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Abstract: Identification of protein-protein interface residues is crucial for structural 

biology. This paper proposes a covering algorithm for predicting protein-protein interface 

residues with features including protein sequence profile and residue accessible area. This 

method adequately utilizes the characters of a covering algorithm which have simple, 

lower complexity and high accuracy for high dimension data. The covering algorithm can 

achieve a comparable performance (69.62%, Complete dataset; 60.86%, Trim dataset with 

overall accuracy) to a support vector machine and maximum entropy on our dataset, a 

correlation coefficient (CC) of 0.2893, 58.83% specificity, 56.12% sensitivity on the 

Complete dataset and 0.2144 (CC), 53.34% (specificity), 65.59% (sensitivity) on the Trim 

dataset in identifying interface residues by 5-fold cross-validation on 61 protein chains. 

This result indicates that the covering algorithm is a powerful and robust protein-protein 

interaction site prediction method that can guide biologists to make specific experiments 

on proteins. Examination of the predictions in the context of the 3-dimensional structures 

of proteins demonstrates the effectiveness of this method. 

Keywords: protein-protein interaction; covering algorithm; sequence profile; residue 

accessible area; maximum entropy 

 

OPEN ACCESS



Int. J. Mol. Sci. 2009, 10             
 

 

2191

1. Introduction 

 

Protein-protein interactions and protein-DNA interactions are among the most ubiquitous types of 

macromolecule interactions in biological systems. Revealing the mechanisms of protein-protein 

interactions is crucial for understanding the functions of biological systems. Furthermore, the ability to 

predict interfacial sites is also important in mutant and drug design [1]. Structural knowledge at the 

residue and atom level is one of the keys to understanding the mechanisms of protein interactions. X-

ray crystallography and NMR are without doubt the best methods to obtain such information. In recent 

years, high throughput technologies have provided experimental tools to identify protein-protein 

interactions systematically and have generated tremendous amount of protein interaction data. 

However, the high throughput experiments are often associated with high numbers of false positives 

and false negatives [2]. The experiments are also tedious and labor-intensive and they cannot meet the 

requirements of proteomics, since there can be many thousands of protein-protein interactions even for 

a relatively primitive organism, so the need arises for seeking complementary in silico methods that 

are capable of accurately predicting interactions. 

The availability of more and more protein structures in the Protein Data Bank (PDB) [3] makes 

prediction of protein-protein interaction sites possible. A series of computational efforts to identify 

interaction sites or interfaces in proteins have been undertaken, such as hydrophobic residues cluster at 

some interfaces [4,5], Jones and Thornton have proposed two kinds of complexes: ‘permanent’ and 

‘transient’ [6] and so on. Current biophysical theories about the protein interacting regions highlight 

the role of the shape, chemical complementarily and flexibility of the molecules involved [7]. In 

parallel, a growing number of machine learning methods for inferring protein interactions have been 

proposed, such as neural networks (ANN) [8-10] and support vector machines (SVMs) [11-15] have 

been successfully applied in this field. These studies consider sequential, structural or evolutionary 

features such as amino acid residue composition [8,10,13,14,16], spatial neighboring residues [15,16], 

accessible surface area, structural conservation score and residue evolutionary information. However, 

Res I. et al. [14] use protein sequential and evolutionary information to predict protein interaction sites 

without structural information. 

Traditional methods take protein-protein interaction site prediction as a classification task and 

separately study each residue. Li Ming-Hui et al. [17] take it as a sequence labeling task using 

conditional random fields (CRFs) in their research. 

