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Abstract: The often observed scarcity of physical-chemical and well as toxicological data 
hampers the assessment of potentially hazardous chemicals released to the environment. In 
such cases Quantitative Structure-Activity Relationships/Quantitative Structure-Property 
Relationships (QSAR/QSPR) constitute an obvious alternative for rapidly, effectively and 
inexpensively generatng missing experimental values. However, typically further treatment 
of the data appears necessary, e.g., to elucidate the possible relations between the single 
compounds as well as implications and associations between the various parameters used 
for the combined characterization of the compounds under investigation. In the present 
paper the application of QSAR/QSPR in combination with Partial Order Ranking (POR) 
methodologies will be reviewed and new aspects using Formal Concept Analysis (FCA) 
will be introduced. Where POR constitutes an attractive method for, e.g., prioritizing a 
series of chemical substances based on a simultaneous inclusion of a range of parameters, 
FCA gives important information on the implications associations between the parameters. 
The combined approach thus constitutes an attractive method to a preliminary assessment 
of the impact on environmental and human health by primary pollutants or possibly by a 
primary pollutant well as a possible suite of transformation subsequent products that may 
be both persistent in and bioaccumulating and toxic.The present review focus on the 
environmental – and human health impact by residuals of the rocket fuel 1,1-dimethyl- 
hydrazine (heptyl) and its transformation products as an illustrative example. 
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1. Introduction 
 

In recent years there has been an increasing focus on the possible negative effects to the 
environment and to the human health from xenobiotics accidentally or deliberately released into our 
environment. Consequently, the assessment and regulation of chemicals has over the years developed 
to a major issue in relation to assuring the human health as well as to protect our environment. 
However, due to an apparent significant lack – or unavailability – of both physico-chemical and 
toxicological data the vast majority of the chemicals available on the market today has not been 
properly assessed and regulated. Further, a comprehensive assessment may in many cases be hampered 
by the fact that only the primary pollutant is assessed whereas the possible multitude of potentially 
hazardous transformation products escape the assessment simply due to the lack of data. For a 
discussion of data availability see, e.g., [1-3]. 

Deriving data based on Quantitative Structure-Activity Relationships/Quantitative Structure-
Property Relationships constitutes as an attractive supplement or even alternative to an experimental 
data generation, the latter being both time consuming and costly. 

In the present review the application of QSAR/QSPR methodologies to investigation the 
environmental and human health impact of residual rocket fuel, 1,1-dimethylhydrazine (1), as well as a 
series of its transformation products will be used as an illustrative example [4-6]. This example further 
constitutes an illustration of the above mentioned problem associated with primary and secondary 
pollutants. 

Although applying a suite of appropriate QSAR/QSPR models will lead to the required data for the 
single substances, a further analysis of the mutual relations between the single substances under 
investigation may appear appropriate. Partial order ranking methodologies appear in this connection as 
a highly attractive point of departure as this method allows mutual ranking of, e.g., a series of chemical 
substances based on a simultaneous inclusion of several parameters, like, e.g., persistence, 
bioaccumulation and toxicity [7,8]. In the present paper the mutual ranking of 1,1-dimethylhydrazine 
(1) and its transformation products simultaneously based on calculated probabilities for being 
carcinogenic, mutagenic, teratogenic and embryotoxic will illustrate the principle. 

In a proper assessment of the chemical substance, not only the physico-chemical and toxicological 
characteristics, as the PBT characteristics should be taken into account. Also a series of additional 
factors may advantageously be considered. Thus, parameters like production tonnage [9], specific 
release scenarios [9,10], and geographical and site-specific factors in addition to various substance 
dependent parameters should be taken into account. Further socio-economic factors may be taken into 
consideration as being illustrated in a series of previous papers [11-15]. The more elaborate 
hierarchical partial order ranking (HPOR) [16] where a larger variety of parameters, e.g. originating 
from various sources and subsequently combined are taken into account have been applied to give a 



Int. J. Mol. Sci. 2009, 10             
 

 

1630

more comprehensive picture of the human health impact originating from a possible exposure to 
residual rocket fuel and its transformation products.  

To further uncover possible linkages among objects and the describing parameters and thus disclose 
possible synergisms or antagonisms of the parameters formal concept analysis (FCA) [17,18] appears 
as the appropriate method. The methodology is closely linked to partial order theory and will in this 
review be illustrated in a further study on the environmental and human toxicological effects of rocket 
fuel transformation products. 

 
2. Results and Discussion 
 

The obvious lack of data when talking about the assessment and eventually the regulation of 
compounds hazardous to the environment and/or to man unequivocally constitutes an incentive to look 
for alternative and more rapid ways to obtain the required data. A further incentive to look for 
alternatives to the conventional experimental methods would be the possibility of reducing the 
consumption of experimental animals. Classification of chemical compounds based on test involving 
experimental animals typical requires a significant number of animals for each compound. A reduction 
in the use of experimental animals is strongly desirable. 

Apparently, the main problem to be faced apparently is the dilemma between the fact that decisions 
must be made, the necessary data to do so, however, are lacking. Theoretically based methods turn up 
as an obvious possibility. Thus, an attractive alternative appears to be the application of Quantitative 
Structure and Quantitative Property Activity Relationships (QSAR/QSPR) models for deriving data 
that may substitute for the lack of experimental data, the basic concept being that molecules that are 
structurally closely related will display similar properties. This is expressed as the 'Similar Property 
Principle' stating that 'Structurally similar molecules will exhibit similar physicochemical and 
biological properties' [19]. 

Since as early as around 1860 a number of researchers [20-23] have applied the inherent notations 
of the QSAR concept. However, the fatherhood of the QSAR concept as applied today can be ascribed 
to Hansch [24] through his epoch-making since the beginning of the 50'ties. 

Today a major field for application of QSARs is within the field of drug design [25-28]. The 
application of QSAR techniques enables researchers to screen a significant number of potential drug 
candidates within a rather short time. Thus, the economic benefits are overwhelming. 

Within the last 15-20 years the application of QSAR/QSPR in environmental science has increased 
[29-33]. Thus, a wide variety of QSAR/QSPR has been developed to predict environmentally crucial 
physico-chemical parameters such as solubility, distribution, partition, sorption and bioaccumulation 
as well as ecotoxicological properties (endpoints) [33]. However, also modeling associated to human 
health, i.e. toxicological endpoints has been further developed and QSAR/QSPR with a high predicting 
power in these areas now are available [33].  

Hence, today a wide variety of QSAR/QPSR models are available [33], the vast majority of these 
being available on a commercial basis only. However, free models of high quality are available. The 
QSAR/QSPR data derived for the studies covered by the present review are obtained using such 
models as the EPI Suite from the USEPA [34] for the prediction of physico-chemical parameters as 
well as ecotoxicological data and the PASS software from the Academy of Medical Sciences, Moscow 
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[35] and the ADME/Tox WEB from Pharma Algoritms [36], the latter being a free web version of the 
commercially available ADME Boxes and ToxBoxes. In the following data derived from our recent 
studies on residual rocket fuel, 1,1-dimethylhydrazine (1) and a series of its transformation products 
serve as an illustrative example [4-6]. 

