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Abstract: The surge of interest in bioenergy has been marked with increasing efforts in 

research and development to identify new sources of biomass and to incorporate cutting-

edge biotechnology to improve efficiency and increase yields. It is evident that various 

microorganisms will play an integral role in the development of this newly emerging 

industry, such as yeast for ethanol and Escherichia coli for fine chemical fermentation. 

However, it appears that microalgae have become the most promising prospect for biomass 

production due to their ability to grow fast, produce large quantities of lipids, 

carbohydrates and proteins, thrive in poor quality waters, sequester and recycle carbon 

dioxide from industrial flue gases and remove pollutants from industrial, agricultural and 

municipal wastewaters. In an attempt to better understand and manipulate microorganisms 

for optimum production capacity, many researchers have investigated alternative methods 

for stimulating their growth and metabolic behavior. One such novel approach is the use of 

electromagnetic fields for the stimulation of growth and metabolic cascades and controlling 

biochemical pathways. An effort has been made in this review to consolidate the 

information on the current status of biostimulation research to enhance microbial growth 

and metabolism using electromagnetic fields. It summarizes information on the 

biostimulatory effects on growth and other biological processes to obtain insight regarding 
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factors and dosages that lead to the stimulation and also what kind of processes have been 

reportedly affected. Diverse mechanistic theories and explanations for biological effects of 

electromagnetic fields on intra and extracellular environment have been discussed. The 

foundations of biophysical interactions such as bioelectromagnetic and biophotonic 

communication and organization within living systems are expounded with special 

consideration for spatiotemporal aspects of electromagnetic topology, leading to the 

potential of multipolar electromagnetic systems. The future direction for the use of 

biostimulation using bioelectromagnetic, biophotonic and electrochemical methods have 

been proposed for biotechnology industries in general with emphasis on an holistic biofuel 

system encompassing production of algal biomass, its processing and conversion to 

biofuel. 

Keywords: algae; bioenergy; biofuels; biomass; biostimulation; electromagnetic field; 

growth; metabolism; multipolar 

 

1. Introduction 

 

Electromagnetic fields are capable of eliciting in vivo and in vitro effects in many biological 

systems [1]. Increasing attention is being directed towards bioelectromagnetic stimulation of living 

cultures for biotechnology and bioenergy applications using the low frequency electromagnetic fields 

(EMF). A number of bioprocesses could be successfully integrated with electromagnetic or 

electrochemical stimulation if the cultivation conditions are properly engineered using specialized 

reactors viz. electrolytic bioreactors, electro-bioreactors and bioelectro-reactors [2]. Most recently, a 

strong initiative in bioenergy research has been taken up to investigate methods for enhancing 

productivity and metabolic processes for biomass production and biorefining of biomass for 

production of biofuels, energy and other added value products. Currently, microalgae are considered to 

be the most promising candidates for biomass production because of their ability to grow fast, produce 

large quantities of lipids, carbohydrates and proteins, thrive in poor quality waters, sequester and 

recycle carbon dioxide from industrial flue gases and remove pollutants from industrial, agricultural 

and municipal wastewaters. Microalgae are novel feedstocks for renewable biomass production that is 

capable of meeting the global demand for transportation fuels because the oil productivity of many 

strains of microalgae greatly exceeds that of the most productive oil crops such as oil palms and 

soybean [3]. Although biomass production may be most effectively performed by large-scale algae 

cultivation, yeast and bacteria are the most common groups of organisms used in bioprocessing and 

conversion technologies like fermentation, composting, anaerobic digestion and bioremediation. 

Considering the current importance of waste management and recycling in conserving natural 

resources, bioenergetic stimulation technologies may be used as a potential tool for bioremediation by 

stimulating the uptake rates of various polluting components found in the waste streams by microbes. 

Extensive studies have been conducted over both eukaryotic (algae, yeasts and molds) and 

prokaryotic microorganisms using various electromagnetic regimes. The biological effects have been 
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found to depend on field strength, frequency, pulse shape, type of modulation, magnetic intensity, and 

length of exposure [4]. Some results have been difficult to replicate due to various hidden parameters 

typically not monitored, such as local intensity and orientation of Earth’s geomagnetic field, cosmic 

radiations, solar winds and sunspot events.  

Electromagnetism may affect organisms in both negative and positive manner which includes 

acceleration of growth and metabolism. This paper however focuses on the facilitative effects of 

electromagnetism on various microorganisms. The research attempts in this area can be divided into 

several groups based on implemented EMF parameters. Simplest initial classification can be based on 

time behavior of EMF and relative representation of the electric and magnetic components of the field. 

As it follows from the recent research results, a spatial configuration and topology of the EMF may 

also have significant impact on processes in living cultures. This paper also summarizes our own data 

regarding the effects of multipolar electromagnetic influences on biological systems and the future 

potential biostimulation techniques for improving microalgae biomass and lipid productivity for 

producing biofuels. 

 

2. Electromagnetic Experiments 

 

Three primary classes of experiments of electromagnetic influence (Figure 1) can be distinguished 

viz.: 

I. Predominantly magnetic fields: Near-field regime (Permanent, slowly changing, and 

pulsed fields from magnetic coils) 

II. Predominantly electric fields: Near-field regime (Permanent or slowly changing) 

III. Fields with both electric and magnetic components, with ratios between 0.1 and 10: 

Far-field regime (typical EMF oscillation frequency is 100 kHz or more) 

IV. Fields from (I, II, or III) with unique spatial and/or temporal topology 

Group I is represented relatively larger, mostly because of simplicity of experimental setup and 

extended penetration depth of magnetic field inside the water containing systems (Figure 4). The 

generated fields are either static magnetic fields or oscillating magnetic fields created by either 

permanent magnets or electromagnets, like Helmholtz and Solenoid coils. The biological experiments 

generally use a standard bipolar configuration with a N/S magnetic or +/- electric field for stimulation.  

Group II is most often used in electroporation where strong pulsed electric fields (or PEF’s) are 

used for reversible membrane permeabilization to induce the uptake or release of some cell ingredients 

or foreign molecules. Group III is electromagnetic energy that propagates as a wave at higher 

frequencies and is considered as the far-field regime via an antenna, magnetron, or klystron. This 

classification encompasses non-ionizing radiowaves and microwaves, as well as optical and ionizing 

radiations such as IR, visible, UV, X-ray and Gamma radiation.  

The following section on the effects of electromagnetic fields has been organized by the type of the 

EM treatment and further categorized on the basis of growth and physiological processes that have 

been studied within each treatment group. 
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Figure 1. Overview of various electromagnetic stimulation modalities from fields and waves. 

 

 

3. Biostimulation by Electromagnetic Fields  

 

3.1. Group I: Treatments Involving Magnetic Field Predominance 

 

Experiments involving a predominant magnetic field have been conducted on a range of 

microorganisms that represent both prokaryotes (eubacteria, archaea) and eukaryotes (algae, fungi, 

protozoa). A wide variety of responses involving magnetic field predominance have been summarized 

in Table 1.  

Table 1. Summary of electromagnetic treatments of some microorganisms. 

Organism Class* EM Intensity Biological effect Reference 

Archaea     

Methanosarcina barkeri MW 13.5–36.5 GHz 
Increase in growth, cell count and size and methane 
production 

[5] 

Eubacteria     

E. coli 

PMF 0.05–1 mT Stimulated transposition activity & reduced cell viability  [6] 

AC MF 16, 60 Hz 
Enolase activity stimulation; Suppression of enolase 
activity 

[7] 
 

 0.05–1 mT Reduced transposition activity & enhanced cell viability [6] 

OMF 
 

100 mT 
Exposure time dependent stimulation or inhibition of cell 
viability 

[8] 

30 µT Cell density dependent changes in AVTD [9] 

DC EF NA 
Increase in growth, removal of inhibitory compounds in 
medium 

[10] 

AC MF 
0.1–1 mT Significant morphotype changes & alteration during cell 

division 
[11] 

@ 50 Hz 

 

 

 



Int. J. Mol. Sci. 2009, 10             

 

 

4519

Table 1. Cont. 

 

ACEF 
2.5–50 V/cm Stimulation of membrane bound ATP synthesis, 

optimum at 100 Hz 
[12] 

@ 0.05–100 kHz 

6-polar  0.35–2.1 kHz  

Increase in growth in test tubes (147 ± 24%) and 
colonies (42–179%) 

[13,14] ACEF for test tubes  

 
60 Hz for Petri 
dishes 

Bacillus cereus 
6-polar  

1 kHz Increase in growth in tubes (196 ± 29%) and colonies [13,14] 
ACEF 

B. mucilaginosus  SMF ~0.39 T Increase in growth [15] 

B. subtilis 
 
 

AC MF 
 
 

0.8, 2.5 mT,  
0.8 and 1 kHz 

Growth increase and interestingly a loss of intercellular 
cohesion 

[16] 
 

  

Paper to be seen 
 
 

AC MF 
 
 

0–0.3 Hz @  
Elevated or even diminished growth rates for Bacillus 
subtilis, Candida albicans, Halobacterium,  

[17] 
 
 
 

5−90 mT  Salmonella typhimurium, and Staphylococci 

  

Pseudomonas stutzeri PMF 0.6–1.3 mT Increase in growth  [18] 

Trichoderma reesei PMF 1.5 mV cm-1  Increase in growth, cellulase activity and secretion [19] 

Streptomyces noursei  PMF 1.5 mV cm-1  
Increased antibiotic production, O2 evolution, glucose 
uptake 

[20] 

Salmonella 
typhimurium 

OMF 15 mT@ 0.3Hz Growth stimulation, Mutation reversion rate unaffected [17] 

Micrococcus 
denitrificans  

SMF 500–800 mT  Growth inhibition followed by stimulation after 6 h [21] 

Corynebacterium 
glutamicum 

AC MF  4.9 mT, 50 Hz Increase in ATP levels by about 30%  [22] 

Natural Flora SMF 22 mT Enhanced degradation of phenolic waste liquors [23] 

Natural Flora PEF 1.25 - 3.25 kVcm-1 Enhanced biosorption of uranium [24] 

Bacteria & yeast OMF 15 mT@ 0.3 Hz 
Larger increase (30%) in growth in gram –ve 
(Psuedomonas aeruginosa, Halobacterium halobium)  

[17] 

   
than gram +ve (Bacillus subtilis, Staphylococcus 
epidermidis) and yeast (Candida albicans)  

 

Rhodobacter 
sphaeroides 

AC/DC 
MF 

0.13–0.3 T 
Increase in porphyrin synthesis, Enhanced expression 
of 5-aminolevulinic acid dehydratase 

[25] 

     

Cyanobacteria     

Spirulina platensis  SMF 10 mT  Increase in growth (50%), O2, sugar, phycocyanin [26] 

  250 mT 
Increase in growth (22%), CNP-Uptake, Chl, 
minerals 

[27] 

 MW 7.1 mm @  Increased growth (50%) [28] 

  2.2mWcm-2   

Anabaena doliolum SMF 300 mT 
Increase in growth, pigments, carbohydrate and 
protein 

[29] 

Algae     

Chlorella vulgaris  SMF 10–35 mT 
Increase in growth (100%); Stimulated antioxidant 
defense 

[30] 

Chlorella sp.  SMF 6–58 mT Increase in growth (NA) [31] 

Dunaliella salina  SMF 10–23 mT Increase in growth (90%), and β-carotene [32] 

Scenedesmus sp. PEF NA Enhanced oil extraction- Solvent+Electroporation [33] 
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Table 1. Cont. 

