuration depended on the 

charge sites defined in the interlayer sheet surfaces, and also on the water interlayer concentration. For 

all cases uranyl outer-sphere complexes were suggested to adsorb on the surfaces. 

In the case of the TiO2 rutile phase, the (110) surface represents 60% of the natural powder (20% 

represents the (101) surface and 20% the (100) one), and is stable over a large range of pH conditions 

[11-14]. As it was already demonstrated [5], the (110) face can be used as model of the rutile powder 

reactivity towards aqueous uranyl ion. Indeed, the U(VI) / rutile TiO2 (110) has previously been 

experimentally studied using various techniques such as EXAFS [15], SSHG (Surface Second 

Harmonic Generation) [16], AFM (Atomic Force Microscope) and DRIFT (Diffuse Reflectance 

Infrared Fourier Transform) [5]. The EXAFS data showed that the uranyl ion adsorbed with an inner-

sphere mechanism leading to a bidentate surface complex, without any cluster formation upon the TiO2 
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(110) surface. Sorption edges on powder and also single-crystal faces [5] displayed that the adsorption 

rate increased with respect to the pH (from 1.5 to 4.5). TRLFS (Time Resolved Laser Fluorescence 

Spectroscopy) measurements [17] advanced the existence of two surface complexes with a relative 

ratio depending on the pH value. Unfortunately, this technique had not allowed one to deduce the 

number of adsorption sites and the accurate configuration of the surface complexes. However, 

regarding the speciation diagram of the uranium ion and since the experiments were performed in the 

1.5-4.5 pH range, the uranyl ion is the major species in solution, as aforementioned. These two surface 

complexes thus corresponded to uranyl cations interacting with two distinct adsorption sites. The AFM 

experiments have shown that the single crystal face was composed of large terraces (around 100 Å 

width) of clean surface. As a final point, the DRIFT and the SSHG experiments as well as the 

modeling of the sorption edges have allowed one to characterize the oxygen surface types involved in 

the interaction with the uranyl ion. 

Hiemstra and co-workers [18-22] and Jodin et al. [23] showed that the (001) faces of gibbsite 

(corresponding to the basal faces) only exhibited uncharged OH groups bonded to two Al atoms 

[Al2(OH)] for pH values ranging between 4 and 10. On the other side, edge faces (corresponding to 

lateral faces) exhibited both doubly and singly coordinated hydroxyl groups (Al-OH), and possessed a 

lower surface area than the basal (001) face. In addition, edge faces are positively charged for pH 

values lower than eight. Consequently, the adsorption of uranyl on gibbsite was investigated on the 

(001) basal faces due to the acidic conditions in this present study. TRLFS studies [24,25] revealed 

that at last two kinds of uranyl complexes on the basal surface could be considered to explain the 

experimental results: a type of ‘Al-UO2
2+’ complex at low pH, and a polynuclear one at higher pH 

values. However, the nature and the composition of the adsorbed complexes were not entirely 

described. The formation of an amorphous aluminum hydroxide during adsorption experiments had not 

allowed to assign any components of the EXAFS and TRLFS studies of Froideval et al. [26]; hence 

surface complexes were not identified as well. Hongxia et al. [27] have shown that the insensitive 

effect of the ionic strength on uranyl adsorption on Al2O3 and Al(OH)3 could be interpreted as the 

formation of strong chemical bonds between the adsorbed species and the corresponding surfaces, and 

could be the result of the formation of inner-sphere complexes on the surface. 

Concerning uranyl adsorption on the hydrated Ni(111) surface, neither experimental nor theoretical 

studies have ever been carried out yet, to our knowledge. 

In this paper, periodic density functional theory (DFT) calculations were carried out to investigate 

the adsorption of the UO2
2+ cation on three different hydrated surfaces: the (110) surface of TiO2 rutile 

phase, the (001) surface of Al(OH)3 gibbsite phase, and the Ni(111) metallic surface. In a first step, 

bulk parameters were optimized and compared with experimental data, in order to build accurate 

surface models. In a second step, water adsorption was investigated in order to obtain the water 

distribution at the interface and to depict the type of formed interactions. Finally, uranyl adsorption 

was investigated on the various hydrated surfaces with the aim of describing the created complexes, 

with respect to the mineral surface. 
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2. Computational Details 

 

In this work, all calculations were performed with the VASP 4.6 code using periodic DFT 

methodology [28-31]. The GGA (Generalized Gradient Approximation), as defined by Perdew and 

Wang for exchange-correlation energy evaluation, was used (PW91) [32,33]. All atoms were described 

with pseudopotentials developed on plane wave basis sets generated with the PAW (Projector 

Augmented Wave) method [34,35]. Uranium atom was described with fourteen valence electrons (6s2 

6p6 7s2 5f 
3 6d1). Spin polarized calculations were carried out. The geometry optimization was 

performed using the conjugate gradient optimization scheme. The convergence criterions for the self-

consistency cycle and the maximum forces were set at 10-4 eV and 0.001 eV.Å-1, respectively. 

 

2.1. TiO2  bulk 

 

The titanium atoms were described with four valence electrons (4s2 3d2) and the oxygen atoms with 

six ones (2s2 2p4). This study started by optimizing the rutile bulk parameters in order to determine the 

accuracy of the modeling by comparing calculated parameters to experimental ones [36]. Calculations 

were performed using different sets of k-points and energy cutoff to evaluate their effects on the bulk 

parameters and to optimize them. The bulk rutile unit cell is tetragonal [37] (a=b=4.587 Å, c=2.954 Å, 

internal parameter x=0.305 and c/a=0.644), and has the space group No 136. Titanium atoms were in 

2a positions and O atoms in 4f positions using Wyckoff’s notations. The primitive cell contained two 

TiO2 units. The optimised parameters were obtained with a 555 k-point meshes and a 350 eV cutoff. 

These calculated parameters (a=b=4.649 Å, c=2.972 Å, internal parameter x=0.304 and c/a=0.640) are 

close to the experimental ones and agree with previous theoretical works [37]. They have thus been 

used to build the TiO2(110) model.  

 

2.2. Al(OH)3  bulk 

 

The pseudopotentials for Al atoms had as valence electrons (3s2 3p1) and oxygen atoms (2s2 2p4). 

Gibbsite has a sheet structure, crystallizing usually in pseudo-hexagonal platelets with monoclinic 

symmetry. All of the Al(OH)3 polymorphs were composed of layers of aluminum atoms located in the 

2/3rd of the octahedral sites with hydroxyl groups on either side, half of these groups bonding the 

layers together. The stacking structures of gibbsite and bayerite were thoroughly described by Giese 

[38], and Saalfeld et al. [39] refined the crystal structure in the centrosymmetric space group P21/n 

(C2h
5) from XRD (X-Ray Diffraction) patterns. Their results and assignments were recently confirmed 

by Mercury et al. [40]. Starting from the experimental parameters of Saalfeld et al. [39], the cell 

energy convergence with respect to the cutoff energy and the k points sampling was first checked. 