 
2.1. Residual Rocket Fuel and its Transformation products 

 
The Baikonur Cosmodrome in Kazakhstan has over the years been an important site for rocket 

launching with more than two thousand launches of different rocket-carriers up to now. Today heavy 
equipment to the International Space Station (ISS) is transported by ‘Proton’ carriers, the propellant 
used for these rockets being unsymmetrical 1,1-dimethylhydrazine (1), also known as “heptyl”. 

The area northeast of the Cosmodrome functions as dropping zone for burned-out rocket fuel 
containers of the first rocket stage separated in a height of 50 and 100 km (Proton carriers). The fuel 
containers at this point still contains approx. 0.6 to 4 tons of unburned 1 and about 4 tons of nitrogen 
oxidants [37]. Significant amounts of residual rocket fuel reach the ground, the actual amount being 
dependent of the season and are subsequently spread over the surface, where it either evaporates 
and/or penetrates into the soil [37,38]. Hence, it has been estimated that significant amounts of 
unburned fuel are being spread over several square kilometers of land. 

In addition to the pollution with the primary pollutant 1, a series of so-called secondary pollutants 
being developed in soil samples polluted by 1 has recently been disclosed [5,6]. This group of 
compounds constitutes both transformation products that are formed directly from 1 as well as 
compounds that are formed in various consecutive and possibly surface catalyzed processes. In Figure 
1 the the major transformation products disclosed are summarized. 

 
2.2. Environmental Behavior of Rocket Fuel and its Transformation Products 

 
In recent year there has been a special focus on compounds being persistent, bioaccumulating and 

toxic (PBT’s) or very persistent and very bioaccumulating (vPvB’s) [39], as such compounds 
obviously are of major environmental concern. Further, hazard properties for bulk chemicals are 
typically linked to the physical-chemical properties such as molecular weight, aqueous solubility, 
Henry Law constant, vapor pressure, and octanol-water partition constant and the biodegradation 
probability [40]. In Table 1 a selection of EPI Suite derived physico-chemical data for the 1 and its 
transformation products is given together with experimental data when available. The good agreement 
calculated and experimentally obtained values was found noted [5]. 

Rather high water solubility, log SW, and correspondingly low octanol-water partition coefficients, 
log KOW were found and not surprisingly low to very low Henry Law Constants, log HLC for all 
substances. A high migration potential for these substances was further substantiated through low 
water-organic carbon partition, log KOC [5].  

The majority of the compounds possess acid-base characteristics that may cause a strong affinity to 
mineral soil particles and thus less susceptible for biodegradation. Thus, Adushkin [41] found 1 to be 
very persistent in dry soils, suggesting a self-remediation period of certain soils from 1 of about  
34 years. 
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Figure 1. Transformation of 1,1-dimethylhydrazine in soil and water [5,6]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 1. Calculated and experimentally determined physico-chemical parameters for the 
investigated substancesa [5]. 

No 
Log SW 

mg/L 
Log KOW 

Log 

KOC 

Log HLC 

atm m3 mole-1 

Log VP 

mmHg 

1 1x106 (1x106) -1.19 1.29 6.95x10-8 1.68x102 (1.57x102) 

2 1x106 (8.9x105) 0.04 (0.16) 1.17 1.28x10-4 (1.04x10-4) 1.69x103 (1.61x103) 

3 1x106 (1.7x106) -0.17 (-0.38) 1.12 1.81x10-5 (1.77x10-5) 1.52x103 (1.47x103) 

4 1x106 0.69 1.03 1.96x108 21.3 

5 9.6x105 (1x106) -0.64 (-0.57) 1.58 2.02x10-6 (1.82x10-6) 4.3 (2.70) 

6 1x106 (1x106) -0.93 (-1.01) 0.38 7.38x10-8 (7.39x10-8) 3.49 (3.87) 

7 1x106 -0.52 1.53 7.39x10-7 1.31x102 

8 4.5x105 0.40 1.85 5.91x10-5 80.3 
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Table 1. Cont. 

No 
Log SW 

mg/L 
Log KOW 

Log 

KOC 

Log HLC 

atm m3 mole-1 

Log VP 

mmHg 

9 7.78x105 0.68 1.58 4.45x10-5 3.30x102 

10 1x106 -0.73 1.45 1.53x10-7 1.45x102 

11 4.77x105 (1x106) -0.17 (-0.34) 0.18 6.78x10-5 (6.67x10-5) 9.10x102 (9.02x102) 

12 1x106 -1.70 0.65 3.08x10-10 0.14 

13 1x106 -0.44 1.00 1.52x10-8 7.12 

14 3.02x104 (4.8x105) 0.23 (-1.38) 1.16 3.45x10-6 35.2 (7.51x103) 

15 3.1x105 (1x106) -0.69 (-0.25) 0.43 2.42x10-2 (1.33x10-4) 7.32x102 (7.42x102) 

16 2.0x105 0.33 2.37 3.60x10-5 3.78 

17 5.7x105 -0.21 2.16 3.26x10-5 10.5 

18 7.3x104 0.61 (0.23) 1.20 7.88x10-5 11.5 
a Values given in parentheses are experimental values as provided by the database associated with 
the EPI Suite. 

 
The relatively high vapor pressures, log VP, found [4,5] were associated with an only limited 

evaporation from an aqueous phase, whereas evaporation from top layers of dry soils could be 
significant thus reducing a possible terrestrial pollution. In addition also biodegradation should be 
taken into account. From Table 2 is seen that all compounds apparently rapidly are degraded, the 
ultimate biodegradation half lives being within weeks, apart from 5 and 13. Furthermore half of the 
compounds were predicted to be anaerobically degradable. In Table 2 further the calculated residence 
times in “standard” rivers and lakes [5] (cf. Section 3.1.2) are collected.  

 
Table 2. Calculated persistence of the investigated structures in the environment [5]. 

No. BDP3a 

Ultimate 

biodegradation half 

life within 

Fast Anaerobic 

biodegradation? 

Residence 

half life in 

riversb 

Residence 

half life in 

lakesb 

1 3.0664 Weeks Yes 272 d 8.1 y 

2 2.8137 Weeks No 5.1 h 5.0 d 

3 3.1240 Weeks Yes 22.9 h 12.8 d 

4 2.9425 Weeks Yes 3.67 y 40.1 y 

5 2.6503 Weeks to Months Yes 11.6 d 130 d 
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Table 2. Cont. 

No. BDP3a 

Ultimate 

biodegradation half 

life within 

Fast Anaerobic 

biodegradation? 