Yeast     

Saccharomyces 
cerevisiae 

PMF ~ 4.7 μT Increased activity of alcohol dehydrogenase [34] 

 OMF+SMF 20 mT + 8 mT Increase in ethanol, sugar utilization [35] 

S. cerevisiae OMF 0.28–12 mT Increase in growth [36] 

 OMF 0.2–12 mT Increase in growth (25 +/- 5%) [37] 

  @ 50 Hz   

 AC/DC EF 100/10 mA 
Increase in growth, organic acid production, cell 
budding 

[38] 

 MW 
42GHz@ < 3 
mWcm-2 

Frequency dependent increase or decrease in growth  [39] 

 
6-polar 
ACEF 

1 kHz Increase in gas production (195 ± 20%) [13,14] 

 AC MF 
0.5 μT, 100−200 
Hz 

30% reduction in respiration [40] 

Saccharomyces sp.   
Better UV survival in those given magnetic 
pretreatment 

[41] 

   Respiration stimulation [42] 

S. fragilis SMF ~0.26 T Increase in growth (27–36%) [15] 

Kluyveromyces 
marxianus 

PEF 0.25 kV Increased ethanol production and cellobiose utilization [43] 

Physarum 
polycephalum 

ELF EMF 45,60,75 Hz Delayed mitosis by 0.5 to 2 h [44] 

 AC MF 0.1 mT, 60 Hz Lower ATP levels but no decreased respiration [45,46] 

  
0.2 mT and 60 and 
75 Hz 

Reduced respiration   

Protozoa     

Trichomonas vaginalis  SMF  Field strength dependent growth stimulation/inhibition [47] 

Ciliophora     

Paramecium 
tetraurelia 

AC MF 1.8 mT, 72 Hz 
Ca2+ specific increase in cell division rates, absent in 
the presence of a Ca2+ blocker,  

[48] 

    Alterations in membrane fluidity  

Tetrahymena 
pyriformis 

AC MF 10 mT, 60 Hz Delayed cell division and increased oxygen uptake  [49] 

* AC-EF: alternating current electric field; DC-EF: direct current electric field; MW: microwave;  

OMF: oscillating magnetic field; SMF: static magnetic field; PEF: pulsed electric field; PMF: pulsed magnetic field. 

 

3.1.1. Growth 

 

Growth is a physiological response of an organism and a positive effect on growth indicates that 

some of the biosynthetic pathways are being stimulated. Erygin et al. [15] grew a gram-positive 

bacterium Bacillus mucilaginous in a magnetic field of ~0.26 T under different media compositions 

and compared it with unexposed control cultures. The magnetically treated liquid medium consisting 

of ferromagnetic salts showed rapid growth of the bacterium over control in 3 h. Similarly 

magnetically treated dry whey medium yielded three times higher cell count than the untreated 

medium. However, there was an overall increased response from the exposed dry whey illustrating 

how the culture medium composition may influence the effect of magnetic field.  
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Moore [17] studied five strains of bacteria and a yeast under a magnetic flux of 5–90 mT and 

reported maximum stimulation of growth at 15 mT (at 0.3 Hz) and maximum inhibition at 30 mT. 

Experiments with varying time especially using oscillating magnetic fields have uncovered new effects 

related to resonant phenomena in the living systems. The biostimulation of a denitrifying gram-

negative bacterium Pseudomonas stutzeri by a magnetic field of 0.6–1.3 mT pulses via inductively 

coupled Helmholtz coils for 8–10 h resulted in a proliferation of biomass that was 10–30% more than 

the control [18]. 

Other than the medium conditions, magnetic flux and type of magnetic field, the exposure time is 

another major factor that governs the intensity of response. Justo et al. [8] observed that the growth of 

Escherichia coli could be stimulated or inhibited by exposure to an oscillating 100 mT extremely low 

frequency (ELF) magnetic field for 6.5 h. Exposed cells had 100 times greater viability than unexposed 

cells, however the viability varied with duration of exposure. It was suggested that the effect was a 

result of magnetic field driven alteration of membrane permeability and availability of ions in the 

culture medium.  

Research groups in Japan and China have focused on investigating ways to improve the cultivation 

of the cyanobacterium Spirulina platensis for production of nutraceuticals using permanent magnetic 

fields. Hirano et al. [26] reported a significantly higher specific growth rate of 0.22 d-1 in S. platensis 

exposed to 10 mT magnetic field when compared to 0.14 d-1 for untreated culture. The growth of S. 

platensis was maximum when it was cultured phototrophically at lower light intensities; but did not 

show improvement under heterotrophic conditions.  

Magnetic field induced growth stimulation in S. platensis has also been reported by Li et al. [27]. 

They observed a 47% increase in dry biomass on the sixth day of cultivation, and a 22% increase over 

control by day eight under the exposure of a 250 mT homogeneous magnetic field from a  

Helmholtz coil. 

Chlorella vulgaris is another algal strain of interest for its nutraceutical value and is a promising 

producer of starch-glucose. This microalga can yield starch to the tune of 60 t ha-1 yr-1 which is  

7.7 times more than that of traditional corn [50]. Takahashi et al. [31] used magnetic flux densities of 

6–58 mT for cultivating Chlorella sp. and obtained facilitative growth at 40 mT. The specific growth 

rate of Chlorella vulgaris almost doubled from 0.07 to 0.12 d-1 under magnetic field generated using a 

dual-yoke electromagnet, which concentrates a magnetic field into a small cross-sectional area [30]. 

The static magnetic field strengths ranging from 0 to 230 mT on Dunaliella salina were used by 

Yamaoka et al. [32]. They observed an improvement in growth rate that peaked at 10 mT with the 

addition of 1 mg L-1 of Fe-EDTA. A ~0.26 T magnetic field exposure using different growth media for 

the yeast Saccharomyces fragilis showed that rapid growth (27–36% over the control in 3 h) occurred 

on magnetic treatment when a dry whey nutrient medium was used, but it turned inhibitory on using a 

liquid nutrient medium [15]. On the other hand Fiedler et al. [36] used an oscillating magnetic field 

generated by a Helmholtz coil via inductive coupling to produce 0.28–12 mT magnetic field at 50 Hz 

for 9 h to treat S. cerevisiae. They observed a maximum growth of 8 g L-1 of biomass under 0.5 mT 

magnetic field exposure and 6.8 g L-1 of biomass for the cells untreated.  
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3.1.2. Photosynthesis and Cell Constituents  
 

Hirano et al. [26] observed acceleration of the rates of O2 evolution as well as synthesis of sugar 

during photosynthesis in Spirulina platensis when exposed to 10 mT geomagnetic field. They opined 

that the treatment using magnetic field increased the phycocyanin content in S. platensis, which plays 

an important role in the activation of photosystem II to help the activation of electron transfer reactions 

during photosynthesis. Their results also suggested that the magnetic fields accelerate the light 

excitation of chlorophyll radical pair.  

Li et al. [27] subjected the same cyanobacterium S. platensis, to a range of static magnetic field 

intensities among which some stimulated its growth, uptake of carbon and light energy utilization. 

They observed that the levels of micro and trace elements (Ni, Sr, Cu, Mg, Fe, Mn, Ca, Co and V) and 

essential amino acids such as histidine improved at 250 mT magnetic field treatments. Also, 

chlorophyll a content of the magnetically treated sample was higher than the control, suggesting better 

light harvesting for photosynthesis. However there was slight decrease in lipid synthesis.  

In Dunaliella salina, β-carotene content could be raised when treated with 10–23 mT of static 

magnetic field and the maximum was obtained at 10 mT with addition of 1 mg L-1 of Fe-EDTA. It also 

showed higher accumulation of the heavy metals viz. Co, Cd, Cu and Ni in the magnetically treated 

cultures, indicating its potential for bioremediation of heavy metals [32].  

Singh et al. [29] investigated the use of permanent magnets and found that the physiological 

response of a cyanobacterium Anabaena doliolum, was dependent on exposure time and magnetic pole 

orientation. They reported that N, S and N+S poles from 0.3 T permanent magnets produced different 

effects depending on the exposure time from 1 to 6 h. The effect was significant on a two hour 

exposure with combined N+S poles, where one culture was exposed to only N pole, which was then 

mixed with another culture exposed to S pole only. Treated cultures recorded 150, 110, 38, 34 and 

20% increase in phycocyanin, chlorophyll a, carbohydrates, carotenoid and protein content, 

respectively and 55% increase in optical density over the control. 