Using an optimized k points sampling of (2x4x2) and a cutoff energy of 450 eV, fine cell parameters 

were obtained in comparison with experimental and previous theoretical works. Results after 

optimization were summarized in Table 1. These optimized parameters were used in the following.  
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Table 1. Calculated and experimental gibbsite bulk parameters. 

Parameter This worka  Calculatedb Experimentalc 

a (Å) 8.736  8.765 8.684 

b (Å) 5.099  5.083 5.078 

c (Å) 9.628  9.594 9.736 

β (°) 92.83  92.63 94.54 

V (Å3) 428.4  427.0 428.0 
(a) Veilly et al. [41]  (b) Digne et al.[42] ; (c) Saalfeld et al. [39]. 

 

2.3. Ni bulk 

 

Nickel adopts a face-centered cubic structure with a lattice parameter a of 3.52 Å, a magnetic 

atomic moment μNi of 0.61 μB, and a bulk modulus B of 186 GPa [43]. Calculations performed on this 

structure led to the selection of a 121212 k-points grid and a 400 eV cut-off energy. The calculated 

parameters [44] (a=3.52 Å ; μNi=0.61 μB; B=195 GPa) were in good agreement with the experimental 

data and with previous DFT-GGA calculations (a=3.53 Å ; μNi =0.61 μB ; B=195 GPa) [45].  

 

3. H2O Interaction with Mineral Surfaces 

 

In this second part, a theoretical study was performed in order to identify the surface sites reactive 

towards water, and also to make clear if the interface should be considered as a hydroxylated surface 

(with adsorbed H2O and/or OH groups) or a hydrated surface with electrostatic water interactions. This 

first step will lead to a better understanding of the surfaces/water interface, in order to further study the 

uranyl adsorption process on these substrates. 

 

3.1. H2O / TiO2(111) 

 

Among the low index faces, naturally present in the rutile phase powder, the (110) face (60% of the 

major crystallographic faces) was found as the most stable one [11-14]. For that reason, this face has 

been chosen in this study. It exhibits titanium and oxygen atoms with different environments (Figure 

1). First, a pentacoordinated titanium atom, noted Ti(5), with an unsaturated valence and known as a 

Lewis acidic site. There are also two kinds of oxygen atoms, the first one is localised in the surface 

plane and is threefold coordinated (noted Os for “surface” oxygen); the second is prominent from the 

surface by about 1 Å and is doubly coordinated (noted Ob for “bridging” oxygen) and can be 

considered as a Lewis basic site. 

Before studying the water adsorption process itself, the dry TiO2 rutile (110) face was optimised 

with the aim to minimise its size while keeping an accurate description of the system. Internal 

constraints, consisting in internal layers frozen into their atomic bulk positions, were added in order to 

stabilise the surface energy for relatively thin systems that allowed working on large surfaces [36]. 

This led to the choice of a five layer system, with the most internal layer frozen to bulk positions. The 

cell parameters are: a=13.15 Å, b=26.30 Å and c=8.92 Å corresponding to 60 TiO2 patterns. A 10 Å 
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vacuum was created upon the surface in order to avoid any steric interaction between the adsorbed 

molecule and the upper cell. This accurate TiO2 rutile (110) surface model was used to further study 

adsorption processes [46].  

 

Figure 1. Dry TiO2 rutile (110) face. 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is generally considered [47] that water molecule adsorption can occur following two mechanisms: 

a molecular one, where the water molecule is linked to the Ti(5) atom, which corresponds to the 

experimental “terminal” oxygen (Ot) atom doubly protonated; and a dissociative one, where an OH 

group is linked to the Ti(5) atom, corresponding to the experimental Ot atom singly protonated, and the 

remaining hydrogen atom is transferred to a neighbouring Ob atom. For each mechanism, the water 

molecule, or the two fragments, can be involved in hydrogen bonding (Figure 2). 

In the case of a full water coverage (one H2O on each Ti(5) for the molecular adsorption case, or 

one OH on each Ti(5) and one H one each Ob for the dissociative adsorption case), the molecular 

adsorption was energetically the most stable (Eads(H2O)=-1.04 eV and Eads(OH+H)=-0.91eV) which 

was in agreement with the calculations of Lindan et al. [48] who found an adsorption energy of -0.99 

eV for the molecular case. However, the dissociative adsorption can also be envisaged because it could 

be stabilised with hydrogen bonding. Therefore, the partial dissociation of the first hydration layer was 

investigated with different ratios of molecular/dissociated water molecules. These simulations  

were performed in order to investigate if molecular and dissociated water molecules could coexist on 

the surface. 

In the following calculations, a 23 surface area was used (Figure 2) to study the partial 

dissociation of the first hydration layer. The supercell was composed of two hundred atoms, leading to 

a very big supercell. These calculations were performed at the  point; the large supercell’s dimension 

fully justified this choice. The supercell with the six molecular water molecules (the most stable 

structure) was taken as reference energy. Then, the six water molecules were progressively dissociated. 

Only the most stable structures were presented in Table 2, where: 

i) The average destabilisation energy due to the partial dissociation was calculated using  

Equation (1): 
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Where average
destabE  was the destabilisation energy per dissociated water molecule, refE  was the total 

energy of the supercell with the six molecular water molecules adsorbed on the six Ti(5) atoms, 

ercellEsup  was the total energy of the considered supercell and 
ddissociate

OHN
2

 was the number of 

dissociated water molecules. 

ii) The destabilisation of each dissociated water molecule can also be calculated using  

Equation (2): 

                           n
ercell

n
ercell

n
destab EEE sup

1
sup   ,      (2) 

Where n
destabE  was the destabilisation energy due to the thn  dissociation, 1

sup
n

ercellE  was the total energy 

of the supercell with )1( n dissociated water molecules and n
ercellEsup  was the total energy of the 

supercell with n dissociated water molecules. 

 

Table 2. Destabilization energies per dissociated water molecule as a function of the 

molecular (M) / dissociated (D) ratio (in eV). Percentage of dissociated water molecules 

was also reported. 

 

Among the six supercells with dissociated water molecules, the smallest destabilization per 

dissociated water molecule was observed for the 4/2 case. In this structure, two dissociated water 

molecules were stabilised with hydrogen bonding with four molecular ones, the total destabilization 

was only -0.04 eV relative to the reference; it corresponded to an average destabilisation of -0.02 eV 

per molecule. The destabilization energy obtained on the 5/1 system was also relatively weak  

(-0.03 eV). These calculations revealed that up to 33 % of dissociated water molecules, the 

destabilization due to water dissociation was significantly compensated by hydrogen bonds (Figure 2).  

This result was in agreement with experimental data where characteristic infra-red bands were 

detected and attributed to surface hydroxyl groups [49,50]. Moreover, some authors [51] have 

estimated to 25 % the ratio of dissociated water molecules in the first hydration layer, which remained 

consistent with the calculated range. 