Residence 

half life in 

riversb 

Residence 

half life in 

lakesb 

6 2.9834 Weeks No 282 d 8.4 y 

7 3.0044 Weeks Yes 31.0 d 340 d 

8 3.0088 Weeks No 10.1 h 7.9 d 

9 3.0398 Weeks Yes 12.0 h 8.4 d 

10 3.0354 Weeks Yes 137 d 4.1 y 

11 3.1241 Weeks Yes 6.5 h 5.3 d 

12 3.0045 Weeks Yes 204 y 2220 y 

13 2.6761 Weeks to Months No 4.0 y 44.0 y 

14 3.1615 Weeks No 6.7 d 6.7 d 

15 3.1394 Weeks Yes 2.8 h 3.1 d 

16 2.9097 Weeks No 17.0 h 11.2 d 

17 3.0155 Weeks Yes 17.3 h 11.1 d 

18 3.0177 Weeks No 7.7 h 6.6 d 
a BDP3:Biodegradation potential for ultimate biodegradation [34] 
b h: hours, d: days, y: years. Biodegradation not taken into account 

 
A deeper discussion on the implications of the above figures is outside the scope of the present 

review and the reader is advised to consult the original papers by Carlsen et al. [4,5]. However, for 
completeness it should be mentioned that none of the compounds possess any significant 
bioaccumulation potential. 
 
2.3. Ecotoxicology of Rocket Fuel and its Transformation Products 
 

The environmental toxicity of the compounds were derived [4,5] applying the ECOSAR module of 
the EPI Suite leading to non-polar base line toxicity and polar acute toxicities towards fish, daphnids 
and green algae as summarized Table 3. Further the chronic toxicities and in certain cases the toxicities 
towards earthworms were predicted (data not shown here) [5]. 

From the figures given in Table 3 Carlsen et al. {5] concluded that apart from the primary pollutant, 
1, and for the compounds 7 – 10 the investigated compounds apparently will not constitute any 
significant toxicity towards neither aquatic nor terrestrial organisms.  
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Table 3. ECOSAR derived baseline and acute toxicity of the investigated compounds 
(values above 100 are rounded) [5]. 

No. 
LC50 

(mg/L) 

EC50 

(mg/L) 

 Fisha Fishb Daphnidsc Green algae 

1 48500 5.9 6.2 0.53d 

2 4050 290 16.8 16.1b 

3 4700 300 17.0 15.1b 

4 2160 1470 1450 830b 

5 19800 1000 5200 39.8b 

6 35000 30800 27000 14200b 

7 18500 4.4 6.1 0.67d 

8 2850 1.7 3.5 0.53d 

9 1350 1.1 2.5 0.42d 

10 23800 4.6 5.8 0.59d 

11 4600 17.8 48.8 1820b 

12 200000 14.4 12.2 0.88d 

13 15100 850 45.5 37.0b 

14 800 580 550 310b 

15 8000 6775 6025 3225b 

16 3700 2675 2550 1450b 

17 9400 7350 6775 3725b 

18 1800 1225 1200 690b 

a Baseline (non polar) toxicity (14 day’s test); b polar toxicity 
96 hrs; c  polar toxicity 48 hrs; d polar toxicity 144 hrs 
 

To further analyze the above data for acute toxicity a formal concept analysis was conducted in 
order possibly to reveal possible synergisms or antagonisms with the group of compounds [42]. In 
Figure 2 is displayed the line lattice diagram for ecotoxicological effects by 1 and its transformation 
products as derived by EcoSAR, the behind lying context table being given as Appendix 1. 

Obviously the diagram contains a significant number of trivial information, like if the toxicity 
towards fish for a given compound < 1 mg/L it is also < 10, 100 and 1000 mg/L, respectively. 
However in addition to such information a series of implication sets and association rules pointed to 
the fact that for several of the compounds in the study toxicological effects on several species 
prevailed. Thus, from the FCA it was concluded [42] that for 7 compounds displaying acute toxicities 
towards fish at concentrations below 100 mg/L (F < 100) also displayed toxicities to daphnids below 
100 mg/L (D < 100). Likewise implications were disclosed that for 5 compounds with F < 10 mg/L 
thenD < 10 and A < 1 mg/L, for 4 compounds with F < 5 mg/L then D < 10 and A < 1 mg/L and for 5 
compounds with D < 10 mg/L then F < 10 and A < 1 mg/L, respectively. 
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Figure 2. Lattice line diagram for ecotoxicological effects by 1,1-dimethylhydrazine and 
its transformation products as derived by EcoSAR [46]. 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Further it was disclosed that for six out of seven compounds (86%) with D < 100 mg/L then A < 1 

mg/L, for five out of six compounds (83%) with A < 1 mg/L then F < 10 and D < 10 mg/L and for four 
out of five compounds (80%) with A < 1, F < 10, and D < 10 mg/L then F < 5 mg/L, respectively [42]. 
 
2.4. Human Health Impact by Rocket Fuel and its Transformation Products 
 

In a further study Carlsen et al. [6] investigated the possible human health impact of 1 and its 
transformation products (cf. Figure 1). Thus, the probabilities for the substances to carcinogenic, 
mutagenic, teratogenic and/or embryotoxic were elucidated using the QSAR/QSPR software PASS 
(Prediction of Activity Spectra for Substances) [35], whereas absorption, distribution, metabolism and 
excretion (ADME) characteristics and toxicology, e.g., the probabilities for adverse organ specific 
health effects were disclosed using the ADME Boxes and ToxBoxes [36]. 

In Table 4 the results of the ADME calculations are shown. It should be noted that neither an active 
absorption nor any significant 1st pass metabolism was noted for the compounds apart from 13 [6]. For 
a detailed discussion of the data the original study by Carlsen et al [6] should be consulted as it is 
outside the scope of the present review. 
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Table 4. ADME results (n/a: calculations not available) [6]. 

No 

Passive absorption 

(Human 

intestinal)a 

Absorption 

rate constant 

(min-1) 

PPB%b 

Binding 

constant 

log Ka
HSA 

Vd c 

(L/kg) 

