Supplementary Material

Probing the nanosecond dynamics of a designed threestranded beta-sheet with massively parallel molecular dynamics simulation

Vincent A. Voelz¹, Edgar Luttmann¹, Gregory R. Bowman² and Vijay S. Pande^{*2}

Figure S1. Secondary structure profiles over time, for all forcefields tested, as classified by the DSSP algorithm of Kabsch and Sander (1983). Consistent across all forcefields is the rapid formation of the ^DPG turns, but negligible amounts of strand formation. The simulations under different forcefields also reproduce long-known secondary structural biases; for example, the helical propensity of AMBER94 compared to more modern forcefields.

Figure S2. (a) A MSM built using a lag time of τ =240 ns reproduces the time evolution of macrostate populations. (b) As the lag time used to build the MSM increases, so do the implied timescales (shown with error bars from a simple bootstrapping procedure). Regardless of lag time, the implied timescales do not show a pronounced separation of timescales.

Figure S3. Markov State Models built from trajectory data for each starting conformation, each constructed using a short lag time of τ =8 ns. MSM predictions of the macrostate population time evolution is shown as the solid line; the actual macrostate populations over time are shown as dots.

Figure S4. Implied timescales as a function of lag time for MSMs constructed for each starting conformation. Error estimates (bars) for timescales at each lag time were derived from a bootstrapping procedure.

Figure S5. Bi-exponential fits of the average C=O solvent-accessible surface area (SAS) over time computed from simulation snapshot data (blue), compared to the average SAS of each microstate projected onto the 4000 microstate populations over time (red), and average SAS of each macrostate projected onto 5 macrostate populations over time (green). Despite the differential effects produced by averaging over microstates and macrostates, the relaxation time scales are similar.

20.4

20.4

20.4

 $\tau_{\rm slow} = 48.2 \text{ ns}$

 $\tau_{\text{fast}} = 0.45 \text{ ns}$

200

150

time (ns)

average Solvent-Accessible

Surface area (nm²)

0.05

0.04

0.03

0.02

0.01

time (ns)