 

M / D 

Percentage 

6 / 0 

0% 

5 / 1 

17% 

4 / 2 

33% 

3 / 3 

50% 

2 / 4 

66% 

1 / 5 

83% 

0 / 6 

100% 

average
destabE  0.00 -0.03 -0.02 -0.06 -0.08 -0.11 -0.13 

n
destabE  0.00 -0.03 -0.01 -0.14 -0.13 -0.23 -0.25 
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Figure 2. Top view of the 23 supercell for the 4 / 2 case. The oxygen atoms of the 

added water molecules (Ot) are displayed in yellow colour for clarity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. H2O / γ-Al(OH)3 (001) 

 

Uranyl adsorption was assumed to preferentially occur on the basal (001) face of gibbsite, since 

anion adsorption has been shown to be specific to the lateral faces [18]. In addition, the absence of 

cation adsorption on edges was coherent with the fact that in the pH range 4-10, the basal faces are 

uncharged while the lateral ones are positively charged [18,52,53]. The infrared spectra of uranyl 

adsorbed on the gibbsite sample confirmed this assumption: no change in the lateral OH infrared 

absorption was observed, whereas changes were reported with sulfate or carboxylate anions [53], in 

particular the broad band around 3,460 cm-1, sensitive to anion adsorption, remained unchanged when 

uranyl was adsorbed. Consequently, calculations were performed on the (001) face, which exhibits OH 

groups bicoordinated to aluminum atoms without any deprotonation effects (due to acidic pH 

conditions), hence corresponding to the crystallographic structure of gibbsite. In order to model 

adsorption reaction on this surface, it was necessary to evaluate the number of Al(OH)3 layers required 

to reproduce correctly surface relaxation. Surface energies calculations as a function of the number of 

layer (stacked in the c crystallographic direction) and atomic relaxation localization allowed us to 

define a two-layer cell [41], with a frozen layer and relaxed one, as an accurate model to study 

adsorption reactions on the (001) surface (Figure 3). 

Knowing that H2O adsorption on gibbsite took place thanks to a hydrogen bonding network [54,55], 

interfacial interactions were considered with a maximum of three hydrogen bonds per water molecule 

(surface sites were defined as a three O-H groups arrangement, with varied hydrogen atoms 

orientations (in-plane and / or out-of-plane, see Figure 3)). Because of the inner gibbsite (001) surface 

structure, a surface site could create one or two hydrogen bonds towards the oxygen atom of the water 
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molecule. On the other hand, the water molecule could participate to the interaction sharing one or two 

hydrogen atoms with surface oxygen atoms [Figures 4 (a) and (b)]. 

 

Figure 3. Thetwo-layer gibbsite model used for all calculations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on these two adsorption structures, four potential types of sites were considered. Indeed, the 

presence of one or two out-of-plane hydrogen atoms and the possible presence of one aluminum atom 

beneath the adsorption site (due to the 2/3 occupancy of the octahedral sites with aluminum atoms) 

should differentiate the adsorption structures [Figure 4 (c)].  

 

3.2.1. Adsorption at low water coverage 

 

Water adsorption energies at low coverage were first performed for sites composed with two out-of-

plane hydroxyl groups [Figure 4 (a)]. Five possibilities for this configuration were found on the whole 

gibbsite (001) face: two of them involved the presence of a sub-layer aluminum atom, and three others 

without this latter. Calculations showed that adsorption energies were very similar whatever the 

surface site (Eads ranging from -0.58 to -0.64 eV), leading to the conclusion that sub-layer aluminum 

atoms didn’t exert any significant influence on the water adsorption energies. Secondly, water 

adsorption energies were calculated for sites exhibiting only one out-of-plane hydrogen atom [Figure 4 

(b)]. Adsorption energies for the six different possible configurations were found ranging between -

0.29 and -0.54 eV. Figures 4 (a) and (b) display the two most stable water adsorption configurations 

for the two types of site:  

i) Figure 4 (a) corresponds to adsorption on a “two out-of-plane hydrogen site”, with Eads =-0.64 

eV. Distances are the following: d(HH2O-Osurface)=1.63 Å, d(OH2O-Hsurface)=1.88 - 1.99 Å. 

ii) Figure 4 (b) shows the adsorption configuration on a “one in-plane hydrogen site”, with  

Eads=-0.54 eV. Water molecule is linked to the surface with two strong hydrogen bonds 

(d(HH2O-Osurface)=1.70 Å and d(OH2O-Hsurface)=1.85 Å) and a weaker third one (d(HH2O-Osurface)= 

2.46 Å). 
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From these results two different orientations of water molecules upon the surface were pointed out. 

For sites with two out-of-plane hydrogen atoms, the plane of the water molecule was perpendicular to 

the surface and three hydrogen bonds were created, whereas the molecular plane was almost parallel to 

the surface for sites exhibiting two in-plane hydrogen atoms. During the optimization process, in-plane 

OH groups didn’t tilt to create hydrogen bonding with water molecules. 

 

Figure 4. An example of the two possible water adsorption structures (after optimization) 

is presented on a simplified scheme in panel (a) and (b). Hydrogen bonds are displayed in 

red color with distances. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a): In blue color, water molecule is linked with two out of plane surface hydrogen atoms and one 

surface oxygen atom.  

(b): In green color, water molecule is linked with only one out of plane surface hydrogen atom and 

two surface oxygen atoms.  

(c): Top view of the four kinds of H2O adsorption sites.  

 

3.2.2. Adsorption at high water coverage 

 

Starting from the most stable water structure at low coverage (three sites with Eads=-0.64 eV) the 

coverage was increased up to water monolayer formation. Calculations showed [41] that three possible 

ordered water monolayers could be formed on this face with very close stabilities. One water molecule 

interacted with two out-of-plane hydrogen atoms and one surface oxygen atom (Eads=-0.64 eV, first 

added water molecule in blue color in Figure 5) and the other one with one out-of-plane hydrogen 

atom and two surface oxygen atoms (Eads=-0.45 eV, second added water molecule in green color in 

Figure 5). One example of a structure is displayed in Figure 5 where hydrogen bonding is displayed in 

red color. The destabilization due to the adsorption of the second water molecule to saturate the surface 
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was weak and ranged from about 0.05 to 0.1 eV. This was explained by the rather important water-

water distance (for instance a minimal distance of roughly 4.5 Å considering the structure of in Figure 

5). The water monolayer exposed relatively strong hydrogen bonds with the surface hydroxyl groups, 

as for the similar octahedral kaolinite surface [56]. Due to the two adsorption structures, periodic 

alternation of the water molecule dipolar moment direction therefore took place, either directed 

towards the surface or away from it, as it was observed by Wang et al. [55]. The average distance 

between the surface plane and the water monolayer was calculated to 2.26 Å (the distances of the two 

water structures are closed (d=0.04 Å) see (Figure 5).  

 

Figure 5. Example of a water monolayer on the (001) gibbsite face. Hydrogen bonds are 

displayed in red color with distances. 

 

 

 

 

 

 

 

 

 

 

3.3. H2O / Ni(111) 

 

As for the previous studied surfaces, the Ni(111) face was built using the bulk optimized lattice 

parameters. The optimized surface model was composed of four layers, with a vacuum of 12 Å in 

order to avoid interactions between the adsorbed molecule and the upper cell [44]. This model was 

largely validated through previous studies on nickel, but also on pure transition metals or alloys [57-

59]. A small contraction of -0.9 % of the distance between the first and the second layer was 

calculated, as well as a small expansion of about 0.5 % between the second and third layer. This was in 

good agreement with previous studies [45,60], which allowed us to validate this four layers model to 

investigate the water interaction on the Ni(111) face.  