P-Glycoprotein 

inhibitor 

P-Glycoprotein 

substrate 

1 94 (10/90) 0.012 14.71 1.70 0.94 0.003 0.031 

2 99 (53/47) 0.019 13.96 1.80 2.00 0.002 0.002 

3 99 (18/82) 0.018 11.74 1.65 2.29 0.004 0.014 

4 100 (98/2) 0.044 17.27 2.38 1.13 0.003 0.008 

5 100 (88/12) 0.022 7.25 2.19 1.01 0.003 0.006 

6 94 (76/24) 0.012 3.84 2.00 0.96 0.004 0.007 

7 100 (95/5) 0.031 17.49 2.24 1.22 0.003 0.010 

8 100 (98/2) 0.050 26.73 2.41 1.24 0.009 0.006 

9 100 (93/7) 0.031 19.85 2.22 1.14 0.005 0.005 

10 93 (34/66) 0.011 20.17 1.81 1.22 0.004 0.039 

11 100 (74/26) 0.022 5.67 2.10 1.03 0.004 0.006 

12 89 (76/24) 0.009 7.33 2.05 0.94 0.004 0.011 

13 99 (91/9) 0.019 22.82 2.14 1.02 0.009 0.006 

14 n/a n/a n/a n/a n/a n/a n/a 

15 99 (50/50) 0.021 3.87 2.02 0.99 0.005 0.005 

16 100 (94/6) 0.027 12.51 2.47 1.04 0.005 0.009 

17 99 (85/15) 0.017 8.90 2.33 1.01 0.003 0.008 

18 100 (94/6) 0.032 12.64 2.49 1.14 0.005 0.009 
a Values correspond to maximum passive absorption. Values in parentheses denote the respective 

transcellular/paracellular contributions 
b  Plasma Protein Bound fraction 
c  Volume of distrution 

 
In the study by Carlsen et al. [6] also predicted acute toxicities of the rocket fuel and its 

transformation products (cf. Figure 1) were calculated (data not shown; the original reference should 
be consulted [6]) are compared to available experimental data. 

Carlsen et al. [6] found that in some cases, e.g., in the case of 6 the predicted acute toxicities are 
significant overestimated, whereas in other cases, like 1 and 15 ToxBoxes apparently underestimates 
the toxicities. In other cases the agreement was found to be acceptable. For a more elaborate 
discussion the original reference [6] should be consulted. 

Based on the above ADME results it was concluded [6] that the compounds apparently would move 
freely throughout the body and thus travelling in and out of tissues the compounds may perpetrate its 
biological effects. Based on calculations applying ToxBoxes (Pharma Algorithms1) the probabilities 
for adverse organ specific health effects (the blood, the cardiovascular and gastrointestinal systems, the 
kidneys, the liver and the lungs) were elucidated (Table 5). Based on these data it was concluded [6] 
that the most likely adverse effects are typically predicted to be in the gastrointestinal system.  
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Table 5. Predicted probabilities for the compounds to exhibit adverse organ specific health 
effects (n/a denotes that calculated values are not available) [6]. 

No 

Probability for adverse health effectsa 

 

Blood 
Cardio- 

vascular 

Gastro- 

intestinal 
Kidney Liver Lungs 

1 0.57 0.40 0.65 T 0.28 0.48 T 0.34 T 

2 0.44 0.34 0.80 0.20 0.18 0.27 

3 0.20 0.31 0.26 0.11 0.20 T 0.20 T 

4 0.79 0.07 0.92 0.57 0.85 0.74 

5 0.76 0.06 0.97 0.75 T 0.93 T 0.71 T 

6 0.27 0.12 0.65 0.14 0.05 0.40 

7 0.52 0.33 0.83 0.19 0.10 0.17 T 

8 0.63 0.06 0.84 0.31 0.05 0.75 

9 0.32 0.08 0.90 0.42 0.07 0.72 

10 0.53 0.64 0.66 0.14 0.29 T 0.29 T 

11 0.19 0.08 0.25 0.09 0.04 0.04 T 

12 0.48 0.14 0.71 0.15 0.28 0.42 

13 0.47 0.21 0.89 0.18 0.12 0.47 

14 n/a N/a n/a n/a n/a n/a 

15 0.10 0.08 0.81 0.09 0.05 0.27 

16 0.14 0.02 0.46 0.03 0.06 0.04 

17 0.12 0.02 0.46 0.07 0.02 0.05 

18 0.08 0.02 0.36 0.04 0.02 0.05 
a T denotes that tumors have been found in experimental studies 

 
Based on the above data (Table 5) the overall assessment of the adverse organ specific health 

effects immediately turns into a multicriteria problem as several parameters simultaneously had to be 
taken into account. Hence, Carlsen et al [6] advantageously applied partial order ranking [11-13,44] 
for the subsequent data analyses as this method allows simultaneous inclusion of several parameters. 
In Figure 3 the Hasse diagram constructed based on predicted adverse organ specific health effects, as 
derived from the ToxBoxes [36] including the gastrointestinal system (GAS), the liver (LIV) and the 
lungs (LUN), respectively, the more hazardous compounds being located in the top of the diagram. 
Thus, on a cumulative basis it was concluded [6] that compounds 4, 5 and 8 were those of major 
concern followed by the compounds (level 2) 1, 2, 9, 10, 12 and 13. The less hazardous compounds, 11 
and 18, are found in the bottom of the diagram. 

Carlsen et al. [6] further screened the 18 compounds (cf. Figure 1) for possible adverse biological 
effects applying the web version of the PASS software (PASS1) with the specific focus at 
carcinogenicity, mutagenicity, teratogenicity and embryotoxicity. In Table 6 the predicted probabilities 
for the studied substances being carcinogenic, mutagenic, teratogenic and embryotoxic, respectively 
are summarized. Only probabilities higher than 0.5 were considered. 



Int. J. Mol. Sci. 2009, 10             
 

 

1639

Analogously to the above ranking of the compounds based on the adverse organ specific effects the 
compounds were subsequently ranked according to their probabilities ofbeing carcinogenic (CAR), 
mutagenic (MUT), teratogenic (TER) and embryotoxic (EMB), respectively (Figure 4). 

 
Figure 3. Hasse diagram constructed based on the parameters GAS, LIV and LUN [6].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4. Hasse diagram constructed based on the parameters CAR, MUT, TER and EMB 
[6]. For calculation purposes probabilities < 0.5 (denoted NE in Table 6) are for ranking 
purposes arbitrarily set to 0.25 [6]. 
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Comparing the two figures (Figures 3 and 4) obviously some differences prevail although a series 
of the same compounds appear in the top levels of the diagrams. Thus, based on the PASS predictions 
Carlsen et al [6] found that 5 appeared as the most dangerous substances followed by the compounds 
(level 2) 1, 4, 6, 8 and 10, respectively. The compounds 13 and 15 – 18 are found in the bottom of the 
diagram as equivalent elements in agreement with the fact that these compounds all displayed 
probabilities less than 0.5 for the parameters studied (cf. Table 6). 

 
Table 6. PASS predictions of selected biological activitiesa [6]. 