 In this study, we mainly focus on a novel method developed for detecting interacting surfaces in 

proteins starting from their three-dimensional structure. This is particularly important in determining 

protein function, particularly for proteins of known structure but unknown function. Ofran et al. [18] 

investigated the sequence neighborhood of protein-protein interface residues in a set of 333 proteins 

and found that 98% of these interface residues have at least one additional interface residue within 

their local sequence vicinity, so we think the characteristic that protein interface residues tend to form 

spatial clusters can be an important factor in solving our problem. A new method is constructed to 

learn association rules at the protein surface, i.e. a covering algorithm system. We also discuss the 

prediction power of support vector machines (SVMs), the covering algorithm (CA) and maximum 

entropy (ME) [19]. 
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2. Results and Discussion 

 

2.1. Cross-validation 

 

The covering algorithm method is trained to predict whether or not a surface residue which is 

located in the interface based on identity of the target residue and its sequence neighbors. Five-fold 

cross-validation strategy is adopted for our experiments. Specifically, on the each dataset, we divide 

our dataset to five parts according to 5-fold cross-validation. The training set is composed of four parts 

and the remainder is the testing set. Thus, we get five training sets and testing sets. Then, we carry out 

our experiment on these five training sets and testing sets. For each dataset (see collection of dataset), 

we do ten times. Herein, total 2 × 5 × 10 = 100 experiments are implemented and the average 

performance of the results is used to evaluate each method.  

 

2.2. Evaluation measures of the covering algorithm (CA) 

 

The covering algorithm (CA) classifier is evaluated using 5-fold cross-validation on two kinds of 

datasets. Table 1 shows the classification performance as measured by correlation coefficient, accuracy, 

specificity, sensitivity and F1-measure. Of the residues predicted to be interface, 58.83% (Complete), 

53.34% (Trim) are actually interface residues, and 56.12% (Complete), 65.59% (Trim) of interface 

residues are identified as such. We also investigate the fraction of interface residues in each protein 

that are correctly identified by the covering algorithm (CA) classifier. In eight out of 12 (~ 75%) 

proteins the classifier can recognize the interaction surface by identifying at least half of the interface 

residues. and in 92% of the proteins, at least 40% of the interface residues are correctly identified.  

In order to examine whether the covering algorithm (CA) method learns sequence characteristics 

that are predictive of target residue functions, we run a control experiment in which the class labels are 

randomly shuffled. The correlation coefficient (CC) obtained on the class shuffled dataset is 0.0604 

(our method with 0.2893 on the Complete data) and -0.0065 (our method with 0.2124 on the Trim data) 

shows that the covering algorithm performs better than a random predictor (CC ≈ 0). Table 1 shows 

the result between the covering algorithm and random classifier. From this table, the covering 

algorithm has got better performance (5% ~ 10% sensitivity, 7% ~ 11% specificity, 10% ~ 14% 

accuracy, 13% ~ 14% F1-measure and 21% ~ 23% CC, respectively) than a random classifier.  

Table 1. Performances on a dataset of 61 protein chains using 5-fold cross-validation. 

Dataset Method Sensitivity Specificity Accuracy F1-mesure CC 

Complete CA 0.5612 0.5883 0.6962 0.5916 0.2893 

 Random 0.4535 0.4764 0.5582 0.4462 0.0604 
Trim CA 0.6559 0.5334 0.6086 0.5863 0.2124 

 Random 0.5036 0.4555 0.4955 0.4550 -0.0065 
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2.3. FP rate versus TP rate tradeoff 

In some situations (e.g. key interface residue recognition for site-specific mutagenesis), we need to 

have a higher sensitivity and lower specificity. This requirement can be met by modifying the 

parameters used by the covering algorithm (CA). Figure 1 shows the specificity-sensitivity graph and 

ROC curves for the Complete dataset. Figure 2 shows specificity-sensitivity graph and ROC curves for 

the Trim dataset. The area under the ROC curve (AUC = 0.9167) of the covering algorithm for the 

Complete dataset is higher than the random classifier with 0.3307 (random), and AUC (0.8298) from 

the covering algorithm (CA) of the Trim dataset is larger than random classifier with 0.2847 (random). 

But AUC decreases about 8% using the covering algorithm between the Complete and Trim dataset, 

this perhaps because of removing some non-interfacial residues from training set (Complete dataset) 

reduce the performance of the covering algorithm method and these removed residues may contain 

useful information for predicting interaction sites. 