At low coverage (1/9 MonoLayer (ML) coverage), the adsorbed water molecules can be considered 

as isolated (no hydrogen bonding: d(H2O-H2O)=7.46 Å). Water adsorption was investigated for each 

high-symmetry site on the Ni(111) model to determine the most stable adsorption configuration and 

their relative energy stabilities (Figure 6). The corresponding adsorption energies were calculated 

according to Equation (3): 

2ads H O( )  hydrated dry
surface surfaceE E E E

     (3) 

With adsE  the adsorption energy of one water molecule, hydrated
surfaceE  the energy of the surface model with 

one adsorbed water molecule, 
2H OE  the energy of an isolated water molecule, and dry

surfaceE  the energy of 

the clean Ni(111) face.  
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Figure 6. (a) Top view of the water adsorption sites on Ni(111). (1) top, (2) face centered 

cubic (fcc site), (3) bridge and (4) hexagonal compact (hcp site) adsorption sites. (b) Cut 

view of the four layer Ni(111) model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Calculated adsorption energies are summarized in Table 3 and compared with previous calculations 

and experimental data.  

 

Table 3. Adsorption energies Eads (in eV). Results from previous works are also 

summarized. See Figure 6 for notations. 

 Eads  ΔEads Eads GGA [61] Eads exp.[62] Eads exp.[63] Eads exp.[64] 
(1) on top –0.34 0 –0.25 –0.42 –0.48 –0.53 
(2) fcc –0.24 +0.10 – – – – 
(3) bridge –0.18 +0.16 –0.10 – – – 

(4) hcp –0.14 +0.20 – – – – 

 

The “on top” structure (configuration 1, Figure 6) was calculated as the most stable one with an 

adsorption energy of Eads=-0.34 eV. The corresponding distance between nickel and oxygen atoms was 

calculated to 2.10 Å. This structure has already been observed and calculated, at low coverage, for 

water molecules on nickel at higher coverage (¼ ML, [61,65]) and on other transition metals (like 

Pt(111), Ru(0001), Rh(111), Pd(111), Cu(111), Ag(111) and Au(111) [59,66-68]). The recent work of 

Li et al. [65] has shown that the Ni-OH2 bond was principally due to the hybrid orbitals: 3pz(Ni)–

2pz(O), 3py(Ni)–2pz(O), 3pz(Ni)–2py(O) and 3py(Ni)–2py (O). 
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The water coverage was then progressively increased without considering cluster formation (water 

dimer). Average adsorption energies per water molecule were calculated as a function of the surface 

coverage according to Equation (4): 

                    

2H O 


hydrated dry
surface surfaceaverage

ads

E n E E
E

n                      (4) 

where, average
absE  was the average adsorption energy per water molecule, hytdrated

surfaceE  was the total energy of a 

cell containing the surface with n water molecules, 
2H OE  was the energy of an isolated water molecule 

in vacuum, and dry
surfaceE  was the energy of the clean surface. Results showed the competition between 

the stabilization due to hydrogen bonds formation between water molecules and the destabilization 

resulting of oxygen – oxygen repulsions. Three parts can be separated [44]:  

(i) For surface coverage lower than 2/3 ML, the adsorption energies were in the range of isolated 

water molecules ( -0.3 eV)). 

(ii) For 2/3 ML surface coverage distances between water molecules were 2.5 Å and hydrogen 

bonds were created stabilizing the water network. Water molecules were organized in a bilayer 

H-up-hexamer structure which will be detailed below. 

(iii) For higher coverage than 2/3 ML water molecules pushed back themselves, which led to the 

formation of a third layer. The three water layers are displayed in Figure 7. 

 

Figure 7. The three water layers on the Ni(111) face.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Calculations showed that a water saturation occured at 2/3 ML surface coverage, in good agreement 

with the XPS (X-ray Photoelectron Spectroscopy) study of Pache et al. [62]. When the saturation is 

reached, a cyclic hexamer structure of water molecules took place on the surface (Figure 7). This 

structure has been proposed to exist experimentally [69] and calculated on several flat transition metal 

surfaces [67,68]. Each water molecule formed three hydrogen bonds with its water neighbors. Water 

molecules could be separated in two categories: the first type (called first water layer in this study) was 

located at 2.30 Å from the surface nickel atoms, forming planes which make a bond angle of 4.58° 

with the surface. Covalent O–H bonds measure 1.02 Å (0.99 Å for a water molecule at low coverage). 
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Each O–H bond pointed toward a water molecule of the second type. The second type (called second 

water layer in this study) was located at 3.41 Å from the surface nickel atoms and the H2O plane was 

almost perpendicular to the surface. One hydrogen atom was steered in the opposite side of the surface 

(dO–H =0.99 Å), and the second one toward an oxygen of a water molecule of the first water layer (dO–

H =1.07 Å). The H-O-H bond angle had a value of 107.02°. The calculated structure was in agreement 

with the angle resolved UPS (Ultraviolet Photoelectron Spectroscopy) spectra showing a splitting of 

the 3a1 level which indicated the existence of two nonequivalent water molecules in the adsorbed 

bilayer water structure of the hexamer on the clean Ni(111) face [62]. Adsorption energy calculations, 

per water molecule, revealed that only the water molecules of the first layer interacted directly with the 

nickel surface (Eads -0.20 eV), whereas those of the second layer didn’t interact directly with the 

surface, but formed hydrogen bonds with the first water layer [44]. The interaction energy of one water 

molecule of the second layer was estimated to -0.85 eV. As each molecule possessed three hydrogen 

bonds, the average H bonds strength in the bilayer H-up-hexamer was around -0.28 eV, which was in 

agreement with the works of Michaelides et al. [70] (-0.27 eV on Ru(0001)) and of Meng et al. [71] (-

0.26 eV on Pt(111)). If additional water molecules were introduced after saturation of the nickel 

surface at 2/3 ML coverage with the bilayer H-up-hexamers, the formation of a third water layer was 

observed (Figure 7). It was located at 5.73 Å of the surface. Each water molecule was physisorbed on 

top of a bilayer H-up-hexamers with an average calculated adsorption energy of -0.33 eV. This results 

is in agreement with TPD (Temperature Programmed Desorption) measurement [62], showing that 

after saturation of the -state corresponding to the water ‘bilayer’ at 2/3 ML coverage, two additional 

peaks appeared in the spectra upon further increase of exposure. At first the -state grows in, which 

was attributed to a transition state between the water ‘bilayer’ and the condensed ice layer which 

corresponded to the third peak observed. This result suggested that for adsorptions on top of the 

‘bilayer’ there was still an effect of the substrate on the water distribution. 