model	conf	A (Å)		B (Å)		C (Å)		τ ₁ (ns)		τ ₂ (ns)	
ff94	0	5.033	± 0.345	0.794	± 0.004	7.795	± 0.001	2.493	± 0.360	57.757	± 0.354
	1	5.006	0.704	0.517	0.004	7.820	0.001	1.967	0.473	48.438	0.259
	2	4.950	0.374	0.461	0.003	8.147	0.002	2.507	0.389	84.182	0.751
	3	5.018	0.397	0.846	0.005	8.133	0.001	2.506	0.426	45.982	0.345
	4	4.981	0.744	1.107	0.007	8.240	0.001	2.187	0.623	40.717	0.362
	5	5.070	41.314	0.561	0.003	7.656	0.004	0.867	5.824	134.93	1.281
	6	5.014	-	1.404	0.004	7.948	0.001	0.157	-	61.837	0.449
	7	4.952	-	0.460	0.002	7.678	0.001	0.370	-	81.967	0.448
	8	5.032	0.693	0.663	0.004	7.864	0.001	1.953	0.460	49.997	0.282
	9	5.020	1.677	0.444	0.004	8.241	0.001	1.533	0.717	42.272	0.256
ff96	0	5.043	0.662	0.992	0.009	9.350	0.002	2.454	0.688	43.309	0.563
	1	4.955	0.587	0.566	0.008	8.929	0.002	2.456	0.606	43.875	0.476
	2	4.979	4.446	0.500	0.006	9.163	0.002	1.442	1.670	50.432	0.543
	3	4.837	0.832	0.239	0.004	9.379	0.005	2.177	0.668	99.665	1.574
	4	4.807	0.364	1.074	0.007	9.697	0.004	3.115	0.583	74.105	1.387
	5	-1.262	1.172	1.304	1.176	9.037	0.004	26.411	7.628	41.577	11.188
	6	-1.433	0.108	1.515	0.019	8.750	0.001	4.805	0.474	36.572	0.632
	7	-1.541	0.962	1.045	0.964	8.997	0.005	31.123	7.958	51.380	13.122
	8	0.550	0.016	0.400	0.010	8.444	0.012	18.133	0.522	124.259	5.210
	9	0.522	0.028	0.404	0.030	8.628	0.001	7.164	0.402	30.423	0.610
ff99	0	1.113	0.027	0.779	0.006	7.840	0.002	7.309	0.227	66.321	0.655
	1	0.963	0.014	0.332	0.004	7.921	0.008	10.618	0.227	138.224	2.921
	2	0.771	0.016	0.561	0.005	8.095	0.007	11.026	0.286	114.416	2.380
	3	1.067	0.026	0.672	0.007	8.477	0.003	7.963	0.268	79.218	1.161
	4	1.440	0.014	0.604	0.006	8.258	0.013	14.344	0.403	141.921	5.159
	5	1.009	-	0.612	0.002	7.829	0.002	0.055	-	81.050	0.513
	6	1.096	-	1.305	0.004	8.079	0.001	0.149	-	45.977	0.327
	7	-1.639	0.077	0.604	0.003	7.716	0.005	3.980	0.195	125.616	1.470
	8	1.128	0.022	0.494	0.014	7.866	0.001	7.816	0.279	41.492	0.485
660 Q I	9	0.533	0.021	0.089	0.010	8.270	0.017	23.216	0.601	143.168	7.718
1199 q	0	1.020	0.028	0.630	0.021	8.386	0.035	8.861	0.622	77.890	14.298
	1	1.160	0.029	0.437	0.017	7.850	0.030	12.616	0.599	174.122	11.908
	2	0.708	0.138	0.639	0.154	8.289	0.006	17.907	2.385	53.769	4.931
	3	1.388	0.240	0.942	0.013	8.387	0.008	4.552	0.780	80.028	2.651
	4	1.479	0.199	1.406	0.114	8.655	0.003	5.569	1.561	23.287	1.543
	5	0.358	-	0.872	0.006	7.841	0.008	0.095	-	116.315	2.487
	6 7	0.587	0.049	1.159	0.056	7.737	0.073	11./0/	0.863	232.291	31.895
	/	0.497	-	0.437	0.012	7.852	0.015	0.128	-	155.409	4.//1
	0	1.197	0.031	0.552	0.009	7.905	0.010	12.020	0.045	123.404	5.000 0.712
ff0.2	9	1 205	- 0.027	0.024	0.000	0.100	0.003	0.402	- 0.201	77.000	2.070
1105	1	0.021	0.027	0.030	0.011	7 042	0.000	8 202	0.301	140 224	4.637
	2	0.531	0.024	0.555	0.009	8 4 4 7	0.014	13 192	0.233	178 282	6 4 1 7
	2	0 382	0.015	0.210	0.057	8 21 2	0.010	12 315	0.400	251 216	29 238
	4	1 795	0.049	0.839	0.018	8 550	0.004	6876	0.450	52 116	1 267
	5	0.657	0.356	0.361	0.005	8.190	0.003	2.423	0.369	58.054	0.680
	6	0.834	0.044	0.664	0.019	8.273	0.042	22.166	1.213	143.512	17,958
	7	-0.681	0.026	0.352	0.033	8.085	0.002	9.314	0.451	38.338	1.003
	8	0.525	0.019	0.833	0.020	8.202	0.005	11.543	0.452	67.408	1.962
	9	0.448	0.275	0.571	0.008	8.487	0.002	2.592	0.343	35.544	0.396

Table S1. Parameters for bi-exponential curves $A \exp(t/\tau_1) + B \exp(t/\tau_2) + C$ fitted to the average radius of gyration over time for each forcefield model and starting conformation.

Blank error estimates represent cases where the fitted τ_1 was very close to zero, which

our error model treats poorly (see Methods).