 

3.1.3. Other Physiological Processes 

 

3.1.3.1. Ethanol Fermentation 

 

The biotechnology of fermentation using yeasts, like Saccharomyces cerevisiae, has a long history 

in many sectors of industry from alcoholic beverages to ethanol production. A vital focus of ongoing 

research is the study of the key enzymes responsible for the production of the metabolites of interest, 

namely ethanol. Increasing the activity of key enzymes, like alcohol-dehydrogenase, is a primary goal 

of metabolic and enzyme engineering. The glucose dehydrogenase and alcohol dehydrogenase were 

studied in S. cerevisiae under the influence of a non-uniform pulsed magnetic field of 30 mT for  

60 minutes [34]. They found that in the presence of NAD the glucose dehydrogenase activity increased 

18%, while no effect was observed in the absence of NAD or NADP. The activity of alcohol 

dehydrogenase in the absence of co-enzymes rose to 10.7% in the anaerobically cultivated cells and 

19.9% in those cultivated aerobically. The activity of this enzyme increased by 20.5% when NAD was 
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added to this enzyme in the aerobic culture, while an 8.5% decrease was observed in the anaerobic 

culture. Thus, the non-homogenous pulsed magnetic field of 30 mT stimulated the activity of the 

dehydrogenases, but behaved differently in the absence or presence of NAD and NADP. 

The effects on ethanol fermentation by S. cerevisiae under the influence of two styles of oscillating 

magnetic fields were studied by Perez et al. [35]. The primary magnetic field generator was composed 

of several permanent magnets stacked in series, while the recirculating culture broth was directed 

through the intervening space of the magnetic fields where spatial orientation determined the desired 

intensity of 5–20 mT for each exposure. The recirculation velocity passing through the array of static 

magnets modulated the frequency. The secondary generator was a double layer solenoid coil that 

produced 8 mT. Two magnetic field generators were coupled to the bioreactor, which were operated 

conveniently in simple or combined ways. The overall volumetric ethanol productivity enhanced by 

17% over control at an optimum magnetic field treatment of 0.9–1.2 m s-1 velocity and 20 mT plus  

8 mT solenoid. These results made it possible to verify the effectiveness of the dynamic magnetic 

treatment since the fermentations with magnetic treatment reached their final stage, 2 h earlier than the 

control. Perez et al. [35] postulated that membrane permeability and the redox system that are affected 

by the electromagnetic field might have resulted in alterations of ion transport of the substrates. As a 

consequence, the cellular metabolism was stimulated for higher ethanol production. 

 

3.1.3.2. Anti-Oxidant Defense System  

 

Wang et al. [30] used a magnetic field concentrated to a small area and observed that it helped to 

regulate the anti-oxidant defense system of Chlorella vulgaris at a threshold magnetic flux intensity of 

10–35 mT. The authors proposed that this is probably due to the free radicals altered by the magnetic 

field, which accelerated the relative biological reactions. The analysis of hydroxyl radical (-OH) 

showed that it increased simultaneously with increasing magnetic flux density suggesting an oxidative 

stress induced by the exposure compared to the control. 

 

3.1.3.3. Biodegradation 

 

A study using airlift reactors showed that the influence of magnetic fields enhanced the degradation 

of phenolic waste liquors by submersed microorganisms at a magnetic field intensity of 22 mT [23]. 

 

3.1.4. Genetic Machinery and Molecular Mechanisms 

 

E. coli cells when placed under extremely low frequency (ELF) magnetic field sine wave of 30 μT 

at 9 Hz, exhibited a change in the conformational state of the genome, which was maximum at  

4 × 108 cells mL-1 while there was no such response at lower cell densities of 3 × 105 cells mL-1. Other 

than cell density, time of exposure also affected genomic conformation. The change in the 

conformational state of the genome is considered to be dependent on DNA parameters, i.e. molecular 

weight and the number of proteins bound to the DNA [9]. Thus the ELF field which is close to the ion 

cyclotron resonance parameters for a medium weight ion might be influencing these factors that 

ultimately elicit response on the conformation. It was also proposed that the possibility of a resonance 
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fluorescence effect where recombination of fluorescing radicals may act as signals for intercellular 

communication and participate in the synchronization of gene expression. Weak, static magnetic fields 

(0−110 μT) are shown affecting DNA-protein conformations in E. coli. The analysis by Binhi et 

al. [51] represented a dose-response curve for the static magnetic field. The curve however is peculiar 

in having three prominent maxima unlike other dose-response curves in nature that usually follow 

rising or decaying exponential functions. They explained this peculiarity in the context of the ion 

interference mechanism. No alteration in the profile of stress proteins of E. coli was observed by 

Nakasono et al. [52] on exposure to AC fields (7.8−14 mT, 5−100 Hz). In Saccharomyces cerevisiae 

no changes were observed under AC magnetic fields (10−300 mT, 50 Hz) in differential gene 

expression and protein profile that were determined using microarray and 2-D protein profile analysis, 

respectively [53]. But, Gao et al. [54] reported that strong magnetic fields (14.1 T) could lead to 

transcriptional up-regulation of 21 genes and down-regulation of 44 genes in a gram-negative 

anaerobic bacterium Shewanella oneidensis that did not show any significant effect on growth. In the 

anoxygenic photosynthetic bacterium, Rhodobacter sphaeroides, AC magnetic fields of 0.13−0.3 T 

induced a 5-fold increase in porphyrin synthesis, and enhanced expression of the enzyme 5-amino-

levulinic acid dehydratase, while very strong DC fields (0.13−0.3 T) also induced synthesis of this 

enzyme predominantly at the magnetic North Pole. The effects are attributed to elevated gene 

expression that ultimately resulted in increased porphyrin production [25]. 

Mitotic delay of 0.5 to 2 h was observed in a slime mold Physarum polycephalum in presence of 

ELF electromagnetic fields (45, 60 and 75 Hz) by Goodman et al. [44]. Removal of the mold from 

magnetic field recovered normal mitosis in 40 days.  

 

3.2. Group II: Treatments Involving Electric Field Predominance 

 

Stimulation in the growth of immobilized E. coli cells by 140% over control, was reported by 

Chang et al. [10], which was attributed to the enhanced removal of inhibitory products from the gel 

through electro-osmosis and electrophoresis as well as an augmented glucose supply.  

Kerns et al. [19] reported growth stimulation in Trichoderma reesei by using pulsed EMF’s for 

electroporation via inductively coupled electric currents from a Helmholtz coil. The use of electric 

fields has also been investigated with yeasts in either a static mode or an oscillating/pulsed mode. The 

survival rate of Saccharomyces cerevisiae was investigated under bipolar electric field pulses from  

0–1.5 kV/cm by measuring plating efficiency. The maximum growth after plating appeared at  

0.85 kV/cm which demonstrated a 100% increase over the control [55]. An electrostimulation in S. 

cerevisiae from electric field application at 10 mA DC and 100 mA AC resulted in an increase in 

growth rate by 60% in AC mode and 50% in DC along with an increase in the production of the acetic 

acid, lactic acid and acetaldehyde. The results suggest that the acceleration of growth rate from a DC 

exposure stimulated cell budding during the early stages of cultivation, which could be due to a 60% 

decrease in inhibitory concentration of dissolved CO2 and other chemical modifications of the culture 

medium [38]. Zrimec et al. [12] have shown that external AC electric fields of low intensity stimulated 

membrane bound ATP synthesis in starving E. coli cells with electric field amplitudes of 2.5–50 V/cm 

and a frequency optimum at 100 Hz. The model of electro conformational coupling was used to 

analyze the frequency and amplitude responses of ATP synthesis. Two relaxation frequencies of the 
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system were obtained at 44 and 220 Hz, and an estimate of roughly 12 elementary charges was 

obtained as the effective charge displacement for the catalytic cycle of ATP synthesis. 

An actinomycetous eubacterium Streptomyces noursei used for antibiotic production was 

electrostimulated via PEMF’s using a pair of Helmholtz coils via inductive-coupling producing 5 ms 

bursts of 220 µs duration in intervals of 60 ms by Grosse [20]. The process resulted in a mean 

inductive electric field strength of approximately 1.5 mV cm-1. An increase was observed in the 

formation of the product but only during the first 50 hours of the starting phase although the exposed 

culture exhibited an overall increase in O2 consumption and glucose utilization.  

Electric field stimulation may also be used to improve the substrate utilization efficiency in 

microbial processes. Cells when subjected to electric field pulses of 0.25 kV for 10 ms in the presence 

of the enzyme cellobiose showed enhanced utilization of cellobiose and conversion of substrate into 

ethanol by a thermotolerant yeast, Kluyveromyces marxianus. As a result, ethanol yield increased by 

nearly 40% over the control [43]. 

Kerns et al. [19] showed that pulsed EMF’s at 1.5 mVcm-1 bursts for 115 hours used for 

electroporation lead to ~60% increase in cellulase activity and ~80% increase in cellulase secretion in 

Trichoderma reesei . They concluded that the effect occurred inside the cells on either the formation of 

the cellulase enzyme complex at the genetic level or the secretion into the medium via altered 

membrane permeability. 

A 62% increase in biosorption of uranium was observed using pulsed electric fields of 1.25 to  

3.25 kV cm-1, suggesting that the application of short and intense pulses might enhance the biosorption 

of toxic metals and radionuclides from wastewater streams [24].  

 

3.3. Group III: Treatments Involving both Electric and Magnetic Fields in Far-Field Regime 

 

Some of the original pioneering work with the bioeffects from weak electromagnetic radiation in 

the form of microwaves was performed in Russia and extended into Europe in the 1970’s. The work by 

Grundler et al. [39], investigated the use of very weak microwave irradiation of a few mW/cm2 at a 

frequency around 42 GHz ±10 MHz on Saccharomyces cerevisiae. The experiments demonstrated 

multiple resonance dependent effect of coherent millimeter electromagnetic waves in the frequency 

region of 41.83 to 41.96 GHz that increased growth rates up to 15% or decreased the growth rate by 

29% depending on frequency.  

Banik et al. [5] investigated the use of electromagnetic irradiation at the microwave frequency from 

13.5 to 36.5 GHz on Methanosarcina barkeri DSM-804, a methanogenic archaebacterium used in 

anaerobic digestion for biogas production. The bacteria were exposed for 2 h duration for three days 

before inoculation into the anaerobic digesters. Significant increases in methane (CH4) concentration 

were observed that peaked at 76.3% CH4 at 31.5 GHz, compared to 52.3% CH4 in control. 

Furthermore, an increase in specific growth rate was observed for every frequency with a significant 

reduction in the lag phase. The irradiated cultures had higher cell numbers and the cell diameter was 

enlarged by 20%. It was concluded that the growth rate and biomethanation potential of M. barkeri 

DSM-804 could favorably induce catalytic abilities via a thermal microwave irradiation at 31.5 GHz.  