 

3.4. Conclusion of the water part 

 

These results clearly put forward a different behaviour of water at the interface of the three studied 

materials: Concerning oxide metal TiO2, the presence of Ti(V) CUS (Coordinatively Unsaturated 

Sites) on the (110) surface engendered direct adsorption of water molecules to create Ti-OH2 groups 

with an adsorption energy of -1.04 eV for the most stable structure (molecular adsorption). However, 

water dissociation could take place up to a 33% ratio of proton transfer from adsorbed H2O to the 

neighbouring “bridging” Ob atom, in good agreement with experimental data [51]. On the other hand, 

gibbsite (001) surface exhibited two kinds of O-H groups, depending on the arrangement of the 

hydrogen atom (perpendicular or parallel to the surface plane). Water interaction consequently took 

place by means of several weak hydrogen bonds. The first water monolayer evidently involved a 

mixing of two water adsorption configurations, as already suggested by means of molecular dynamic 

calculations [55]. Finally, metallic nickel (111) surface incited a particular water arrangement for a 2/3 

ML surface coverage (corresponding to saturation). Water molecules were organized in a bilayer H-

up-hexamer structure, where hydrogen bonds are created and stabilize the water network. The 

reactivity of the three substrate towards water being well characterized, the uranyl interaction on the 

different hydrated surfaces could be investigated. 
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4. Uranyl Interaction on the Hydrated Mineral Surfaces  

 

4.1. Uranyl / hydrated-TiO2(111) 

 

The +VI oxidation state is observed for uranium in aqueous solution under oxidizing conditions. 

From the aqueous uranium speciation diagram [5], the uranyl ion (UO2
2+) is the main species at pH < 

4. Knowing that the free uranyl ion in acidic solution exhibits five water molecules in its first 

hydration shell ([UO2(H2O)5]
2+) [15], VASP calculations were performed to assess the geometrical and 

energetic features of the complex. Calculations were thus carried out on [UO2(H2O)n]
2+ complexes, 

with n from 0 to 6, with all the water molecules in the first hydration shell of the uranyl ion. For n from 

4 to 6, additional structures with water molecules in a second hydration sphere were also tested [72]. In 

agreement with experimental data and previous calculations, the pentahydrated uranyl ion (Figure 8) 

was characterized as the most stable complex with d(U=O-yl)=1.78 Å (exp: 1.77±0.002 Å) and d(U-

OH2)average=2.46 Å (exp: 2.42±0.02 Å). In addition, the average hydration energy of -2.18 eV 

calculated for the pentahydrated complex was in agreement with localized PW91 (-2.20 eV) and MP2 

(second level Moller Plesset) (-2.10/-2.17 eV) calculations [73-75]. This good correlation between 

these results and experimental data showed that plane waves periodic DFT calculations, which is not 

the most appropriate approach to study molecular systems, was on the contrary powerfull to describe 

molecular structures such as [UO2(H2O)5]
2+.  

 

Figure 8. Pentahydrated uranyl structure [UO2(H2O)5]
2+. 

 

 

 

 

 

 

 

 

 

 

Since theoretical results from periodic DFT calculations for the isolated aqueous uranyl ion were in 

good agreement with experimental data, the interaction between uranyl and the hydrated surface was 

then investigated using this methodology. 

From a crystallographic point of view, two kinds of surface oxygen atoms were supposed to be 

reactive on the hydrated TiO2(110) surface: the bridging and terminal ones (Figure 2). As EXAFS data 

revealed that the uranyl ion interacts with the TiO2(110) face with an inner-sphere mechanism, leading 

to a bidentate surface complex with no aggregation phenomenon, three different possible bidentate 

adsorption sites had to be considered (Figure 9): bridging-bridging (noted bb), terminal-terminal (noted 

tt) and finally bridging-terminal (noted bt). 
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Figure 9. The three studied adsorption sites. 

 

 

 

 

 

 

 

 

 

 

However, only two adsorption sites were observed experimentally [15] and were attributed to the 

bridging-bridging and bridging-terminal sites [17]. Calculations [72] were carried out with a supercell 

surface dimension of 13.28.9 Å2 and containing up to 200 atoms. On this large surface, the uranyl ion 

should not interact with its own image (d(U–U)min=8.9 Å), in agreement with EXAFS data where no 

uranium–uranium interactions were detected. To keep its pentadentate equatorial hydration shell, the 

uranyl ion was saturated with three water molecules. Low pH conditions were simulated by saturating 

with protons all reactive surface oxygen atoms (terminal and bridging oxygen atoms). The CD-MUSIC 
model [19,76] allowed us to evaluate the intrinsic pK  values of the different oxygen surface sites by 

considering their atomic environment and their saturation. By applying this model to the rutile TiO2 

(110) face, the behavior of the three oxygen surface species could be defined: the Os atoms were not 

found to be reactive to protonation; next, the Ob ones can be protonated once with a corresponding 
calculated 1pK  of 4.4; at last, the Ot atoms were at least once protonated in aqueous solution and a 

second protonation was possible with a calculated 2pK  value of 7.5. The third protonation was not 

possible in aqueous solution. Therefore, as experiments were performed at very low pH conditions 

(pH=3), all Ot atoms were doubly protonated and Ob ones only singly, which corresponded to our 

saturated surface model. No hydrogen was added on oxygen atoms of the adsorption site (it was 

calculated to be less stable or unstable [72]). The bond lengths in the three optimized structures were 

compared to the EXAFS results and the relative uranyl adsorption energies were calculated (Table 4).  

Regarding the relative adsorption energies of the uranyl ion, it appeared that the bb and the bt 

structures were the most stable ones and energetically very close. The third structure, the tt one, was 

175 meV less stable than the bb one, which was in agreement with the experimental result: only two 

uranyl surface complexes, on the two most reactive adsorption sites (bb and bt), were observed on the 

TiO2 (110) surface. Among the structures, the bb adsorption site was found to be the most stable one in 

agreement with experimental data [16]. Looking at the U=O and U–Owater distances, a part of the 

lengthening was most likely due to the GGA formalism. However, since GGA was known to give 

more reliable energies for molecular species than LDA (Local Density Approximation) formalism, it 

has so been preferentially used in this study. A major part of this lengthening can be linked to the lack 

of solvent effects as well, not taken into account in these calculations, that should favor the 

stabilization of the =O and –OH2 bonds. Regarding the U–Osurface bond lengths, the average distances 

determined by EXAFS at 2.31 Å were consistent with the average calculated optimized distances. It 
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was also observed that the adsorbed uranyl ion was not linear contrary to the pentahydrated form in 

solution, as also calculated by Moskaleva et al. on hydroxylated alumina surfaces [6]. The observed 

bending was related to the low bending frequency of the uranyl, calculated by Clavaguéra-Sarrio et al. 

[74] between 100 and 180 cm-1 (depending on the exchange-correlation functional used). In addition, 

XANES (X-ray Absorption Near Edge Spectroscopy) spectrum calculation shown that until a torsion 

angle of 20 degrees, the characteristic signal of the uranyl ion was still present [15]. Therefore, taking 

into account this calculation from the experimental XANES spectrum, the O=U=O angle could be in 

the range of 160-200°.  