Figure 1. Specificity-sensitivity and ROC curves on the Complete dataset. 
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Figure 2. Specificity-sensitivity and ROC curves on the Trim dataset. 
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2.4. Comparison with other methods 

 

Support vector machines (SVMs) and maximum entropy model (ME) are selected to compare with 

our method. They are all discriminative classification methods. SVMs are a state-of-art method for 

predicting protein-protein interaction sites [11,13,15,16,28]. ME is implemented in [17]. Herein, we 

evaluate these methods using 5-fold cross-validation on the same dataset for direct comparison with 

our method. LIBSVM is used as the SVM implementation with radial basis function as kernel and 

default C, γ. Stanford Classifier (ME) is used and can be download freely from http://www-

nlp.stanford.edu/software/classifier.shtml. 

Table 2 shows the results using covering algorithm (CA), support vector machine (SVM) and 

maximum entropy (ME) on the Trim and Complete dataset. From the Table, we find that our classifier 

has good performance in our dataset. The covering algorithm (CA) performs best, according to 

sensitivity, F1-measure, accuracy and CC, but its specificity was slightly lower than that of SVM and 

ME on the Complete dataset. In the Trim data, the sensitivity, F1-measure and CC achieved by the CA 

method is higher than SVM (7.52% better sensitivity and 2.27% better F1-mearsure and 0.92% better 

CC), albeit with 5.47% lower specificity. If judged only by sensitivity, the CA seems to slightly 

outperform (by 4%) the ME, whatever the dataset. Experiments on our dataset shows that CA is an 

effective method for protein interaction sites recognition, especially for Complete dataset. 

Table 2. Performances of SVM, CA and ME based on 5-fold cross-validation. 

Figure 3. Specificity-sensitivity and ROC curves on the Complete data based on SVM, 

ME and CA. 
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Data set Method Sensitivity Specificity F1-measure Accuracy CC 

Complete 
SVM 0.5547 0.6294 0.5796 0.6896 0.2443 
ME 0.5011 0.6734 0.5408 0.6761 0.2719 
CA 0.5612 0.5883 0.5916 0.6962 0.2893 

Trim 
SVM 0.5807 0.5883 0.5639 0.6662 0.2032 
ME 0.6103 0.6101 0.6576 0.5860 0.2417 
CA 0.6559 0.5334 0.5863 0.6086 0.2124 
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Figure 4. Specificity-sensitivity and ROC curves on the Trim data based on SVM,  

ME and CA. 
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In order to illustrate the effectiveness of our approach, we plotted the ROC curves for the Complete 

and Trim datasets. As shown in Figure 3, prediction performance is improved by the CA method with 

higher AUC = 0.9167 than SVM (0.7754), ME (0.7486) on the Complete dataset. After removing 

some negative samples (i.e. Trim dataset), performance of the CA method (0.8298) is slightly lower, 

but still larger than SVM (0.7654) and ME (0.7488). 

 

2.5. Some experimental examples   

 

Here we give two examples that are predicted by the CA, SVM and ME classifiers. The first 

example is the refined 2.8 an alphabeta T cell receptor (TCR) heterodimer complexed with an anti-

TCR fab fragment derived from a mitogenic antibody [21]. We use our classifier to predict 45 residues 

to be interfaced with 81.82% sensitivity and 55.56% specificity (Figure 5A). SVM predicts 38 

interface residues with 69.09% sensitivity, 58.46% specificity (Figure 5B). ME predicts 34 interface 

residues with 61.81% sensitivity, 52.30% specificity (Figure 5C) while the actual interface residues are 

55 (Figure 5D). 