Tambiev and co-workers (cited in [28]) observed that exposure of high frequency microwaves for 

30 min at 2.2 mW cm-2 and 7.1 mm wavelength enhanced the growth of the cyanobacterium Spirulina 
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platensis by 50%. Belyaev et al. [56] suggested that there was frequency-specific resonant interaction 

between low-intensity microwave and chromosomal DNA in E. coli. 

 

3.4. Group IV: Treatments with Spatial/Temporal Topology 

 

3.4.1. Spatial Superposition 

 

The investigation of using multiple independent field sources has led to studies where the treatment 

area exhibits spatial topology from superposition. A magnetic therapeutic device that uses four non-

uniform static magnets in four-pole symmetry demonstrates an increased rate of Myosin 

phosphorylation over control. The notion that the magnetic field amplitude is the only parameter 

involved to determine the outcome with magnetobiology experiments has been shown to be false and it 

is suggested the topological parameters in a spatial domain, such as field gradient and symmetry might 

also be of relevance [57].  

Mazur investigated the use of multiple magnetic fields in superposition on biological samples. He 

exposed S. cerevisiae to a six-pole electromagnet with coils of alternating polarity at a magnetic field 

of 0.39–0.52 T, while saturating it with pure molecular oxygen. The magnetic field has an influence on 

the biosynthesis of yeast and changes their enzymatic activity when grown under aerobic conditions as 

opposed to anaerobically cultivated yeast. He found that in the presence of a magnetic field, the 

oxygen saturation increased from 5.37 to 39.9 mg L-1 and simultaneously stabilized the pH. The 

initiation of fermentation occurred immediately after mixing of the dough. It was found that there was 

an improvement in the physical qualitative property of rising strength, which was decreased from  

76 minutes to 53 minutes in the presence of oxygen saturation and a magnetic field. It was also found 

that the increase in CO2 production was 3.7 times greater in the magnetic treated culture than the 

control, which indicates a significant increase in maltase activity. The amount of dissolved oxygen in 

water increased and was sharply activated in the presence of a magnetic field [58]. 

 

3.4.2. Spatial and Temporal Superposition 

 

Aspects of EMF topology in the time domain have been studied by researchers looking at the 

influence on biological systems from combined AC and DC EMFs in superposition [58–61]. It has 

been shown that the cellular response to the orientation of the fields is distinct depending whether the 

AC and DC fields are perpendicular and parallel to each other. It was found that the perpendicular 

orientation is dominant in an intensity-dependent non-linear manner [61]. There is a fundamental 

difference in the spatial pattern of cellular response between DC and pulsed stimulation [62]. Several 

studies report that the relative orientation of AC and DC magnetic fields appears to be critical for a 

number of calcium-dependent cell processes. The data suggests that DC magnetic fields influence 

biological membranes in a somewhat different manner than low frequency AC magnetic fields [1].  

 

 

 

 



Int. J. Mol. Sci. 2009, 10             

 

 

4527

3.4.3. Multipolar Electromagnetic Systems 

 

The advent of quantum theories on the molecular scale has inspired the development of 

electromagnetic exposure systems that mimic the complex interactions and symmetry found in nature 

from endogenous electromagnetic signals and their destructive interference between interdependent 

cells. The idea of using multiple interdependent electromagnetic emitters has led into a novel 

investigation of complex configurations using specific geometric orientations of multiple electrodes 

generating electromagnetic fields with precise phase orientation and relationships, which may lead to 

even more significant coupling with biological systems.  

The interdependent Multipolar (MP) electromagnetic systems were devised and developed by 

Lensky [63], and Zavalin and his co-workers [13,14]. The MP system may contain a variety of number 

of poles, i.e., 2, 3, 5, 6, 9, 12, in the symmetrical electrode configuration (Cn, where n = 2, 3, 5, 6, 9, 12 

correspondingly, in notation of the crystallographic groups of symmetry) and complex driving system 

of interdependent multidimensional transformers that is of most importance. For research with 

biostimulation of microorganisms, preliminary studies by Zavalin have found that six-pole systems are 

most effective for microorganisms compared to other configurations. The MP system used in their 

research consisted of six electrodes in a symmetric hexagonal geometric arrangement (group of 

symmetry C6), driven by a hexapole interdependent transformer system, powered by an amplified 

function generator. The frequencies of the EMF oscillations are lower than 100 kHz, providing the 

near-field regime of the MP EMF during the treatment. The MP EMF generated is fine tuned such that 

the superpositional field, composed of oscillating electric fields from each electrode in the near-field 

regime undergoes complete destructive interference with a resultant zero-vector electric and magnetic 

field within a certain area, located near the center of symmetry and called the “compensation zone”. 

The compensation zone can produce a “breathing” mode where all coils are energized simultaneously 

to achieve the multipolar compensation zone. A scheme for the 6-polar EMF treatment for the test tube 

culture studies is shown in Figure 2. The multiple pole EMF configurations have a substantial effect on 

growth of microorganisms. Maximum achieved growth or gas production increases up to 

approximately 200% (see Figure 3) were observed in various bacteria, yeast, and protozoa under a 5 or 

6-pole configuration at 1 kHz [13], 60 Hz, 0.35–2.1 kHz [14]. The AC voltages at the electrodes were 

applied 180 degrees out of phase for each opposing set of electrodes, resulting in rather pulsating than 

a rotating EMF pattern. Figure 3 shows maximum increase in growth of E. coli cultures in test tubes 

under treatment at different frequencies of 6-polar AC EMF. In the plot a maximal achieved ratio of 

concentration of stimulated E. coli culture to concentration of control E. coli culture at the same 

conditions is shown in the right vertical axis. A corresponding time, required to achieve such a 

maximal relative stimulated increase is shown in the left vertical axis. It should be noted that a 

depression in growth was observed in 2 and 4-pole system at the similar parameters of the EMF at 

each electrode. The stimulatory effect was greatest in the lag and log phases of the growth curve. 

These studies show great promise considering the uniform frequency being emitted was chosen 

arbitrarily and are open for future research on the optimization of output signal for growth stimulation. 

The results of studies conducted by Lensky and Zavalin indicate that higher topological EMF, having 

specific group of rotational symmetry is biologically active. This phenomenon has been previously 

observed using other types of self-cancelling coil windings [64–66] although the groups of symmetry 
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have not been disclosed. Preliminary evidence indicates that these non-classical designs may be more 

effective at delivering vibrational information by coupling with interdependent harmonic oscillating 

cells because these methods produce relatively large biological effects experimentally [13,14,66]. 

Thus, the multipolar configuration is a strong prospect for exhibiting unique and distinct biological 

effects. 

 

Figure 2. Cross-section of a test tube and a 6-polar electrode configuration for biostimulation of E.coli. 

 
 

Figure 3. Maximum growth increase, achieved in E. coli cultures in test tubes versus 

frequency of the 6-polar AC EMF treatment (right vertical axis). The left vertical axis 

shows time to achieve the maximum, while the right axis shows concentration increase 

with respect to the control. 

 
 

4. Mechanism of Electromagnetic Effects 

 

Above observations show growth stimulation by magnetic treatment in a diverse array of organisms 

(from prokaryotic to eukaryotic) and a variety of stimulative responses by each organism under varied 

conditions of treatment and growth. While former indicates at some general mode of mechanism(s), 

the later gives an impression in contrast to it. Lack of adequate information eludes a consensus on the 



Int. J. Mol. Sci. 2009, 10             

 

 

4529

mechanism(s). Several factors appear to be affecting the stimulation process. The flux generating 

system, intensity of the flux, type of the flux (oscillatory or static), orientation of magnetic poles, 

duration of exposure, cell density and cell environment (for example type of medium and its 

ingredients) and other physicochemical conditions affect the process of biostimulation through 

electromagnetic forces. It has also been marked that the results sometimes do not show repeatability at 

other locations suggesting that local geomagnetic realities might also affect the process of stimulation. 

There are physiological effects other than growth that have been observed. These are processes such as 

carbon uptake, sugar synthesis and oxygen evolution in photosynthesis, synthesis of pigments 

(chlorophyll, carotenoids and phycocyanins), carbohydrates and proteins, accumulation of micro and 

trace metals and essential amino acids, fermentative activity and even genetic processes like 

transposition. They can be stimulated under specific conditions adopted in the experiments. Only one 

study [29] specifically referred to lipids reported a decline in lipid content under the particular set of 

treatment. It may be worth noting that an exposure to surprisingly low levels of exogenous 

electromagnetic fields can have a profound effect on a large variety of biological systems [1]. A 

number of mechanisms have been proposed for observable magnetobiological and bioelectromagnetic 

effects at different levels [51]. A concept map, demonstrating different levels of the EMF influence is 

shown in Figure 4  

 

Figure 4. Concept map of an EMF biostimulation at different levels of living systems. 

 

 

4.1. Ionization and Free Radical Release 

 

Magnetic fields cause oxidative stress in organisms by altering energy levels and spin orientation of 

electrons and concentration and lifetime of free radicals, which change the relative probabilities of 
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recombination of other interactions with possible biological consequences [67]. Oxidative stress due to 

the radical pair mechanism becomes applicable around 1 mT which can be common in industrial or 

laboratory settings, while the geomagnetic field intensity stays below 0.07 mT. Studies with Chlorella 

vulgaris demonstrated that hydroxyl ions increase in magnetically treated medium suggesting 

alteration of free radical levels in the medium that might hyperactivate antioxidant defense system of 

the organism. This situation also affects the membrane permeability and ion transport process and 

might be responsible for the acceleration of chlorophyll excitation by the light [30].  

 

4.2. Electrochemical Models  

 

These models explain biological processes considering electromagnetic fields as modulators of 

molecular information transfer. It is considered that the EMF either itself acts as signal(s) and/or 

intercepts or modifies the processes of molecular interaction.  

 

4.2.1. Ion Cyclotron Resonance Concept 

 

Many authors have developed the idea of ion cyclotron resonance (ICR) of specific ions like Ca2+ 

and Na+ [68] which predicts ELF magnetic effects at the cyclotron frequencies and there harmonics. 