 

Table 4. Optimised geometries for the three bidentate adsorption sites (distances are in Å, 

bond angles in degree). Relative energies are meV. The most stable structure was taken as 

reference energy. 

 bb bt tt EXAFSe 
U=O 1.91 1.90 1.86 1.78  0.02 

O=U=O 166.1 172.4 176.1 180 
U–Osurface 2.30 2.21a / 2.28b 2.17 2.31  0.02 
U–Owater 2.60c 2.62c 2.64c 2.46  0.02 
Erelative

d 0.0 85 175  
a,b bond lengths with the bridging and the terminal oxygen atoms, respectively. 
c Average distance from the three bond lengths. d The bb structure is taken as 
reference because it was the most stable. e Experimental results from Den Auwer et 
al. [15]. 

 

4.2. Uranyl / hydrated-γ-Al(OH)3(001)   

 

As it was shown that the gibbsite edge faces were strongly positively charged [18,52], while in the 

pH range of this study (low pH, ranging between 3 and 4) the basal charges may be neglected, it was 

expected that uranyl cation were adsorbed on the basal faces. This trend was confirmed using infrared 

spectra. Indeed, the absorption spectra did not show any significant change in the lateral OH stretching 

region after the adsorption of the uranyl cations in opposition with the anion retention [41,52,53]. 

Moreover, a bidentate uranyl complex formation (leading to an inner sphere complex) was assumed to 

be favorable on the (001) gibbsite surface, according to the literature [15,77-79]. Consequently, surface 

complexes in our computation possessed three water molecules as first hydration shell. The surface 

basal oxygen atoms of hydroxyl groups with in-plane hydrogen were at first sight good candidates to 

link with the uranium atom, since they offered a direct possibility of linkage of the uranium atom in the 

uranyl equatorial plane. Only three potential structural sites of this type were available on the (001) 

face (see Figure 10), due to the high symmetrical surface configuration: two of them hold roughly the 

same O-O distances (about 2.7 Å, site I and III), whereas the last one exhibited a longer O-O distance 

(3.4 Å, site II). 
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Figure 10. (a) Top view of the (001) gibbsite surface, with the three crystallographic active 

sites towards uranyl adsorption. (b) Uranyl adsorption structure on site I (monolayer water 

molecules have been omitted for clarity). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Relative energies and characteristic distances for the three optimized structures were summarized in 

Table 5 in the protonated sites part. 

 

Table 5. Main characteristics of the adsorbed complexes with respect to the surface 

protonation state. Distances are in Å, bond angles in degree and ΔE in eV. The most stable 

structure was taken as reference energy. 

 d(U-Osurf) d(U=O-yl) d(O-yl••••H) Θ(O=U=O) ΔE  
Protonated sites      

Site I 2.61-2.70 1.88-1.96 1.81-1.82-2.32 169.6 0.28 
Site II 2.53-2.87 1.92-1.94 1.71-1.75-1.79 176.0 0 
Site III 2.60-2.70 1.92-1.95 1.61-1.72-2.32 168.4 0.24 

Deprotonated sites      
Site I 2.11-2.21 1.87-1.92 1.95-2.04-2.31 146.9 0.58 
Site II 2.10-2.24 1.87-1.89 1.74-1.77-1.83 162.9 0 
Site III 2.12-2.17 1.90-1.92 1.69-1.79-2.08 150.8 0.40 

 

The most stable adsorption configuration corresponding to site II is displayed in Figure 10, panel b. 

For this site, a shift of uranyl occurred during the optimization. Indeed, due to the important initial 

Osurface-Osurface distance (3.4 Å) compared to site I and III (2.7 Å), uranyl ion rotated from starting site 

II (displayed in full red line, Figure 10, panel a) to a neighbored site surrounded in red dashed line. 

This latter (d(O-O)~2.7 Å, like site I and III) exhibited prior to uranyl interaction, one in-plane and one 

out-of-plane hydrogen atoms. The out-of-plane hydrogen atom fell over in the surface plane during 

uranyl adsorption. In a general way, after optimization, only one type of surface complex were 

calculated: all of them were stabilized throughout a hydrogen bonds network by means of three 

hydrogen bonds (dashed line in Figure 10, panel b) between the surface and the ‘-yl’ oxygen atoms. 
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One of the O-yl atom hold two hydrogen interactions, whereas the other was single bonded. Distances 

between uranium atom and surface oxygen atoms were in the range 2.5-2.9 Å, indicating to a rather 

iono-covalent bonding nature with a relatively strong ionic part. A slight decrease of the O=U=O bond 

angle occurred when adsorption, reaching a minimum of 168.4° for site III. U-(O-yl) distances were 

slightly increased upon adsorption, about 1.92 Å (average value) for all complexes. Distances between 

the three first hydration shell water molecules and uranium atom also increased: calculated average 

values were of 2.57, 2.53 and 2.55 Å for site I, II and III, respectively. 

Nevertheless, when the above mentioned adsorption reaction occurred, reactive oxygen atoms of the 

(001) plane linked to the uranium atoms adopt a rather unsteady four-fold coordination state. A 

possible local deprotonation of the hydroxyl groups could thus be assumed. Characteristics distances 

and relative energies of the complexes are given in Table 5 in the deprotonated sites part. Geometrical 

features of this kind of configuration were the following. The averaged U=O distances were similar to 

the ones observed for protonated complexes, although a little bit shortened (average value: 1.89 Å). A 

stronger interaction took place between uranyl and the surface due to lower coordination of oxygen 

atoms. Indeed, the U-Osurface distances were decreased of around 0.5 Å compared to surface protonated 

complexes, plainly revealing a more covalent bond character. The O=U=O bond angles were highly 

distorted (146.9, 162.9 and 150.8° for sites I, II and III, respectively) compared to protonated 

complexes, as it was already observed within periodic DFT calculations of uranyl adsorption on 

hydroxylated alumina [6]. This behaviour is coherent with the decrease of the distance U-Osurf. The 

distances between the three remaining water molecules and the uranium atom increased of about 0.1 Å, 

relative to protonated complexes. 

From these last calculations, it can be concluded that even if several complex structures had to be 

considered primarily, all of them converged to a very similar final complex structure. Therefore, only 

one type of complex structure was calculated and determined on this gibbsite face (whatever the 

protonation state of the adsorption site). Indeed, local deprotonation of the surface oxygen atoms 

involved in bonds was also investigated. A significant decrease of the U-Osurface bonds was observed 

resulting in a most important interaction with the surface. Calculations on a dry (001) gibbsite face 

were also tested in order to analyze the effect of the surface hydration on the adsorption process. No 

major changes in the adsorption geometries were detected (for protonated sites as well as non-

protonated ones). Only a slight decrease of the hydrogen bonds lengths between the adsorbed molecule 

and the surface was noticed (because hydrogen bonds between O-yl and water molecules didn’t exist 

anymore). 