Figure 5. Predicted interface residues (red color) on protein (PDB: 1NFD_C) identified by  

(A) CA, (B) SVM (C) ME and (D) The actual interface residues. Red denotes true positive 

residues, blue denotes false negative residues, yellow denotes false positive residues, and 

pink denotes true negative residues. 
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The second example is the jel42 Fab fragment/HPr complex [22]. This interface region is accurately 

identified by CA covering ~ 83% of the actual binding site with a specificity of 63.93% (Figure 6A), 

The prediction result by SVM covers only 78.26% of the actual binding site with a specificity of 

62.06% (Figure 6B). ME predicts 34 interface residues with 73.91% sensitivity, 37.78% specificity 

(Figure 6C) versus the number of actual interface residues which are 46 (Figure 6D). 

Figure 6. Predicted interface residues (red color) on protein (PDB: 2JEL_H) identified by 

(A) CA, (B) SVM (C) ME and (D) The actual interface residues. Red denotes true positive 

residues, blue denotes false negative residues, yellow denotes false positive residues, and 

pink denotes true negative residues. 

 
 

3. Experimental 

 

Each surface residue is predicted to belong to a particular interaction site on the basis of 

characteristic of residue spatial cluster. Interaction site residues and non-interaction residues are used 

as positive and negative data, respectively. 

 

3.1. Collection of data sets 

 

In our experiments protein-protein interaction data are extracted from a set of 70 protein-protein 

complexes in an independent study [20] that contain X-ray diffraction structures of protein-protein 

complexes determined at a resolution of 1.6 Å or better. The dataset eliminates homo-complexes 

whose interacting surfaces are characterized by hydrophobicity. In order to obtain non-redundant 

protein chains of hetero-complexes we adopt two processes. First, all chains of 70 protein complexes 

are compared assigned using the BLASTCLUST program of NCBI BLAST 2.0. Two chains are 

assigned with the same cluster if (1) over 90% of their sequences are aligned and (2) the sequence 

identity is > 30%. All above chains are clustered in this way. The first chain of each cluster is selected. 

Second, protein chains shorter than 40 residues are removed and we select protein chain pairs with  

≥ 20 interfacial residues. A residue is considered to form an interfacial contact if the distance between 

α-carbon atoms and any α-carbon atoms of its interacting proteins are < 1.2 nm [9]. For protein chains 

that interacts with multiple partners, only one partner with the most interfacial residues is selected. 

According to the above definitions, the finally dataset is composed of 61 hetero-complexes, which 

includes 12 protease-inhibitor complexes, five antibody-antigen complexes, eight enzyme complexes, 
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eight G-proteins, cell cycle, signal transduction and seven miscellaneous complexes. The dataset used 

is available online as Supplementary Material at IJMS. 

Interfaces are formed mostly by residues that are exposed to the solvent if the partner chain is 

removed, so we mainly focus on surface residues. The solvent accessible surface area (ASA) is 

computed for each residue in the unbound molecule (MASA) and in the complex (CASA) using the 

DSSP program [23]. Here, we should emphasize that only the coordinates of the unbound chain are 

used in the calculation. If other chains present in the complex are included, their influence would cause 

the ASA to be incorrectly calculated. In this paper, a residue is considered to be a surface residue if its 

relative accessible surface area (ASA) is at least 16% of its nominal maximum area whose value as 

defined by [24]. As a result, a total of 6,567 residues (~ 64.03%) are collected as surface residues from 

all these chains. A surface residue is defined to be an interface residue if it formed an interfacial 

contact. According to this definition, we get about 24.03% (2,465) of all surface residues in  

the dataset. 

The fact that there are more non-interface residues than interface residues in the training set leads to 

higher specificity and lower sensitivity for many classifiers such as SVMs and ANN [8,13]. In order to 

evaluate the robustness and performance of different methods, we conduct experiments on Trim 

dataset and Complete dataset. Table 3 shows Complete and Trim dataset. The entire cross-validation 

procedure is repeated ten times, and the resulting average performances are used to evaluate  

our method. 

Table 3. Two types of data sets. 

Data set Chains Residues Surface Residues Interface residues 
Completea 61 10,256 6,567 2,465 

Trimb 61 10,256 2,465 2,465 
a Include all surface residues; b Remove randomly non-interface residues in order to equal with 
interface residues. 