No Carcinogenic Mutagenic Teratogenic Embryotoxic 
1 0.955 (0.002) 0.762 (0.006) 0.689 (0.031) 0.672 (0.016) 
2 0.619 (0.001) NE NE 0.527 (0.043) 
3 NE NE 0.563 (0.062) NE 
4 0.894 (0.003) 0.792 (0.005) 0.946 (0.006) 0.816(0.007) 
5 0.980 (0.001) 0.969 (0.002) 0.952 (0.005) 0.866 (0.005) 
6 0.951 (0.002) NE 0.614 (0.048) 0.795 (0.009) 
7 0.827 (0.006) 0.539 (0.010) 0.698 (0.030) 0.604 (0.026) 
8 0.980 (0.002) NE NE NE 
9 0.683 (0.012) NE NE NE 

10 0.923 (0.006) 0.619 (0.007) 0.811 (0.012) 0.681 (0.015) 
11 0.628 (0.011) NE NE NE 
12 0.897 (0.003) 0.524 (0.011) 0.530 (0.072) NE 
13 NE NE NE NE 
14 n/a n/a n/a n/a 
15 NE NE NE NE 
16 NE NE NE NE 
17 NE NE NE NE 
18 NE NE NE NE 

a  Values given are the calculated probability for the compounds to exhibit the effect 
(only values above 0.5 is given). Values in parentheses are the calculated 
probabilities for the compounds for not exhibiting the effect. NE indicates that if 
the compound exhibit the effect the probability will be below 0.5. 

b  n/a: PASS results not available for this compound 
 

Since the compounds at the same level in the diagram cannot immediately be compared Carlsen et 
al. [6] calculated the averaged rank of the suite of compounds studied using eqn. 4 (see Section 3) 
resulting in a linear rank of all compounds. In Table 7 the calculated averaged rank of the 17 
compounds based on a) GAS, LIV and LUN and b) CAR, MUT, TER and EMB, respectively are 
given. Obviously, compounds located in the top level (level 1) in the Hasse diagrams (Figures 3 and 4) 
are calculated to have the top averaged ranks followed by the compounds found at the subsequent 
levels in the diagrams. 

Subsequently an overall assessment of the human health impact by the rocket fuel 1 and its 
transformation products was estimated applying the Hierarchical Partial Order Ranking (HPOR) 
approach [6,16]. Hence, the averaged ranks given in Table 7 were adopted as so-called meta-
parameters [16] denoting the predicted impact according to the ToxBoxes and the PASS calculations, 
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respectively. Subsequently a further Hasse diagram using these meta-descriptors was constructed 
(Figure 5) the eventual averaged rank elucidating the overall assessment of the 17 compounds with 
respect to their adverse human health effects are displayed in Table 8. 

From Figure 5 and Table 8 Carlsen et al. [6] concluded that in addition to compounds 5 and 4, the 
major risk apparently would be associated with the hydrazines and the hydrazine derivatives, 1, 8, 
9¸10, and 12. This conclusion appeared to be parallel to the one drawn looking at the possible 
environmental impact (vide supra) apart from the fact that the tetrazene, 4, apparently does not appear 
to exhibit major risk in relation to environmental impact [5]. 

The here presented results (Figure 4 and 5 and Table 7 and 8) are a nice illustration of the 
usefulness of partial ordering methodologies in attempts to carry out assessments of, e.g., a group of 
xenobiotics or as studied by Carlsen et al. [6] of a group of substances consisting of a primary 
pollutant and a series of transformation products. Hence, through this assessment it was clearly 
demonstrated that some of the transformation products could lead to adverse health effects at the same 
or even higher level than the primary pollutant.  

 
Figure 5. Hasse diagram constructed based on the meta descriptors originating from the 
ToxBoxes and the PASS calculations, respectively, cf. Table 7 [6]. 
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Table 7. Averaged rank calculated according to eqn. 4 (na: calculations not available) [6]. 

No 
Rkav 

According to ToxBoxesa 

Rkav 
According to PASSb 

1 6.0 2.8 
2 6.8 9.7 
3 13.5 9.7 
4 1.1 2.8 
5 1.2 1.0 
6 11.5 3.0 
7 8.0 5.1 
8 2.6 3.6 
9 4.0 10.1 

10 6.0 2.6 
11 16.9 11.3 
12 5.4 6.0 
13 4.9 17.0 
14 na na 
15 10.8 17.0 
16 15.0 17.0 
17 15.6 17.0 
18 16.8 17.0 

a Rkav based on GAS, LIV, LUN 
b Rkav based on CAR, MUT, TER, EMB 
 

Table 8. Averaged rank calculated according to eqn. 4 Based on Tux Boxes and PASSS 
(HPOR approach) (n/a: calculations not available) [6]. 

No Rkav 

1 5.1 
2 9.0 
3 12.0 
4 1.1 
5 1.1 
6 8.2 
7 8.3 
8 3.6 
9 6.5 

10 2.8 
11 16.6 
12 6.0 
13 9.0 
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Table 8. Cont. 

No Rkav 

14 n/a 
15 13.2 
16 14.8 
17 15.9 
18 16.9 

 
To further analyze the above data for adverse human health effects a formal concept analysis was 

conducted in order possibly to reveal possible synergisms or antagonisms with the group of 
compounds [42]. In Figure 6 is displayed the line lattice diagram for the probabilities of 1 and its 
transformation products being CAR, MUT, TER and EMB, respectively as derived by PASS, the 
behind lying context table being given as Appendix 2. 

 
Figure 6. Lattice line diagram for human health effects by 1,1-dimethyl hydrazine and its 
transformation products as derived by PASS [35]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As in the case of the ecotoxicological data also here the diagram display a series of trivial 

information like, e.g. for compounds 5 the probability of being carcinogenic > 90 % (C > 90) it is of 
course also higher that 80 (C > 80), 70 (C > 70), 60 (C > 60), and 50 % (C >50), respectively.  

However, in addition to this trivial information a series of implication sets and association rules 
pointed to the fact that for several of the compounds in the study a multitude of adverse human health 
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effects prevail. In Tables 9 and 10 selected implications sets and association rules are summarized 
[42]. The notation like M > 70 denotes that the probability of the compounds to be mutagenic being 
higher that 70%. C, M, T, and E denoted carcinogenicity, mutagenicity, teratogenicity and 
embryotoxicity, respectively. 
 

Table 9. Selected implication sets from the formal concept analysis of human health 
effects by 1,1-dimethyl hydrazine and its transformation products as derived by PASS [35]. 

No of compounds If Then 
7 M > 50 C > 60T > 50 
5 M > 60 C > 60T > 60E > 60 
1 M > 90 C > 90T > 90E > 80 
7 T > 60 C > 60E > 60 
4 T > 80 C > 60M > 60E > 60 
3 T > 90 C > 60E > 80 
4 E > 70 C > 60T > 60 
3 E > 80 C > 60M > 70T > 90 

 
Table 10. Selected association rules from the formal concept analysis of human health 
effects by 1,1-dimethyl hydrazine and its transformation products as derived by PASS [35]. 