Later, it was modified to the ion parametric resonance (IPR) model, which includes the cyclotron sub 

harmonics. The IPR is composed of a number of theoretical models based on classical and quantum 

electrodynamics where biomagnetic effects are considered as magnetically modulated ion binding in 

ion-ligand interactions [69]. Free ions move with the cyclotron frequency in a static magnetic field and 

can be influenced by ELF magnetic fields or appropriate frequencies [70]. The main focus of these 

studies was the essential role of Ca2+ ions in magnetobiology experiments. It is proposed that ion 

behavior in channels like the acetylcholine receptor have constrictions in them, which cause thermal 

collisions. Under certain magnetic field parameters the wall collisions could be avoided at certain 

amplitudes and frequencies determined for the Lorentz force equation [71]. Under these conditions, the 

ions are predicted to “fly” through the channel unimpeded increasing the membrane permeability. ICR 

allows circulation of ions through selective enhancement, which affects the rate of biochemical 

reactions [72].  

The fact that magnetic fields can modulate enzyme activities in vitro is a crucial observation, 

because it indicates that enzymes may function as magnetoreceptors [69]. EMF modulations could also 

initiate changes in the distribution of protein and lipid domains in the membrane bilayer, as well as 

conformational changes in lipid-protein associations [1]. The interface between cell membrane and 

extra and intercellular fluids can be electrified on the order of 106 to 1010 V cm-1 [73]. The impact of an 

electric field on a biological cell membrane and its change with time may constitute a relevant 

mechanism of information transmission influencing the membrane properties. The electric field, 

mainly generated by ions flowing to the membrane from the external environment, can change the 

molecular distribution of electronic charge inside each lipid molecule, producing perturbations of 

collective excitations in the mechanical and electrical properties of the lipid chain which can be treated 

as a mechanism for intermembrane communication, analogous to a damped harmonic oscillations [74].  
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Pilla et al. [73] presented a working model of electrochemical information transfer by which the 

injection of low-level current can provide functional selectivity in the kinetic modulation of cell 

regulation. His theory was based on ion/ligand binding being a possible transduction mechanism for 

the detection of exogenous EMF’s at the cell membrane [75]. In order to derive the specifications for 

electromagnetic field signals having optimal biological effects, it is first necessary to develop a model 

for the underlying biological processes which are assumed to be complex physical systems that may be 

modeled mathematically as non-linear, time-varying, finite-dimensional dynamic systems. They 

developed a method for the systematic analysis of electrical impedance for each relevant 

electrochemical pathway of a cellular system [62]. The electrochemical transfer hypothesis postulated 

that the cell membrane would be the site of interaction of low level electromagnetic fields by altering 

the rate of binding of calcium ions to enzymes or receptor sites [1]. The Ca2+ pathway can be 

influenced by EMFs on the complex chain of transduction, amplification, and expression. 

Experimental results have shown that specific ion/ligand binding pathways such as Ca2+ binding to 

calmodulin (CaM) and the ensuing steps of calcium-dependent signaling to intracellular enzymes may 

act as primary transduction mechanisms for EMF detection leading to an increase in the instantaneous 

reaction velocity and enzyme kinetics [75,76]. Calmodulin also plays a role in many other important 

biochemical processes such as cell proliferation, Ca2+ membrane transport and plant cell function [77]. 

An alteration of cell signaling events can lead to changes in cell proliferation and differentiation, 

which can be initiated, promoted or co-promoted [70]. The capability of the weak EMF to have a 

bioeffect appears to reside in the informational content of the waveform [1]. The waveform duration 

and the voltage dependence are the most important parameters to increase the activity of the specific 

adsorption of an enzyme [62]. The proposed interfacial membrane model reveals that it is entirely 

reasonable to expect specific electrochemical effects as a result of electrical stimulation with signals of 

relatively low frequency and amplitude [73].  

The incorporation of quantum states into ion interference has also been involved in the explanation 

of the physical nature of magnetoreception [78]. Variations in magnetic field magnitude affect the 

phase of ion wave functions and the interference of these phase changes affect the physical observables 

in quantum mechanics. This theory predicts magnetobiological effects for magnitude/direction 

modulated magnetic fields, pulsed magnetic fields and weak AC electric fields among others [51]. In 

these cases, ions of calcium, magnesium, zinc, hydrogen, and potassium appear to be relevant.  

However, the most prominent example of a proven bioelectromagnetic mechanism is the radical 

pair recombination mechanism, which has been demonstrated biochemically in vitro. Radical pairs are 

formed as reaction intermediates in many biochemical reactions within complex reaction chains under 

the influence of exogenous electromagnetic influence [70]. The recent breakthrough regarding the 

radical pair mechanism in the blue light receptor protein, cryptochrome, by Schulten and his 

colleagues, supports the concept that radical pair recombination is involved in magnetoreception in 

avian navigation. Molecular modeling and calculations showed that the signaling of cryptochrome, 

which involves a photoreduction process, can be modulated in the presence of a magnetic field on the 

order of 1 mT inducing an increase in the signaling activity of the protein by ~10% [79,80]. This 

prediction appears to be consistent with the experimental results on the effect of magnetic fields on 

cryptochrome-dependent responses in Arabidopsis thaliana seedlings attained by Ahmad and co-

workers [81]. It is then suggested that the magnetic navigation capability could be mediated by the 
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presence of cryptochrome that is localized in the retinas of migratory birds which could alter how the 

bird perceives colors enabling something akin to an internal magnetic compass [82]. This radical pair 

mechanism is probably coupled with the alternative magnetite-based mechanism of magnetoreception 

and navigation, which poses that the Earth’s magnetic field exerts a minute mechanical force on the 

magnetite particles found in the upper beaks of migrating birds providing positional information due to 

fluctuations in the geomagnetic strength in different locations [83]. 

 

4.2.2. Stochastic Resonance Amplification 

 

Electromagnetic bioeffects from relatively weak signals are often due to a time-varying electric 

field, induced by a time-varying magnetic field [1]. However, the ability of weak oscillating EMF 

fields to interact with living cells has been a source of controversy since thermal and other noise poses 

restrictions to the detection of weak signals by a cell. Activation of signal pathways by external stimuli 

connects the physical interactions of the applied EMF to the biological response [70]. In nonlinear 

systems such as biological sensory apparatus, presence of noise can actually enhance the detection of 

weak signals, called stochastic resonance [84]. Very small changes in the underlying non-linear 

kinetics caused by very weak coherent signals and noise can lead to strong, but reversible alterations in 

the internal nonlinear processes and associated biological function such as ELF influences on  

G-protein activation dynamic, magnetic field influence on radical pair recombination reactions and 

weak signal amplification by stochastic resonance incorporated within the Ca2+ signal pathway 

models [70]. The mechanism of stochastic resonance has shown an amplification factor that may 

exceed a factor of 1,000. This is because in a nonlinear system, the reaction to an external signal may 

be much greater when acting as a whole than the response of the system’s individual elements. This 

resonance manifests itself by the appearance of sharp peaks in the power spectrum of the system at the 

driving frequency and in some of the higher harmonics. Currently, the cell membrane is considered the 

most likely cellular site for interactions with EMF’s and the possible role of ionic channels of the 

membrane in the amplification process. The potential well-like structure of an ionic channel makes it 

the ideal system for stochastic resonance amplification [85]. 

 

4.2.3. Long Range Molecular Organization 

 

The application of the nanosized voltmeter, used to measure the electric fields throughout the 

interior of cellular structures, has indicated that the theoretical calculation of electric field penetration 

into a cell’s cytosol arising from the membrane and mitochondrial potential do not match the 

empirically measured values. It is proposed that this may be due to the traditional model using saline 

solution to simulate the physical properties of the cytoplasm, where alternatively the cytoplasmic 

structure has been described as having a complex gel-like composition [86,87]. One such possibility 

for a heterogeneous substance with distinct microdomains is liquid crystal. Liquid crystals are phases 

of matter that are exhibited by anisotropic organic materials as they undergo cascades of transitions 

between solid and the liquid states [88]. These mesophases possess symmetry and mechanical 

properties of long-range orientational order intermediate between those of liquids and of solid crystals. 

Liquid crystals can undergo rapid changes in orientation of phase transition upon electric or magnetic 
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exposure, or changes in temperature, pH, pressure, hydration, and concentrations of inorganic ions. 

These properties are ideal for organisms, and it has been found that lipids of membranes, DNA in 

chromosomes, all proteins, especially cytoskeletal proteins are liquid crystalline in nature [89]. Ho’s 

group observed that electrodynamic activities might be acting on endogenous non-equilibrium 

electrodynamic processes involved in phase ordering and patterning domains of liquid crystals [65]. 

Their findings support that organisms are polyphasic liquid crystals where different mesophases may 

have important implications for biological organization and function [90]. 

 

Figure 5. Molecular interaction sites of electromagnetic influences. 

 
 
1. Cell Membrane 
- Magnetic field oscillations may increase membrane permeability under ion cyclotron resonance 
- Increased circulation and selective enhancement of ion flow may affect the rate of biochemical 
reactions  
- Alter the rate of binding of calcium ions to enzymes or receptor sites 
- Change distribution of protein and lipid domains, and conformational changes in lipid-protein 
associations 
- Change internal molecular distribution of electronic charge inside lipid molecule in the membrane 
bilayer 
- May play the primary role in the stochastic resonance amplification process 
2. Chloroplast 
- May modulate the quantity of pigments, such as chlorophyll, phycocyanin, and beta-carotene 
3. Nucleus/DNA 
- Magnetic field affects specific gene expression 
- Individual DNA sequences may function as antennae 
- Leads to changes in DNA conformation 
- May activate different DNA sequences depending on field intensity 
- Can affect enzyme activity 
4. Proteins: 
- Breathing motions are the source and receiver of multipole EMF 
- Potential coupling mechanism for external multipolar influences 



Int. J. Mol. Sci. 2009, 10             

 

 

4534

5. Protoplasm 
- Static magnetic fields influence the speed of protoplasm movement, miotic activity, and quantity 
of organic acids in plants 
6. Whole Cell 
- Biophotonic emission and interaction with nearby cells 
- Endogenous electric field modulation may alter natural processes 
 

4.2.4. Josephson Semiconductor Model 

 

From a geometric perspective, it is possible to compare two dividing cells in living systems with a 

Josephson junction of superconductivity [91]. The Josephson junction may represent a gap junction 

between two nearby cells coupled via electromagnetic interactions, which provides a mechanism for 

the transfer of correlated charged particles, electrons, and ions. The gap junctions serve to transmit 

electrical signals between adjacent cells without the need for mediation by a neurotransmitter or 

messenger substance [92]. Positive experimental results were attained in yeast cells by examining their 

current-voltage characteristics and radiofrequency oscillation spectra during cell division [91]. 