 

3.2. Generation of the character vector 

 

Interface prediction relies on characteristics of residues found in interfaces of protein complexes. 

The characteristics of interface residues are different. The most prominent involve: sequence 

conservation, proportions of the 20 types of amino acids, secondary structure, solvent accessibility and 

side-chain conformational entropy etc. Most of these characters are structure information. In this 

article, we choose sequence profile and residue accessible surface area as our test character.  

 

3.2.1. Protein sequence profile feature 

 

Sequence profiles are sequence information which denotes its potential structural homolog. Protein 

function information is embedded in the protein sequence, but how it can be determined is a pivotal 

problem. A good candidate technique for extracting such information is multiple sequence alignment 

(MSA). Protein sequence profile is a result of MSA which shows which kind of amino acid appearing 

in a given position of the protein primary structure. Herein, the protein sequence profiles are extracted 
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from the HSSP database [27]. Each residue is coded as a vector of 20 elements which denotes relative 

frequency for each of the 20 amino acid residue in a given sequence position, from counting the 

residue at that position in each of the aligned sequences including the test sequence.  

 

3.2.2. ASA feature 

 

Accessible surface area (ASA) feature represents the relative accessible surface area (scaled by the 

nominal maximum area of each residue). For convenience, we use ASA to represent the relative 

accessible surface area of residue. ASA of each residue is calculated using DSSP program [23].  

In order to include the environment of the target residue, the profiles of sequentially neighboring 

residues with n windows are also included in the character vector. Equation (1) is an example of a 

vector with 11 windows in our experiment:  

n n-5,1 n-5,20 n-5,21 n,1 n,21 n+5,1 n+5,20 n+5,21V = (p ,..., p , p ,p ,..., p ,...p ,...p , p )                  (1)  

and: 

n, j
n, j

n, j
j

n, j n

N
p =      j = 1...20

N

p = ASA(x )   j = 21 







  

where Nn,j is the number of amino acids j in position n, Xn is a residue in position n and ASA(Xn) 

denotes accessible surface area of residue Xn. 

 

3.3. Covering algorithm (CA) for classification 

 

Data-based machine learning explores the rule to predict new data from the observation data. The 

covering algorithm is proposed by Zhang Ling and Zhang Bo for classification. Suppose that given 
input set  1 2, ,...... KK X X X (K is a set of points in the N dimension Euclid Space, X1 = (x1, y1), 

X2(x2, y2), ......Xk = (xk, yk), x1, x2,......, denotes input vector of covering algorithm, y1, y2,... yk   {1, -1} 

denotes label of x1, x2,...xk). Now suppose K is divided to s subsets: in this paper, we discuss s = 2 (i.e. 

two classes corresponding to interface residue and non-interface residue). First, the original input 

space (K1, K2) is transferred into a quadratic space by the use of a global project function, such as 

Figure 7. Then, the well-known point set covering method is used to perform the partition of the data 

in the transformed space. 

 

3.3.1. Algorithm 1 

 

Step 1. Making a cover C(i) (i = 1 at the begin), which only covers point of K1 and these points are 

enclosed set D. 

Step 2. Taking point of K/D, i.e. p, suppose p belongs to Kj(j = 1, 2), making a cover C(i) which 

only covers point of Kj, and then are enclosed set D, i = i + 1, return Step 2 until K/D=Ф. 
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Step 3. Suppose we get cover set  1 2 kC = C ,C ,......C .  Then taking C1, C2,……., Ck, if test point is 

in the Ci which cover point of K1, output 1, otherwise -1. 

In fact, C(i) is a sphere domain with center w and radius ri. 

 

3.3.2. Algorithm 2 for making a cover C(i) 

 

Step 1. if K1 or K2 is empty, then stop. Otherwise, suppose that K1 ≠ Ø, randomly 
selecting i 1a k (j = 1,i = 1 at the begin) . 