No of compounds Pct If Then 

7 / 8 88 C > 60T > 50 T > 60E > 60 

7 / 8 88 C > 60T > 50 M> 50 

7 / 8 88 C > 80 T > 50 

6 / 7 86 C > 60T > 60E > 60 M > 50 

6 / 7 86 C > 60T > 60E > 60 C > 80 

6 / 7 86 C > 60 M > 50T > 50 C > 80 

5 / 6 83 C > 60M > 50T > 60E > 60 M > 60 

5 / 6 83 C > 60M > 50T > 60E > 60 C > 80 

4 / 5 80 C > 60M > 60T > 60E > 60 T > 80 

4 / 5 80 C > 60M > 50T > 60E > 60 M > 70 

4 / 5 80 C > 60M > 50T > 60E > 60 C > 80 

4 / 5 80 C > 90 T > 60 E > 60 

 
Although the above presented FCA studies include only a limited number of substances it nicely 

illustrates the possibilities to combine QSAR/QSPR generated data with formal concept analyses and 
thus retrieving important comprehensive information concerning the possible multitude of effects of a 
group of compounds. 
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3. Methodology 
 

The basic methodology applied for assessing chemical substances is partial order ranking and 
formal concept analyses based on QSAR/QSPR generated data. Thus, in the following a description of 
the applied QSAR/QSPR models will be given. The basic concepts of partial order ranking (POR), 
including deriving linear extensions (LE), ranking probability and averaged ranks are summarized. 
Further the more elaborate partial order ranking methodologies, i.e., hierarchical partial order ranking 
(HPOR) and accumulating partial order ranking (APOR) are described as is the principles and ideas 
about formal concept analyses (FCA). 
 
3.1. Quantitative Structure-Activity/Property Relationships (QSAR/QSPR) 
 

QSAR/QSPR modeling can in the simplest form be expressed as the development of correlations 
between a given physico-chemical property or biological activity (endpoint), P, and a set of parameters 
(descriptors), Di, that are inherent characteristics for the compounds under investigation 

P = f(Di)        (1) 

The properties (endpoints), P that has been subjected to QSAR/QSPR modeling comprises physico-
chemical properties and biological activities in the environment as well in the human beings.  

In general models that describe/calculate key properties of chemical compounds take into account 
three types of inherent characteristics of the molecule, i.e., structural, electronic and hydrophobic 
characteristics. Depending on the actual model few or many of these descriptors may be taken into 
account. Thus, eqn. 1 can be rewritten as 

P = f(Dstructural, Delectronic, Dhydrophobic, Dx) + e    (2) 

The descriptors reflecting structural characteristics may, e.g., be element of the actual composition 
and 3-dimensional conFiguration of the molecule, whereas descriptors reflecting the electronic charac-
teristics may, e.g., be HOMO/LUMO energies, charge densities, dipole moment etc. The descriptors 
reflecting the hydrophobic characteristics are related to the distribution of the compound between a 
biological, hydrophobic phase, and an aqueous phase. A further, fourth type of characteristics, Dx, (cf. 
eqn. 2) accounts for possible underlying characteristics that may be known or unknown, such as 
environmental or experimental parameters as, e.g., temperature, salt content etc. The data may often be 
associated with a certain amount of systematic and non-quantifiable variability in combination with 
uncertainties. These unknown variations are expressed as "noise". Thus, the parameter, e, account for 
possible noise in the system, i.e., the variation in the property that cannot be explained by the model. 

In the studies presented in the present review paper a series of freely available QSAR/QSPR models 
has been applied. Thus, physico-chemical data, environmental persistence and environmental toxicities 
have been obtained applying the EPI Suite [32]. The interaction with the human organism has been 
elucidated through absorption, distribution, metabolism and excretion data derived by ADME Boxes 
[36] and the human toxicological effects by ToxBoxes [36] and by PASS (Prediction of Activity 
Spectra for Substances ) [35].  
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3.1.1. Physico-chemical data 
 

The EPI Suite has been applied as the primary tool for generating physico-chemical endpoints [34]. 
This software package includes a variety of submodules to estimate, e.g., water solubility (log SW) 
calculated by the submodule WSKOW, octanol-water partition (log KOW) calculated by the submodule 
KOWWIN, vapor pressure (log VP) calculated by the submodule MPBPWIN, and Henry’s Law 
constants (log HLC) calculated by the submodule HENRY. Sorption to organic carbon was calculated 
using the submodule PCKOCWIN. The log KOW values generated in this way are subsequently used to 
generate bioconcentration factors (log BCF) [43] calculated by the submodule BCF program. 
Substances with log BCF < 3.0 were regarded as non-bioaccumulating. Substances exhibiting log BCF 
values of > 3.0, but < 3.70 are assigned a medium bioconcentration potential whereas substances with 
log BCF > 3.70 were assigned a high bioconcentration potential. [34].  
 
3.1.2. Environmental persistence 
 

Through the BioWin module [34] persistence predictions were obtained. The submodule BDP3 
provides estimates of a substance’s environmental biodegradation rate by calculating the degradation 
probabilities. The lower the probability the higher the persistence. Eventually BDP3 returns the 
biodegradation potential as hours, hours to days, days, days to weeks, weeks, weeks to months and 
months, respectively, depending on the approximate amount of time needed for a “complete” 
biodegradation [34,45]. 
 

BDP3 Predicted Half-Lives (days) 
Hours 0.17 
Hours to Days 1.25 
Days 2.33 
Days to Weeks 8.67 
Weeks 15 
Weeks to Months 37.5 
Months 60 
Recalcitrant 180 

 
Substances with half lives >180 days are assigned high persistence potential, the corresponding 

BDP3 value being <1.75, whereas substances a half-life in the predominant compartment of ≥ 60 and ≤ 
180 days are assigned medium persistence potential, the corresponding BDP3 value being > 1.75 and < 
2.0 [45].  

The fate in the aquatic media is, in addition to the biodegradation estimated as the potential for 
volatilization from water. In the present study volatilization from rivers (water depth 1m, wind 
velocity 5 m/s and current velocity 1 m/s) and from lakes (water depth 1m, wind velocity 0.5 m/s and 
current velocity 0.05 m/s) was calculated using the WVOLWin module in EPI Suite [34]. 
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3.1.3. Environmental toxicity 
 

Toxicities of the investigated substances have been obtained using the ECOSAR [46] that calculates 
the toxicity of chemicals discharged into water. Both acute (short-term) toxicities and chronic (long-
term or delayed) toxicities are calculated by ECOSAR, the calculations being based on the octanol-
water partition (log KOW). ECOSAR can run independently or as an integrated part of the EPI Suite 

ECOSAR return the acute as well as chronic toxicities of the substance under investigation to fish 
(both fresh and saltwater), water fleas (daphnids), and green algae. In some cases also other effects, 
e.g., toxicity to earthworms are returned. The acute toxicities are calculated as LC50 values. 
 
3.1.4. Absorption, Distribution, Metabolism and Excretion (ADME) 

 
Predictions for the absorption, distribution, metabolism and excretion (ADME) and Toxicology are 

obtained using freely and commercially available in silico expert systems, i.e., the web version of the 
ADME Boxes software [36] based on ADME Boxes ver. 3.5. ADME Boxes is modulized software that 
allows calculation of selected physico-chemical data, oral bioavailability (human), human intestinal 
absorption, transport, distribution including volume of distribution and plasma bound fraction based on 
the chemical structure. The software modules are based on exacting data analyses and expert models 
for calculating the vital properties.  