 

4.2.5. Protein Symmetry 

 

The macroscopic ordering displayed in living systems is an “emergent” property arising from a 

collective behavior of the elementary microscopic components [93]. The low-frequency internal 

motions in protein molecules play a key role in biological functions where it is suggested that there is a 

direct relationship between low-frequency motions and enzymatic activity [94]. The symmetry of 

protein molecules is also a very important factor in understanding its structure and function, which 

depends on stability, number of subunits, and folding efficiencies that limits the functionality of the 

protein. The functionality requirements of symmetry and asymmetry can drive the evolution of 

proteins to have any of the crystallographic point groups [95]. The breathing motions demonstrated by 

protein molecules are oscillations of the protein’s symmetry emanating from the center of symmetry of 

the molecule. These vibrations could potentially be a source and receiver of multipole EMF. 

Symmetrical and oscillatory nature of proteins, which constitute enzymes, exhibits unique features that 

have the potential for interaction via external multiple EMF coupling. 

 

4.2.6. Physical Signals in Intermolecular Communication 

 

Progress to understand the intercellular interactions of microorganisms has been linked to the 

investigation of prokaryotic signaling molecules; however, there is increasing evidence of physically 

mediated communication for some events, including cell division, adaptation and stress 

conditions [96]. The hypothesis that electromagnetic forces have a fundamental role in organization 

and transport of entities is supported by indirect and direct measurements of the electromagnetic fields 

around living cells.  
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4.2.7. Electromagnetic Cell Functions 

 

The electromagnetic fields serve as mediators for the interconnection of the organism with the 

environment as well as between organisms. Electric dipole and multipole moments are common to 

every biological structure and macromolecule. Oscillating multipole EMF may be generated as a result 

of interaction of these dipoles and multipoles with electromagnetic emitters and transceivers [97]. Thus 

the fields produced by the organisms play an important role in the coordination and communication of 

physiological systems and informational interactions in addition to energetic interactions which play a 

significant role [98]. The endogenous physiological EM rhythms control and determine the growth and 

differentiation of cells and are essential for spatiotemporal organization at the subcellular, cellular and 

organism level [70]. With the recent development of the “nanosized voltmeter” using a voltage-

dependent fluorescent nanosensor (E-PEBBLE), the first complete three-dimensional profiling 

throughout the entire volume of living cells was accomplished. The results indicated that the 

endogenous electric fields generated penetrate much deeper into the cytosol and non-membrane 

regions than previously estimated. These measurements support the picture of an electrically complex 

environment inside the cell [87]. 

Ions are the transducers of information in the regulation of cell structure. Modification in the 

interfacial structure of cell membrane alters its ionic composition and constitutes electrochemical 

information transfer. This alters biochemical and mechanical transport properties of the membrane that 

is interpreted by the cell as requiring a change in its function which could trigger specific enzyme 

activity [62,73]. Thousands of chemical reactions are carried out simultaneously and successively in 

different cellular compartments and are closely coordinated and linked together. The importance of 

vibrational coherence in the form of electrical and mechanical oscillations has been proven through the 

experiments [99]. It has been shown for instance that endogenous electric fields exhibiting coherent 

behavior can have a dominant effect on directed transport of molecules and electrons such that the 

probability to reach the target is enhanced in comparison with random thermal motion alone [97]. 

 

4.2.8. Quantum Physics and Coherence in Biology 

 

Coherence is a fundamental property of a quantum field in which coherent quanta give rise to an 

order extending over a long distance within which there is a finite probability of finding the system in 

this order-related state [100]. It is demonstrated in an organism by the movements that are fully 

coordinated at macroscopic to the molecular levels [90]. The metabolic functioning of living systems 

has revealed nanomechanical and electrical oscillations in the frequency range of 0.4 to 1.6 kHz, that 

were found in the yeast, S. cerevisiae using atomic force microscopy. If metabolic function was 

chemically inhibited, the oscillations ceased. It was concluded that the oscillations were consistent 

with cellular metabolism of molecular motors and may be part of a communication pathway or 

pumping mechanism by which the yeast cell supplements the passive diffusion of nutrients and/or 

drives transport of chemicals across the cell wall [101–103]. Physical signal transmission were also 

found in bacterial cells, where growth-promoting/regulating phonons or sonic vibrations, were 

effectively transmitted over a distance of at least 30 cm in air, through 2.5 mm plastic barrier, as well 
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as a 2 mm iron plate to distant cultures [104]. Further, sound waves generated from a speaker at 

specific frequencies promoted colony formation under non-permissive stress conditions [105].  

Remarkably, it has been found that even biological events traditionally considered chemically 

based, such as the lock-and-key model for olfaction, may actually rely more fundamentally on 

quantum scale atomic processes of inelastic electron tunneling from the donor to a receptor for critical 

discrimination [106,107]. For example in photosynthesis, light energy is ultimately transduced into 

chemical and electronic energy through the apparatus of the photosynthetic reaction center. Here the 

excitation of a chlorophyll molecule by the photon’s energy initiates a series of charge-transfer 

processes from the antenna pigments to the reaction center via quantum coherence energy 

transfer [108]. The first steps are so fast that quantum dynamics of the nuclear motion needs to be 

accounted for as well as electron tunneling [109]. The wave-like characteristics of this energy transfer 

can explain the extreme efficiency that allows the light harvesting complex to sample vast areas of 

phase space to find the most efficient path [110].  

Most notably, it was discovered that all living biological systems emit ultra-weak photons, or 

biophotons, which exhibit very unique physical characteristics during spontaneous emission and 

delayed luminescence. The hyperbolic decay and oscillations of these electromagnetic emissions or 

biophotons, in the optical regime have been observed experimentally and are indicative of coherent 

emission in accordance with multimodal laser theory. Coherent electromagnetic radiation strongly 

suggests the capacity for electromagnetic pathways in intercellular communication [111]. Groups of 

molecules cannot emit independently from each other because the distance between cells is smaller 

than the wavelength of the radiation they emit. Since they are coupled by a common radiation field, 

they will always be coherent [112]. Inside a coherent region or domain, energy travels in a wave-like 

fashion, whereas in non-coherent domains the energy propagates in a diffusive manner [72]. This 

coupling field consists of interference patterns reflecting the structure of the antenna system, i.e., 

groups of molecules, to which it is feedback coupled. Any field has a coherence space-time in which 

coherent states may exist by having a region where the phase is defined. Outside this region, the phase 

information is lost, but within it, the interference patterns are formed and a particle loses its classical 

pictures. Thus the particles and fields within the coherence region must be considered as an indivisible 

whole [112]. Gurwitsch first discovered coherent emission of ultraweak luminescence on the tips of 

onions roots in the 1920's. Modern interpretations of biophotonics conceptualize organisms as 

biological lasers of optically coupled emitters and absorbers operating at the laser threshold. A 

technical systems such as a laser, has a fixed coherence region or volume, while organisms may have a 

multitude of different coherence volumes, which can exist simultaneously and can overlap and 

demonstrate dynamic properties. The physical components of an organism is coupled with what can be 

described as a highly coherent, holographic, biophoton field, which has been proposed to be the basis 

of biological communication at all levels of organization. The components of the organism are seen to 

be connected in such a way by phase relations of the field that they are instantly informed about each 

in real-time. The coherent states appear to be fundamental for biological systems since they enable 

optimization of organization, information quality, pattern recognition and regulation of biochemical 

and morphogenetic processes [112]. It has been proposed that enzyme dynamics are an outcome of the 

coherent electromagnetic structure of living systems. Enzymes exhibit selective interactions with 

specific molecules which strongly suggest the existence of a coherent medium since the molecules no 
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longer interact through random collisions. Classically enzymes are depicted as chemical polymers, 

however upon applying quantum electrodynamics (QED) principles an enzyme is projected as a 

coherent domain of its component monomers bound by electrodynamic as opposed to chemical 

attraction [72]. 

In various biophotonic experiments with cultures of the unicellular alga Acetabularia acetabulum 

exposed to variety of influences such as varying salt concentrations, chloroform, and temperature 

modulation, it was concluded that the delayed luminescence was not solely a function of the primary 

delayed photochemical fluorescence events of the photosynthetic apparatus. However, it demonstrated 

global correlations and information about the organization of streaming motility of the chloroplast and 

the cytoplasmic structure of the cell [113]. The cytoskeleton is an important milieu for providing 

coherent events being the basis for acoustic/photonic transmission. In established A. acetabulum 

cultures the individual cells form extensive electromechanical interactions where phase boundaries and 

mechanical tensions play an important role, which may be closely connected with biochemical changes 

and ultimately in a collective biophoton emission pattern [114]. 

 

4.2.9. Bioelectromagnetics for Non-Chemical Communication and Signaling  

 

A long history of extensive research on intercellular communication is found in the literature, which 

has primarily focused on receptor-based chemical signaling, molecular mechanisms, cell recognition, 

and cell surface receptors; however very few studies have focused on light-mediated interactions of 

cells, tissues and whole organisms [115]. Kaznacheyev and colleagues in Russia performed over 

12,000 experiments in studying distant intercellular communication from two physically separated 

living tissues or cultures. They used two hermetically sealed vessels attached to each other via an 

interchangeable window composed of glass or quartz, where each vessel contained an identical culture. 