Step 2. Seeking a sphere domain with center= ia . Suppose i 1 i 0C(a ) K = D ,  i = 1,2...,  D = .   

},{max)(d
1

1 


xai i
kx

(2)

)}(,|,{min)(d 12
1

idxaxai ii
kx


 (3)

2

)()(
)(d 12 idid

i


 (4)








)(

)(

i

i

a

id




(5)

Step 3. 1,jj i j 1 2 1 1, j 1 2C = C(a ), K = C K ,K K / K ,k k , j j+1,  go to Step 1 of  Algorithm 1   . 

More details about covering algorithm can be referred from [25,26]. 
Hence by using the training set we can calculate all the parameters { ( ), ( )}i iW a     based on 

the above equations and by using testing set, the performance of our algorithm can be evaluated. 

Figure 7. (a) a sphere neighborhood (b) input vector and their projection. 

 
 

3.4. Predictor construction 

 

In our experiment, predictors are generated using the covering algorithm (CA) to judge whether a 

residue is located on an interface or not. The CA has simple, lower complexity, high accuracy for high 

dimension data and frequently demonstrates high accuracy. It can also handle large feature spaces and 

condense the information given by the training dataset. Here, we consider only surface residues in the 

training process, the target value of which is 1 (positive sample) if it is classified into interface residue 

and -1 denotes non-interface residue corresponding to negative sample. 

We construct our CA predictor using sequence profile and ASA attributes. Following the method 

used by Fariselli et al. [9], the input vector of CA is fed with a window of 11 residues, centered on the 
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target residue and including the five sequence neighboring residues on each side such as formula (1) 

organization. So, each residue is represented by a 231-component vector in the predictor based on the 

residue sequence neighboring profile and ASA. 

 

3.5. Evaluation of performance 

 

Interface prediction has to fulfill two competing demands. The predictor should cover as many of 

the real interface residues as possible, but at the same time should predict as few false positive as 

possible. These two demands are measured by sensitivity and specificity, respectively. Let TP = the 

number of true positives (residues predicted to be interface residues that actually are interface 

residues); FP = the number of false positives (residues predicted to be interface residues that are in fact 

not interface residues); TN = the number of true negatives; FN=the number of false negatives; N = TP 

+ TN + FP + FN (the total number of examples), then sensitivity is: 

TP
sensitivity =

TP + FN
 

and specificity is: 

TP
specificity =

TP + FP
 

and correlation coefficient (CC) is: 

TP*TN -FP*FNCC =
(TP + FN)*(TP + FP)*(TN + FP)*(TN + FN)

 

and F1-measure is: 

2*sensitivity*specificity
F1- measure =

sensitivity + specificity
 

Sensitivity measures the fraction of interface residues that are identified as such. Specificity 

measures the fraction of the predicted interface residues that are actually interface residues. 

Correlation coefficient measures that how well the predicted class labels correlate with the actual class 

labels. It ranges from -1 to 1 where a correlation coefficient of 1 corresponds to perfect prediction and 

0 corresponds to random guessing. 

 

4. Conclusions 

 

Generally speaking, identifying residues in protein-protein interaction sites is an extremely difficult 

task, let alone in the absence of any information about partner chains. In this paper, as we have 

presented above, due to the absence of information about research proteins, we propose a new 

approach to predict interface sites from protein sequence and structure characteristic. This method 

adequately utilizes the characters of covering algorithm which have simple, lower complexity, high 

accuracy for high dimension data. A relatively high false positive ratio in protein-protein interaction 

sites prediction is a troublesome problem. Some investigators reduce the false positive ratio by 

eliminating isolated raw positive predictions [13]. In our experiment, we can decrease false positive 
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predictions using a covering algorithm based on different features of protein-protein interaction. The 

results obtained in this paper show that our propose method is a promising approach for studying 

protein-protein interaction, although this method is not good in sensitivity. Choosing proper features 

perhaps improve the results and we will investigate more effective features in the future and 

information of binding protein chains will also be considered in our future work. 
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