In support to this theoretical approach, Raman and TRLFS experiments [41] were performed in 

order to check the validity of the DFT results. TRLFS results showed that only one type of uranium 

adsorption site was present on the (001) gibbsite face at pH=3 and for [U(VI)]=10-4 and 10-3 M, in 

perfect agreement with the above theoretical results. Moreover, as the spectroscopic parameters of the 

adsorbed species were the same at 0.1 M and 1 M ionic strength, the formation of inner-sphere 

complexes initially assumed for calculations is therefore fully established. Indeed, at a high ionic 

strength the retention via the formation of outer-sphere complexes was strongly unfavorable while the 

formation of inner-sphere complexes was not influenced at all [80-83]. Raman results confirmed the 

bidentate adsorption mode of uranyl on the surface. Unfortunately, no experimental data is yet 

available to know if the local deprotonation of the adsorption site oxygen atoms can take place during 
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the adsorption process. Therefore, EXAFS measurement will be soon performed in our group to get the 

U-Osurf distances in order to answer this question.   

 

4.3. Uranyl / hydrated-Ni(111) 

 

As no experimental data have been yet available for this system, we first investigated the uranyl 

adsorption on the dry Ni(111) face and in a second step on the hydrated one, in order to analyze the 

solvent effect on the adsorption process. In the case of the hydrated surface, the adsorption with an 

inner as well as outer sphere mechanism was investigated. 

First, the adsorption of the uranyl ion at low coverage was investigated on the dry (111) nickel 

surface [44]. The most stable surface complex is presented in Figure 11. Uranyl rod was perpendicular 

to the surface, the distance d(U-O-yl) was calculated to 1.87 Å near the surface and 1.81 Å on the other 

side. Indeed, all the parallel starting structures with direct H2O-Ni interactions were calculated  

as unstable.  

 

                Figure 11. Adsorption of UO2(H2O)5
2+ on the dry Ni(111) at low coverage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The interaction between the uranyl ion and the nickel surface was therefore made through an O-yl 

atom and a surface Ni atom. Adsorption energies for the four different calculated stable surface 

complexes were summarized in Table 6. It was shown that hydrated uranyl ion adsorbed preferentially 

on top of a surface nickel atom through a Ni-O-yl bond, with a strong adsorption energy of -8.89 eV. 

This structure represented in Figure 11, displayed a Ni-O-yl bond length of 1.94 Å. The first hydration 

shell geometry remained almost unchanged compared with aqueous uranyl cation: the five water 

molecules were optimized at an average distance of 2.52 Å from the uranium atom. Water molecules 

were at a distance dNi-O(-water) of 3.95 Å from the nearest nickel atom and the uranium atom at 3.81 Å. 

To sum up, a strong Ni-O-yl interaction took place between the uranyl and the metallic surface. 
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Table 6. Adsorption energies of the uranyl ion on the dry Ni(111) face. Energies are in eV. 

To visualize the top, hcp, fcc and bridge adsorption sites, see Figure 6. 

 (1) top (2) hcp (3) bridge (4) hcp 

E (eV) –8.89 –8.66 –8.62 –8.03 

ΔE (eV) 0.00 +0.23 +0.27 +0.86 

 

The interaction of the uranyl ion was then investigated on the hydrated surface model, optimized in 

the previous part (3×3 unit cell with four Ni layers). Two structures were calculated as stable and are 

presented in Figure 12. 

 

Figure 12. The two adsorption modes of the uranyl ion on the hydrated Ni(111) face were 

displayed. For each one, (a) represents a top view and (b) a cut view. The third water layer 

was omitted in these pictures to clarify the view. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the first structure, the uranyl ion was adsorbed on the surface through its first hydration shell 

and shares two water molecules with four surface hexamers (left panel of Figure 12). The uranyl 

hydration shell for this outer-sphere mechanism adsorption mode was composed of five water 

molecules, as for isolated aqueous uranyl cation. Both U=O bond lengths had a value of 1.88 Å. The 

uranium atom was almost equidistant and quite far away from the two nearest nickel surface atoms 

(dU-Ni =5.61 and 5.67 Å), and so didn’t interact directly with the surface. Hence, this adsorption 

mechanism took place through an hydrogen bonds network with the first hydration shell. The two 



Int. J. Mol. Sci. 2009, 10             

 

 

2654

water molecules (pointed out in yellow and red color in the left part of the Figure 12) were shared 

between the first hydration shell of the uranyl and four hexamers at 2.58 Å and 2.51 Å from the 

uranium atom (Δd=+0.12 Å / +0.05 Å compared with uranyl ion in aqueous solution). This adsorption 

mode induced a slight increase of the distance between the uranium atom and its first hydration shell: 

the average distance between the uranium atom and the three others water molecules went up to 2.70 Å 

(2.46 Å in gas phase). This last value was surely overestimated due to the lack of solvent effects, as it 

was previously calculated in prior works [6,41, 79]. Distances between the two water molecules of the 

uranyl first hydration shell and the nearest Ni surface atoms (3.37 and 3.74 Å (left part of the Figure 

12, panel b)) implied that one of the shared water molecule (the chemisorbed one) was pulled out from 

the surface and no more interacted directly with Ni(111).  

The second adsorption configuration was displayed in the right part of Figure 12. The O=U=O axis 

was perpendicular to the surface, on top of a free surface nickel atom at a distance of d(Ni-O-yl)=1.92 

Å. The uranyl ion contracted six water molecules in its first hydration shell consequent to this 

adsorption mode. Accordingly, it led to an increase of the U-OH2 distances of 0.21 Å (average value) 

relative to free uranyl ion (2.46 Å). Although the presence of six water molecules in the uranyl first 

hydration shell was not the most stable coordination mode in aqueous solution, this structure remained 

possible: the solvation energy with five water molecules was calculated to Esolvation=-2.23 eV, which 

was 0.33 eV more stable than with six water molecules [72]. Besides, comparison with the hexamers 

without adsorbed uranyl displayed an increase of the distances between the hexamer and the nickel 

surface atoms (Δd=+1.00.2 Å). This demonstrated that when uranyl ion adsorbed perpendicular to the 

surface, water molecules interacted in a preferential way with the ion instead of with the surface. 

Because of various interaction components for this kind of adsorption mode (hydrogen bonds, 

U•••OH2, O-yl•••Ni, etc …), it was not straightforward to calculate the overall adsorption energy. 

Therefore, to estimate the O-yl•••Ni bond energy, comparison has been done with calculation of the 

uranyl ion adsorbed on the dry Ni(111) face. In this case, as view previously, the Ni-O-yl bond length 

was 1.94 Å for a calculated adsorption energy of -8.89 eV. The addition of hexamers on the surface 

had almost no influence on the Ni-O-yl distance (-1.04 %). Hence, it was concluded that the O-yl•••Ni 

bond energy shouldn’t noticeably change when water hexamers cover the surface. It was also deduced 

that the main part of the interactions between the surface and the uranyl ion was done through the O-yl 

atom. The complex was furthermore stabilized through its first hydration shell, which formed 

hydrogen bonding with surrounding water hexamers which were bonded to the surface. 

 

5. Conclusions 

 

Results obtained in this study were relevant to the retention of the uranyl radionuclide on three 

distinctive mineral surfaces (rutile TiO2, gibbsite Al(OH)3 and Ni). It was demonstrated that periodic 

DFT calculations can provide a high level of understanding that is necessary to correctly describe 

uranyl retention reactions. Results showed that the adsorption behaviour was strongly dependent on the 

nature of the mineral phase. Calculations were performed using the VASP code in three steps for  

all substrates. 