One of the vessel’s cells was treated with a specific toxin, i.e., virus, chemical or radiation, while 

keeping the neighboring culture physically isolated from it. If a quartz window was used, so as to 

allow UV in addition to the visible and IR range of photons, approximately 75% of the physically 

isolated cultures began exhibiting toxin specific morphological stress and cell death 12 h after the 

directly exposed neighbor. However no effect was found if glass was used in the window to block the 

UV radiations indicating that biophoton signals passing through the quartz window were responsible 

for the specific morphological response [116–121]. By implementing a photomultiplier tube (PMT), 

they observed that normal functioning cells emit a uniform photon flux, while with the introduction of 

a toxin the radiation flux which intensifies at periodic intervals which depend on the different exposed 

toxin [120]. The harmonic relationship between the UV, visible and IR bands and their phase 

orientation has been suggested as a potential mechanism of intercellular communication [122] since 

the existence of coherent fields gives rise to destructive and constructive interference patterns in the 

space between living cells [123]. The biocommunication in these mutual interference regions leads to 

an optimized signal/noise ratio as the wave patterns achieve maximum destructive interference or 

compensation. Once the coherent superposition of modes of biophoton fields breaks down, one expects 

an increase in biophotonic emission, which was confirmed by Schamhart and Wijk [124], by 

examining the delayed luminescence of tumor cells as they lose their coherence and capacity for 

destructive interference by exhibiting exponential as opposed to hyperbolic decay [123]. The 
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importance of biophotons in inter- and intracellular communication has been further confirmed 

through many other experiments that have been listed in the Table 2. 

 

Table 2. Overview of biophotonic and distant intercellular interactions (D.I.) experiments, 

delayed luminescence (D.L.), and spontaneous emission (S.E.). 

Culture Experiment Effect Reference 

Daphnia D.I. & S.E. Established destructive interference found at natural population density [125] 

D. tertiolecta D.I. & D.L. Changes in external environment demonstrated dose/intensity dependent 

decay curves  

[126] 

P. elegans D.I. w/E-Field E-field stimulated distant culture's photonic activity and synchronization [127,128]  

Gonyaulax sp. D.I. Established destructive interference and synchronization of photon pulses [129] 

XC tumor cells D.I. Dense cell culture stimulated growth rate of isolated culture via optical 

contact 

[116] 

Epithelial cells D.I. w/H2O2 Reduction in protein, increased nuclear activation, and structural damage [130] 

E. coli  D.I. Synchronized growth parameters when in optical contact of Vis-IR. [96] 

S. cerevisiae D.I. Stimulation of cellular subdivision via optical coupling with culture of 

same type 

[131] 

P. fluorescens D.I. Long range interactions of an isolated culture diminished adhesion 

between cells of another culture 

[132] 

V. costicola D.I. Isolated treated culture stimulated growth of second culture of same 

species 

[133] 

Fibroblasts D.I. w/Viruses Three viral effects transferred to 72–78% of distant isolated cells [134] 

 D.I. w/HgCl2 Effects transferred to 78% of distant isolated cells   

  D.I. w/Rad UV radiation effects transferred to 82% of distant isolated cells   

L. pekennisis S.E. Measured coherent emission from 200–800 nm which differed between 

male and female specimens 

[135] 

 

4.2.10. Endogenous EMF Modeling 

 

Atoms to molecules to macromolecules, the process of modeling these interactions gets increasingly 

more complex. Biological systems behave like a macroscopic quantum system [112] therefore 

quantum mechanics is used to describe them. Modern quantum theory in biology has introduced the 

non-local property of interconnectedness, where the emphasis is no longer on isolated objects, but on 

relations, exchanges and interdependences on processes, fields and wholes [136].  

The ability to detect, interpret and meaningfully interact with the endogenous bioelectromagnetic 

systems of living organisms could lead to dramatic advancements in modern biological sciences and 

engineering applications. However, in the case of biophotonic, distant interaction, and multipolar EMF 

experiments, where there is a destructive interference of EM signals, it becomes exceedingly difficult 

to directly measure phase conjugated or completely compensated EM fields in superposition. The 

decomposition of an electromagnetic field into scalar potential functions [137,138] is a traditional 

mathematical apparatus to describe EMFs at the complete destructive field interference. A 

conventional wisdom in engineering is that potentials have only mathematical, not physical 

significance. For instance, classical electrodynamic theory regards the complete cancellation of two 
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fields as an absence of any field or effect. However, besides the case of quantum theory, where it is 

well known that the potentials are physical constructs, there are a number of physical phenomena - 

both classical and quantum mechanical, which possess physical significance as global-to-local 

operators or gauge fields, in precisely constrained topologies, such as the Aharonov-Bohm and 

Altshuler-Aronov-Spivak effects, the topological phase effects of Berry, Aharonov, Anandan, 

Pancharatnam, Chiao and Wu, the Josephson effect, the quantum Hall effect, the De Haas - Van 

Alphen effect, and the Sagnac effect [139]. In particular, the Aharonov-Bohm effect theoretically 

emphasized the importance of potentials rather than the force fields [140,141]. It was later 

experimentally demonstrated that interfering electromagnetic potentials could produce real effects on 

the phase via the magnetic vector potential (A-field) of charged particle systems even though the 

magnitude of the force field was zero around the charged particles [142]. Due to the relative phase 

factor of two interfering charges, the scalar field can transfer information, even though there is no 

transport of electromagnetic energy [143]. Furthermore, it appears that information is encoded as 

frequencies of alternating magnetic vector potential, and should be possible to control chemical 

reactions in vitro and in vivo through the interaction of magnetic vector potential with chemical 

potential [100]. 

The mathematics to describe the decomposition of an electromagnetic field or wave into two scalar 

potential functions was advanced by Whittaker at the turn of the century [137,138], which later became 

the basis for superpotential theory [144,145]. Maxwell’s linear theory is of U(1) symmetry form, with 

Abelian commutation relations, but it can be extended to include physically meaningful A–field effects 

by its reformulation in SU(2) and higher symmetry forms. The commutation relations of the 

conventional classical Maxwell theory are Abelian. When extended to SU(2) or higher symmetry 

forms, Maxwell’s theory possesses non-Abelian commutation relations, and addresses global, i.e., 

nonlocal in space, as well as local phenomena with the potentials used as local-to-global 

operators [139]. Success has been achieved in developing theoretical models for topological criteria for 

multiple coupled oscillators and higher group symmetry manifolds based on both classical and 

quantum electromagnetism to explain several phenomena in microbiology, nanoscience and 

metamaterials [146–150]. 

The application of these extended, higher topological mathematical models and quantum theories 

into biophysics and biophotonics may help elucidate the embedded or internal dynamics of the scalar 

potential functions that comprise the electromagnetic fields that destructively interfere between 

coupled biological systems or cultures. Despite the overwhelming complexity of modeling 

interdependent coherent electromagnetic interactions in complex biological systems, there exist both 

theoretical and empirical evidence that establishes spatial and temporal topology of fundamental 

geometric superposition, and interdependent relationships, such as multipolar influences, can uniquely 

affect biological systems.  

 

4.2.11. Role of Water 

 

Water is well known to be an anomalous substance and plays a great role in living organisms. Due 

to the critical role water plays in biochemical and biological reactions, many studies have focused on 

the effects of magnetic and electromagnetic fields on water molecules [51]. These experiments have 
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shown that water previously exposed to electrical, magnetic, electromagnetic, acoustic or vibrating 

fields keeps the acquired biological activity for extended periods of time [151]. Liquid water is clearly 

a very complex system when considering the complexity of molecular clusters, gas-liquid and solid-

liquid surfaces, reactions between the materials and the consequences of physical and electromagnetic 

processing [152]. 

The investigation of indirect magnetic field effects have shown that magnetically treated water has 

changes in light absorption, specific electrical conductivity, magnetic susceptibility, Raman spectrum, 

index of light refraction, surface tension and viscosity. The exposure of water to a static magnetic field 

is connected with the energy influence of the field on the water and biostructures. Markov [153] has 

also shown that static magnetic fields influence the speed of protoplasm movement, the miotic activity, 

and the quantity of pigments such as chlorophyll a, b and organic acids in plants. Water stores and 

transmits information concerning solutes, by means of its hydrogen-bonded network. The conditioning 

of water via permanent magnetic and electromagnetic oscillating fields has been found to be 

stimulatory or inhibitory depending on the residence time of the water. S. cerevisiae exhibited the 

strongest influence by measuring a growth rate increase of ~60% after exposing the culture media to 

15–30 seconds of a 100 kHz EMF at 2 µT. Longer exposure times that were inhibitory, could become 

stimulatory after dilution suggesting the existence of active agent(s) generated by the field exposure. 

Increases in toxicity after applying a biocide compared to a biocide+EMF indicates an enhanced cell 

wall permeability [154].  

Ultra high dilutions are special preparations of a specific compound dissolved in a medium (usually 

water) that undergo dramatic dilutions (usually thirty 1:100 dilutions) that exceed Avogadro’s number 

such that the final dilution is void of any original dissolved molecules. Each dilution step is 

accompanied by some activation force, usually mechanical succussion (shock wave) or vigorous 

mixing. However, other experiments have used sonication, high-voltage electromagnetic pulses, 

passive or active resonant circuits. The experimental results indicate that “pure” water samples can 

retain specific information regarding a “donor” substance which can be quantitatively measured via 

thermoluminescence, delayed luminescence, excess heat-of-mixing/microcalorimetry, changes in pH 

and conductivity, alterations to FTIR spectra, enzymatic activity, and modulation of chemical, 

biochemical, and biological processes usually in accord with the donor substance. These experiments 

have been carried out with biological bioassays with dinoflagellates comparing succussed media, and 

modulation to Ca2+ channel affinity by non-thermal microwave exposure, as well as investigating 

physico-chemical effects on purely chemical systems using ultra-high dilution of lithium chloride, 

sodium chloride, mercuric chloride, and mercuric iodide [155–168].  

It has been proposed that the water molecules respond to incident EMF exposure and form 

metastable water states [164]. The experiments with thermoluminescence, microcalorimetry, and 

conductivity measurements indicate molecular cluster formation, most likely originating from the 

hydrogen bond network. The evolution of these physico-chemical parameters with time suggests a 

trigger effect on the formation of molecular aggregates following the potentization procedure [159]. 

The various initial perturbations initiate development of a set of chain reactions of active oxygen 

species in water. Energy in the form of high-grade electronic excitations is released in reactions, which 

can support non-equilibrium state of an aqueous system [169]. Within these solutions, the molecular 

aggregates or clusters consisting of water molecules are connected by hydrogen bonds, in far from 
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equilibrium conditions, which can remain in, or move away from their unstable equilibrium state 

dissipating energy from the external environment in the manner Prigogine has described “dissipative 

structures” [170]. The lifetime of a particular cluster, containing specific water molecules will be not 

much longer than the life of individual hydrogen bonds, i.e., nanoseconds, but clusters can continue 

forever although with constant changing of their constituent water molecules [152]. However, the 

primacy of hydrogen bonds for the molecular aggregate structures is not essential, as the formation of 

H-bonded molecules are considered coherence domains in water by Coherent Quantum 

Electrodynamic Theory, where the H-bond dynamics are transferred to the origin of their pair 

potentials interacting with zero-point fluctuations of the A-field [171]. The existence of these physico-

chemical and biological effects from water should elevate water from its traditional role as a passive 

space-filling solvent in organisms, to a position of singular importance, the full significance of which 

is yet to be fully elucidated [143]. 