model	conf	A (nm²)		B (nm²)		C (nm²)		$\tau_1(ns)$		τ ₂ (ns)	
ff94	0	0.314	± 0.06	0.263	± 0.101	19.46	± 0.147	13.20	± 1.22	191.22	± 57.71
	1	0.127	0.06	0.422	0.054	19.50	0.008	1.85	1.44	36.41	2.56
	2	0.135	1.64	0.242	1.525	19.56	0.135	36.17	25.43	92.36	105.64
	3	0.127	0.09	0.281	0.084	19.22	0.015	9.12	1.18	55.98	5.99
	4	0.220	0.12	0.382	0.051	19.90	0.105	18.18	2.49	135.26	42.12
	5	-0.133	0.10	-0.093	0.073	19.78	0.033	12.73	1.72	84.80	12.77
	6	0.496	2.15	0.078	1.999	19.75	0.162	42.56	34.48	101.07	140.83
	7	0.149	9.51	-0.145	9.481	19.33	0.047	35.93	72.40	55.47	125.59
	8	0.078	0.09	0.253	0.076	19.42	0.012	6.75	0.90	47.88	4.59
	9	0.135	0.08	0.218	0.064	19.52	0.011	4.96	0.81	45.57	3.79
ff96	0	0.112	0.10	0.638	0.084	20.46	0.025	10.10	1.41	67.55	9.27
	1	0.270	0.10	0.541	0.054	20.28	0.069	13.07	1.82	110.48	25.30
	2	0.265	0.14	0.442	0.075	20.16	0.179	18.05	3.11	155.05	71.44
	3	0.268	0.15	-0.314	0.082	20.56	0.201	19.13	3.39	160.73	82.07
	4	0.032	0.03	0.756	0.078	20.81	0.095	0.62	-	168.33	30.95
	5	-0.408	0.16	0.139	0.108	20.54	0.066	16.06	2.90	98.79	26.95
	6	-0.203	0.06	0.301	0.048	20.71	0.010	0.04	-	43.51	3.10
	7	-0.199	0.14	-0.451	0.103	20.29	0.047	12.97	2.28	84.86	18.38
	8	0.412	0.12	0.215	0.286	19.91	0.399	19.35	3.04	233.22	178.51
	9	0.043	0.05	0.523	0.221	19.91	0.242	0.70	-	258.40	98.31
ff99	0	0.153	0.07	0.423	0.057	19.90	0.014	5.79	0.74	53.42	4.59
	1	0.311	0.08	0.404	0.059	19.72	0.032	9.57	1.26	79.88	11.15
	2	0.272	0.09	0.340	0.067	19.79	0.027	8.08	1.18	70.72	9.35
	3	0.187	0.06	0.577	0.098	19.64	0.144	12.41	1.21	185.05	55.65
	4	0.355	0.08	0.482	0.111	19.97	0.172	14.40	1.62	183.55	67.44
	5	-0.301	1.18	0.330	1.162	19.83	0.028	22.91	12.15	52.47	29.19
	6	0.306	15.03	0.421	14.842	20.03	0.204	53.59	174.55	87.42	398.29
	7	0.084	0.29	0.065	0.205	19.58	0.102	23.27	5.61	109.14	47.79
	8	0.262	0.11	0.173	0.068	19.89	0.061	14.83	2.11	105.48	23.74
	9	0.309	0.13	0.445	0.062	19.82	0.093	16.30	2.56	121.68	36.46
ff99ø	0	0.691	0.39	0.444	0.008	19.92	0.010	3.35	0.72	95.62	3.01
	1	1.018	0.21	0.758	0.022	19.80	0.005	4.52	0.78	51.41	1.65
	2	1.599	0.99	-0.574	0.997	20.00	0.012	25.66	9.87	50.49	18.24
	3	0.601	1.39	0.681	0.009	19.85	0.007	2.18	1.14	76.76	1.99
	4	0.985	0.13	0.461	0.011	20.23	0.016	5.78	0.67	108.88	5.16
	5	0.522	-	0.188	0.009	19.80	0.008	0.14	-	80.45	2.28
	6	0.520	-	0.919	0.011	19.99	0.014	0.32	-	123.03	4.24
	7	0.511	-	0.196	0.008	19.65	0.009	0.32	-	90.98	2.56
	8	0.567	0.19	0.339	0.068	19.91	0.076	4.86	0.67	255.40	31.96
	9	0.587	0.06	0.520	0.025	19.91	0.040	9.23	0.80	160.88	14.86
ff03	0	0.402	0.11	0.372	0.056	19.74	0.134	18.01	2.42	147.19	52.60
	1	0.413	0.06	0.435	0.112	19.53	0.153	10.09	1.04	181.95	55.88
	2	0.279	0.14	0.579	0.345	19.35	0.474	20.10	3.35	237.59	212.92
	3	0.134	0.09	0.294	0.044	19.50	0.080	13.43	1.60	120.90	28.45
	4	0.159	0.07	0.653	0.047	19.97	0.042	10.26	1.19	92.81	14.30
	5	-0.121	0.06	-0.047	0.047	19.77	0.079	8.39	1.04	131.58	26.29
	6	0.169	0.45	0.626	0.346	19.70	0.775	35.17	11.06	230.31	399.18
	7	-0.127	0.20	-0.154	0.114	19.54	0.108	19.30	3.82	114.75	44.76
	8	0.163	0.12	0.313	0.091	19.55	0.039	12.76	1.95	81.74	15.11
	9	0.141	0.08	-0.012	0.048	19.48	0.057	10.94	1.45	103.82	19.78

Table S2. Parameters for bi-exponential curves $A \exp(t/\tau_1) + B \exp(t/\tau_2) + C$ fitted to the average solvent-accessible surface area of backbone C=O atoms over time for each forcefield model and starting conformation.

Blank error estimates represent cases where the fitted τ_1 was very close to zero, which our error model treats poorly (see Methods).