Calculations on the concentration of the single compounds in the plasma as a function of time are 
generated using the ADME Boxes ver. 4.1 [47] as this feature is currently not implemented in the free 
web version. 

 
3.1.5. ToxBoxes 
 

Acute toxicity towards mouse and rat as well as the probability of adverse organ specific health 
effects affecting the blood, the cardiovascular- and gastrointestinal systems, the kidneys, the liver and 
the lungs, respectively and a positive response in an Ames test is derived using the web version of the 
ToxBoxes software [36] based on ToxBoxes ver. 2.0. ToxBoxes is modulized software that allows 
calculation of toxic effects of molecules solely from the chemical structure in combination with 
expertise in organic chemistry and toxicology. 

The validation of the ADME Boxes and ToxBoxes software has been carried out as a validation of 
the single modules. Overall it can be stated that the accuracy of the ADME Boxes and the ToxBoxes 
are high. Thus, in the case of Ames test the accuracy was found to be in the order of 95% based on a 
validation set of ca. 1,700 substances [48]. Typical values for the various modules comparing 
experimental and predicted values for a series of compounds not being involved in the model 
development (validation set) were R2 higher than 0.8. 
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3.1.6. Prediction of Activity Spectra for Substances (PASS) 
 

The computer program PASS (Prediction of Activity Spectra for Substances) developed by the 
Academy of Medical Sciences, Moscow, predicts the biological activity for a compound on the basis 
of its structural formula [35].  

The freely available internet version of PASS allows the prediction of 2,468 pharmacological 
effects as well as mechanisms of action [49]. For the studies referred to in this review PASS has been 
used to derive probabilities for the invested compounds to carcinogenic, mutagenic, teratogenic and 
embryotoxic. In the case of carcinogenicity the highest value predicted (male/female mice, 
male/female rats) were applied. The PASS training set includes approx. 46,000 biologically active 
compounds, comprising about 16,000 already launched drugs and 30,000 drug-candidates currently 
under clinical or advanced preclinical testing. [50]. The accuracy of the PASS predictions has been 
reported to be approx. 86% [51,52], Thus the maximum error of prediction has been estimation to be 
approx. 15, 13, 21 and 20% for prediction of carcinogenicity, mutagenicity, teratogenicity and 
embryotoxicity, respectively [51]. For all compounds referred to in present review, rocket fuel and 
transformation products, the number of new descriptors are 0, 1 or, at a maximum, 2, respectively, and 
thus complying with the limitations of the method [53]. 

 
3.2. Partial Order Ranking (POR) 
 

The theory of partial order ranking is presented elsewhere [44,54]. In brief, Partial Order Ranking is 
a simple principle, which a priori includes “≤” as the only mathematical relation. If a system is 
considered, which can be described by a series of descriptors pi, a given site A, characterized by the 
descriptors pi(A) can be compared to another site B, characterized by the descriptors pi(B), through 
comparison of the single descriptors, respectively. Thus, site A will be ranked higher than site B, i.e., 
B ≤ A, if at least one descriptor for A is higher than the corresponding descriptor for B and no 
descriptor for A is lower than the corresponding descriptor for B. If, on the other hand, pi(A) > pi(B) 
for descriptor i and pj(A) < pj(B) for descriptor j, A and B will be denoted incomparable. Obviously, if 
all descriptors for A are equal to the corresponding descriptors for B, i.e., pi(B) = pi(A) for all i, the 
two sites will have identical rank and will be considered as equivalent, i.e., A = B.In mathematical 
terms this can be expressed as 

B ≤ A⇔ pi(B) ≤ pi(A) for all i                                                           (3) 

It further follows that if A ≥ B and B ≥ C then A ≥ C. If no rank can be established between A and 
B these sites are denoted as incomparable, i.e., they cannot be assigned a mutual order. Therefore POR 
is an ideal tool to handle incommensurable attributes. 

In partial order ranking – in contrast to standard multidimensional statistical analysis – neither any 
assumptions about linearity nor any assumptions about distribution properties are made. In this way 
the partial order ranking can be considered as a non-parametric method. Thus, there is no preference 
among the descriptors. However, due to the simple mathematics outlined above, it must be emphasized 
that the method a priori is rather sensitive to noise, since even minor fluctuations in the descriptor 
values may lead to non-comparability or reversed ordering.  
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A main point is that all descriptors have identical orientations, i.e., “high” and “low”. As a 
consequence of this, it may be necessary to multiply some descriptors by –1 in order to achieve 
identical directions. As an example bioaccumulation and toxicity can be mentioned. In the case of 
bioaccumulation, the higher the number the higher a chemical substance tends to bioaccumulate and 
thus the more problematic the substance, whereas in the case of toxicity, the lower the Figure the more 
toxic the substance. Thus, in order to secure identical directions of the two descriptors, one of them, 
e.g., the toxicity Figures, has to be multiplied by –1. Consequently, both in the case of 
bioaccumulation and in the case of toxicity higher Figures will now correspond to more  
problematic sites. 

The graphical representation of the partial ordering is often given in a so-called Hasse diagram [55-
58]. In practice the partial order rankings are performed using the WHasse software [58]. An 
alternative to the WHasse software is the DART (Decision Analysis by Ranking Techniques) that 
comprises different kinds of order ranking methods, roughly classified as total - and partial order 
ranking methods [59] or the PyHasse software currently being developed by R. Brüggemann [60]. 
 
3.2.1. Linear extensions and ranking probabilities 
 

The number of incomparable elements in the partial ordering constitutes a limitation in the attempt 
to rank, e.g., a series of chemical substances based on their potential environmental or human health 
hazard. To some extent this problem can be remedied through the application of the so-called linear 
extensions of the partial order ranking [61,62]. A linear extension is a total order, where all 
comparabilities of the partial order are reproduced [54,55]. Due to the incomparabilties in the partial 
order ranking, a number of possible linear extensions correspond to one partial order. If all possible 
linear extensions are found, a ranking probability can be calculated, i.e., based on the linear extensions 
the probability that a certain element has a certain absolute rank can be derived. If all possible linear 
extensions are found it is possible to calculate the averaged ranks of the single elements in a partially 
ordered set [63,64].  

 
3.2.2. Averaged ranks 
 

Based on the linear extensions the averaged rank of the single elements can be established. The 
averaged rank is simply the averaged of the ranks in all the linear extensions. On this basis the most 
probable rank for each element can be obtained leading to the most probably linear rank of the 
elements studied.  