First, it was necessary to determine the crystallographic parameters for the bulk minerals, in order 

to check the robustness of this approach and to afterwards model accurate surfaces. These parameters 
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were optimized starting from crystallographic experimental data. To check the validity of the 

calculated parameters, minerals physical properties were calculated and compared when possible to 

existing ones found in the literature. Then, the TiO2(110), Al(OH)3(001) and Ni(111) faces were 

modelled. To correctly reproduce the surface properties with the smallest model, internal constraints 

were imposed. 

In a second part, since uranyl adsorption takes place at the liquid/solid interface, water interaction 

on the three surfaces was investigated first. Calculations revealed varied behaviour of water molecules 

on surfaces. Concerning the TiO2 rutile phase, water interaction was found to be strong because the 

(110) face exhibit CUS in the form of Ti(5) atoms. Thus, Ti-OH2 groups were formed, and can be 

partially dissociated by transferring a hydrogen atom on a neighbouring Ob (“bridging” oxygen) atom 

to create a bridge bonded hydroxyl group. The calculated water dissociative ratio (around 33%) was in 

good agreement with experimental value. However, because of the experimental acidic condition 

applied during the adsorption process (pH=3), the surface was fully protonated, consequently 

exhibiting a mix of (Ti)OH2 and (Ti2)OH groups in equivalent amount. On the other hand, water 

interaction on the gibbsite (001) surface led to a quite strong hydrogen bond network, since the surface 

expose O-H groups. Two water adsorption configurations arose, related to the presence of one or two 

out-of-plane hydrogen atoms per site on the surface. Monolayer coverage involved a periodic 

alternation of the two configurations, with adsorption energies of -0.64 eV (site with two out-of-plane 

hydrogen atoms) and -0.45 eV (site with one out-of-plane hydrogen atom). Finally, water interaction 

with the metallic Ni(111) surface generated the formation of a bilayer H-up hexamers structure for a 

coverage of 2/3 ML (matching to surface saturation with water). Two types of water molecules 

belonging to hexamers were observed: the first layer interacted directly with the surface (Eads=-0.2 eV 

per water molecule), while the second one was bounded by means of hydrogen bonds to the first water 

layer. If the coverage was still increased, a physisorbed third water layer appeared on top of each 

hexamer.  

Finally, the three hydrated surfaces being fine characterized, the interaction with the uranyl cation 

was investigated. Before studying uranyl adsorption, one needed to optimize the structure of 

[UO2(H2O)5]
2+, the predominant and most stable hydrated complex in acidic aqueous solution. 

Calculations showed good agreement for the optimized cation geometry with spectroscopic results as 

well as previous theoretical ones. Then, uranyl interaction with TiO2(110) was first considered. Three 

potential sites were detected on the surface, and two kinds of oxygen atoms (Ot ‘terminal’ and Ob 

‘bridging’) were found to be reactive towards adsorption. Indeed, EXAFS data revealed that uranyl 

adsorbed via an inner sphere mechanism, leading to a bidentate adsorption mode. Therefore, when 

uranyl adsorbed, two first shell water molecules were removed in order to allow uranium bonding with 

the surface. Calculated relative adsorption energies confirmed that the bb and bt structures were the 

most stable, in accordance with experimental results. If U=O and U-OH2 distances were calculated 

slightly longer than EXAFS ones, due to the partial description of the solvent effect, U-Osurface 

distances matched quite perfectly (2.31 Å). Finally, the linearity of the uranyl disappeared during 

adsorption. This was in agreement with the XANES spectrum calculation showing that up to a torsion 

angle of 20 degrees, the characteristic signal of the uranyl ion was still present, which means that the 

O=U=O angle could be in the range of 160-200°. Regarding to gibbsite (001) surface, three potential 

crystallographic sites were determined. Indeed, literature allowed one predicting a bidentate adsorption 
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mode upon the (001) surface. Therefore, surface oxygen atoms bearing in-plane hydrogen atoms 

appeared to be good candidate to link with the uranium atom. Distances between the complexes and 

the surface, in the range of 2.5-2.9 Å, were characteristic of an ionocovalent interaction composed of a 

significant ionic part. Calculated U=O distances and U-OH2 were around 1.92 Å and 2.53 Å, 

respectively (average values), that is, longer than for uranyl in the gas phase. The O=U=O bond angle 

slightly curved due to the adsorption. To sum up, it was observed that all optimized complexes 

displayed a similar structure, even if various stabilities were detected. In addition, it should be noted 

that surface site deprotonation was taken into account, because of the instability of the four-fold 

coordinated oxygen atoms engaged with uranyl molecule. The main geometrical features resulting 

from oxygen atoms deprotonation were a significant decrease of the U-Osurface bond lengths (from 2.5-

2.9 to 2.1-2.2 Å) correlated to a strong O=U=O bending angle (until 147° for one site). TRLFS and 

Raman experiments were carried out to check the validity of the computational results. Raman results 

supported the bidentate adsorption mode, and TRLFS measurements provided evidence that there was 

only one type of adsorption site upon the surface. Moreover, the formation of inner-sphere complexes 

was also confirmed, in agreement with DFT results. Indeed, these calculations show and confirm 

clearly that the displacement of water molecules seems always the mechanism involved, leading to an 

inner-sphere uranyl surface complex, whatever the mineral substrate reported in the literature.  

Finally, interactions between uranyl ions and the hydrated Ni(111) surface model was studied. Two 

surface complexes were suggested: (i) the first one was an outer-sphere complex. Uranyl cation was 

adsorbed almost parallel to the surface, interacting by means of hydrogen bonds by sharing two water 

molecules of its first hydration shell with four water hexamers; (ii) uranyl rod adsorbed 

perpendicularly to the surface for the second complex, therefore leading to a surface complex 

possessing a strong covalent Ni-O-yl bond (d(Ni-O-yl)=1.92 Å). Moreover, it interacted with water 

molecules of a hexamer which plays the role of first hydration shell, which was accordingly made of 

six water molecules, one more than for free uranyl. Even though the second surface complex was 

energetically the most stable one, the needed activation energy to reach it should be certainly too 

important to make this type of adsorption mode possible. An adsorption with an outer sphere 

mechanism should thus be more realistic on the hydrated Ni(111) face.  

This study clearly showed that the solvent as well as the possible surface deprotonation have a great 

contribution to the uranyl adsorption process. Therefore, to complete this first study, it will be 

important to perform a higher level of calculation. As it was shown by a previous study [84] that DFT 

can provide accurate results for hydrogen bonds in liquid water, DFT molecular dynamics (CPMD) are 

being performed in our laboratory. Indeed, even though calculated structural parameters and 

interaction energies obtained from the static optimizations in vacuum condition were in good 

agreement with experimental results, the DFT molecular dynamics simulations will give a more 

complex and more detailed picture of the adsorption processes. This new approach will allow us:  (i) to 

take into account the solvent effect which could favour or not the inner or outer sphere mechanism, (ii) 

to study the possible deprotonation of the surface sites during the dynamic process of the adsorption 

and (iii) to introduce temperature effect. 
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