The generation of the averaged rank of the single element in the Hasse diagram can be obtained 
through deriving a large number of randomly generated linear extensions [65-67]. The random linear 
extension approach allows in addition to the determination of the averaged ranks of the single elements 
also the determination of the ranking probability distribution of the single elements (cf. [14,15]). 

Alternatively the generation of the averaged rank of the single sites in the Hasse diagram is 
obtained applying the simple relation recently reported by Brüggemann et al [68]. The simple relation 
can obtain the averaged rank of a specific element, ci. 
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Rkav(ci) = (N(ci)+1)-(S(ci)+1)×(N(ci)+1)/(N(ci)+1-U(ci))    (4) 

where N(ci) is the number of elements in the diagram, S(ci) the number of successors, i.e., comparable 
element located below, to ci and U(ci) the number of elements being incomparable to ci [68]. It is 
immediate seen that in the ranking according to eqn. 4 the lower the number the higher the levels. 
Thus, the highest level will be “1”. This is reversed compared to the original approach [68]. 

 
3.2.3. Hierarchical POR 
 

Based on the linear extensions the averaged rank of the single elements can be established. The 
averaged rank is simply the averaged of the ranks in all the linear extensions. On this basis the most 
probable rank for each element can be obtained leading to the most probably linear rank of the 
elements studied. These linear ranks can be regarded as meta-descriptors. If a series of such meta-
descriptors are generated from a set of partial order rankings they subsequently may constitute the 
basis for further ranking in a second stage, i.e., a consecutive POR.  

By this process the number of descriptors is significantly reduced and the ranking based on meta-
descriptors may, in contrast to a simultaneous inclusion of all original descriptors, lead to development 
of a robust model [69] that in principle will contain all information based on the original set of 
descriptors [16]. 

Since the meta-descriptors, as the descriptors, are ordered with the highest rank being denoted “1”, 
the meta-descriptors must all be multiplied by –1 in order to make sure that the elements with the 
highest rank, i.e., with the lowest attributed number, will be ranked in the top of the Hasse diagram as 
a result of the ranking based on the meta-descriptors. In Figure 7 a graphical representation of the 
HPOR approach is depicted. 

 
3.3. Formal Concept Analysis (FCA) 

 
Formal concept analysis (FCA) is a methodology to derive linkages between a set of objects, e.g., 

chemicals, and a set of associated parameters, e.g., the properties of these chemicals [17,18]. Thus, in 
short FCA can be as a system consisting of three parts, a context, or a triple (C,P,L), where C are the 
set of objects (chemicals) and P the set of parameters. L is the relation between the two sets C and P. 
Thus, if a chemical, c, belongs to the set C and c a parameter, p, belonging to the set P, (c,p) is said to 
belong to L. 

The set of parameters that are associated with a given object, chemical, can be regarded as a set of 
binary, i.e., on/off statements. Either the chemical has a given parameter, e.g. being carcinogenic,  
or not. 

Typically a context will be seen as arranged in matrix form with the single objects as rows and the 
associated parameters as columns. Hence, an “X” in this table will indicate that a given object has the 
given parameter (on-status) whereas an empty space indicates that this parameter is not associated with 
the given object (off-status). Examples of contexts are given in Table XX and YY (vide supra). 

For the studies referred to in this review the software ConExp [70] was applied to generate the 
lattice line diagrams as well as the implication sets and association rules. 
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Figure 7. Graphical representation of the hierarchical partial order ranking [16]. 

 
3.3.1. Line diagrams 
 

The lattice line diagram consists of circles, lines and the names of all objects/chemicals (given in 
white boxes) and parameters of the context (given in grey boxes) where the circles represent the 
concepts. Blue filled upper semi-circle indicates that there is an attribute attached to this concept. 
Black filled lower semi-circle indicates that there is an object attached to this concept. 

From the diagram the information of a context can be read as: a chemical (object), c, has a 
parameter (characteristic), p, attached only if there is an upward line from the circles with the label c to 
a circle with the label p. 
 
4. Conclusions 
 

In the present study the interplay between QSAR/QSPR and partial order ranking and formal 
concept analyses reviewed. It has been demonstrated that QSAR/QSPR models advantageously can be 
used to generate physico-chemical and ecotoxicological data (EPI Suite) as well as data to elucidate 
possible adverse human health effects (ADME/Tox Boxes and PASS). It has further been 
demonstrated, using residual rockets fuel, 1,1-dimethylhydrazine, and a series of its transformation 
products as an illustrative example that a further data treatment advantageously can be carried out 
applying partial order ranking (POR) methodologies as well as formal concept analysis (FCA). 
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Whereas the partial order ranking methodologies lead to a prioritization of the studied chemicals 
simultaneous taking a multitude of parameters into account, the formal concept analysis leads to 
valuable information on possible links between the studied chemicals and the associated parameters. 
As such the combination QSAR/QSPR – POR – FCA constitutes a highly effective decision  
support tool. 
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Appendix 
 

Appendix 1. Context table for ecotoxicological effects by 1,1-dimethyl hydrazine and its 
transformation products as derived by EcoSARa [46]. 

No. F1000 F100 F10 F5 F1 D1000 D100 D10 D5 D1 A1000 A100 A10 A5 A1 

1 X X X   X X X   X X X X X 

2 X     X X    X X    

3 X     X X    X X    

4           X     

5 X          X X    

6                

7 X X X X  X X X   X X X X X 

8 X X X X  X X X X  X X X X X 

9 X X X X  X X X X  X X X X X 

10 X X X X  X X X   X X X X X 

11 X X    X X         

12 X X    X X    X X X X X 

13 X     X X    X X    

14 X     X     X X    

15                

16                

17                

18           X     
a F1000, F100, F10, F5 and F1 denote EcoSAR derived toxicities towards fish being higher than 1,000, 100, 10, 
5 and 1 mg/L, respectively. Analogously for D (daphnids) and A (algae). 
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Appendix 2. Context table for carcinogenic, mutagenic, teratogenic and embryotoxic 
action by 1,1-dimethylhydrazine and its transformation products as derived by PASSa [35]. 

No. C5 C6 C7 C8 C9 M5 M6 M7 M8 M9 T5 T6 T7 T8 T9 E5 E6 E7 E8 E9 
1 X X X X X X X X   X X    X X    
2 X X    X X X   X X X X X X X X X  
3           X          
4 X X X X  X X X   X X X X X X X X X  
5 X X X X X X X X X X X X X X X X X X X  
6 X X X X X      X X    X X X   
7 X X X X  X     X X    X X    
8 X X X X X                
9 X X                   

10 X X X X X X X    X X X X  X X    
11 X X                   
12 X X X X  X     X          
13                     
15                     
16                     
17                     
18                     
a C5, C6, C7, C8 and C9 denote PASS predicted probabilities for the compound being carcinogenic higher than 
50, 60, 70, 80 and 90%, respectively. Analoguously for M (mutagenic), T (teratogenic) and E (embryotoxic). 
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