 

5. Electromagnetic Applications for Production of Algae Biofuels 

 

The application of exogenous electromagnetic influences has been used for various commercial 

applications and an overview is given in Table 3. 

 

Table 3. Overview of existing application of bioelectromagnetic fields. 

Biomedical Influence Application Reference 

 PEMF Chronic wound healing, and non-union fracture healing [172] 

  Chronic wound healing [173]  

  Treatment of osteonecrosis  [174] 

  Treatment of pressure ulcers in spinal-cord injuries [175] 

  Treatment of osteoarthritis of the knee [176] 

  Treatment of grade I & II ankle sprains [177] 

  Treatment of venous leg ulceration [178] 

Agricultural Influence Application Reference 

 SMF Treated water to stimulate germination in Pinus tropicalis seeds [179] 

  Treated chickpea seeds increased germination, seedling and root length & size  [180] 

  Treated water increased plant height, branch number, and shoot dry weight [181] 

  Treated wheat seeds increased germination, yields, and protein [182] 

  Treated rice seeds and water increased rate and % of germination [183]  

  Treated barley seeds and water increased length and weight  [184] 

  OMF Treated tomato seeds for increased growth, yields, and disease resistance  [185]  

 

The electric field pulses, or electroporation, have been traditionally implemented in metabolic 

engineering for gene transformation. Direct electroporation of a cyanobacterium Synechococcus 

elongates, introduced the enzyme Clostridial hydrogenase, which may lead to the development of a 

variety of hydrogenases for hydrogen production, coupled to photosynthesis in cyanobacteria for 

bioenergy production [186]. In addition to membrane-permeabilizing effects, it can also induce 

biochemical and physiological changes in plant protoplasts, such as stimulating protein and DNA 

synthesis, and cell division and differentiation [187]. Alternatively, electroporation can also be used as 
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a process for cell membrane modification for enhanced oil/lipid extraction from microalgae for 

biodiesel. A preliminary study found 20% increase in oil yield, shorter extraction time, and 2/3 less 

solvent used without affecting the composition of extracted fatty acids compared to chemical solvent 

alone [33]. 

Although most electrochemical and electromagnetic effects mentioned thus far have been focused 

on biological responses, an integrated biorefining system also requires process engineering 

technologies for harvesting algae for instance. An electrochemical process using direct electric current, 

called electroflocculation, has a long history as a wastewater treatment technology for solid/liquid, and 

liquid/liquid separation [188]. This technology combines the use of a sacrificial electrode that 

dissolves to coagulate suspended particles (electrocoagulation) along with the use of electrolysis, 

which produces H2 microbubbles that float the aggregates or flocs to the surface (electroflotation) for 

easy removal from the water. Electroflocculation is a promising technology for harvesting microalgae 

biomass since it has several advantages over other conventional processes. The efficiency of 

particle/biomass separation in electroflocculation is over 90% and this technology does not require 

moving parts, and consumes relatively little energy (0.3 kWh m-3) with substantially lower capital 

costs [189]. In fact, a more recent study shows a 99.5% removal of total suspended solids (TSS) and 

chlorophyll a (algae) by applying 0.55 kWh m-3 for 15 minutes [190].  

Bioelectrochemical denitrification is a novel technology being used for the treatment of ammonium 

and nitrate-containing wastewater by means of denitrifying bacteria and hydrogen gas produced on the 

cathode by the electrolysis of water. The denitrifying microorganisms are usually immobilized as a 

biofilm on graphite or a stainless steel cathode. A nitrate removal efficiency of 98% was observed at 

20 mA when phosphate was used as a buffer. The studies suggested that the application of bioelectro-

reactors could be used for reduction and oxidation treatments of ammonium and nitrate-containing 

wastewaters [191–193]. 

In many cases, real-time monitoring of cultures is critical for productive and efficient 

cultivation/fermentation in which the optical density, pH, and dissolved gas levels may not elucidate 

the underlying bioprocesses occurring, especially when evaluating electrochemical or electromagnetic 

interactions. Pulsed Amplitude Modulation Fluorometry or PAM fluorometry is a special method for 

measuring fluorescence from photosynthetic organisms for real-time culture monitoring of the 

photosynthetic apparatus. It uses the characteristics of the fluorescence emitted by chlorophyll a as a 

probe for the biophysics and biochemical events occurring in the electron transport chain of 

Photosystem I & II. These measurements are a unique indicator of photosynthesis and provide 

information about the maximum photosynthetic efficiency (by a dark-adapted sample), the effective 

photosynthetic efficiency (under constant illumination), and the non-photochemical quenching (heat 

dissipation). These parameters indicate what fraction of the photon energy absorbed by the organism is 

used for photochemistry, dissipated as heat, and re-emitted as fluorescence [194]. Papazi and his 

colleagues found that PAM Fluorometry in conjunction with traditional biomass analysis was able to 

show how extremely high CO2 concentrations impacted the photosynthetic apparatus, which stimulated 

intense biomass production in the microalgae, Chlorella minutissima [195]. 

The use of the biophotonic method of delayed luminescence (DL) has been used for quality control 

applications with fruits and vegetables. A study with tomato fruits revealed marked changes due to 

different harvesting maturities. It was found that tomatoes exhibited DL measurements related to color 
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and respiration as well as significant differences in soluble solids content and dry matter percentage. 

Therefore, DL values are directly related to tomato harvest maturity. Qualitative traits can depend on 

harvest maturity, thus suggesting that delayed luminescence could be used as a nondestructive 

indicator of fruit quality [196]. 

In addition to fluorescent measurements, the fast, non-invasive measurement of biological cells by 

dielectric spectroscopy, or impedance spectroscopy, is currently being utilized to determine cellular 

parameters, such as living cell volume, cell number distribution over cell cycle phase, cell length, 

internal structure, complex permittivity, and intracellular and extracellular media and morphological 

factors. The electrical and morphological properties of the cell membrane are assumed to represent 

sensitive parameters of the cellular state [197]. It has been demonstrated to be a powerful method for 

dielectric monitoring of biomass and cell growth in ethanol fermentation and the extension of the 

scanning dielectric microscope is a promising tool for dielectric imaging of biological cells [198]. The 

real-time monitoring of yeast cell division by measuring the dielectric dispersion can enable to 

tracking of cell cycle progression using an electromagnetic induction method [199]. Recently, online 

monitoring of lipid storage in microorganisms (yeasts) was conducted which found that using 

dielectric spectroscopy data, the change in capacitance divided by the characteristic frequency being 

used showed a clear shift from the growth phase to the lipid accumulation phase, which could be of use 

for technical control of intracellular biopolymer or oil accumulation, as well as enzyme 

overproduction [200]. Moreover, it has been established that there exists a connection between D.L. 

and impedance spectroscopic parameters, which explore related structures and mechanisms in living 

samples [201]. By applying the knowledge, gained from biophotonic and bioelectromagnetic 

experiments, it may be possible to detect, interpret and interact with the endogenous coherent 

electromagnetic signals that are correlated with regulation, communication, and organization of 

biological systems since oscillation dynamics are of essential importance in intercellular and 

intracellular signal transmission and cellular differentiation [70]. These signals may initially give us 

real-time insight into the internal dynamics of an organism or culture, which may precede the 

physically/chemically observable events.  

Induction of specific cellular response to biophotonic signals could perhaps be achieved to stimulate 

a desired biological effect such as enhancement of lipid or enzyme synthesis or metabolite modulation 

using electromagnetic fields instead of an external stress or a biochemical initiator. 

Electromagnetic bioprocesses such as electroflocculation and electroporation can be used for algal 

harvesting and biomass processing. The use of static and oscillating electromagnetic fields has a 

potential for the enhancement of cell proliferation, metabolite production and cell cultivation for 

biomass production. After extraction, fermentation of the algae feedstock, using applied electric field 

parameters, can be designed for enhanced substrate utilization and higher ethanol/butanol yields. Any 

residual biomass may then be used for enhanced production of methane from anaerobic digestion using 

specific frequencies of microwaves reported by Banik et al. [5], who showed how the EM exposure 

parameters could be used for potential bioenergy/biofuel applications.  

The application of electromagnetic coupling to electrochemical biological pathways, which have 

been studied and commercialized for biomedical applications can be introduced into bioengineering. 

Here investigations into the electrochemical impedance properties for triggering biochemical cascades 

of desired signaling pathways in microorganisms for bioenergy applications deserve significant 
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attention. The application of exogenous EMF influences may synergistically couple with endogenous 

electric fields for enhancing directed mass transport in cells. It is conceivable that any cell could be 

stimulated, inhibited, or made to exhibit passive response, depending upon the appropriate choice of 

frequencies and amplitudes of the excitation signals employed [62]. The induction of mitosis for cell 

proliferation, as well as the stimulation of enzymatic pathways associated with energy metabolism and 

storage such as lipid accumulation, needs modeling and more experimentation. Such electrochemical 

processes may also be relevant for accelerating enzymes, such as Rubisco, in the carboxylation 

pathway of photosynthesis to enhance specific binding of CO2 and limiting photorespiration to enhance 

overall system efficiency in microalgae or plants. The greatest challenge may be the evaluation of the 

proper dosimetry for modulation of the desired biochemical cascade [1]. 

The introduction of the complex topology of multipolar electromagnetic fields may provide an 

enhanced coupling effect to complex, interdependent biological systems. Such systems may be tailored 

to uniquely control endogenous electromagnetic processes and communication for cellular functioning 

and organization. Furthermore, the bioproducts, generated by engineered multipolar hybrid biosystems 

have additional properties. For example biofuel/bioenergy production processes potentially can have 

higher productivities through better substrate utilization and conversion and shorter processing times.  

Figure 6. Integrated biostimulation/biofuel production system. 
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The use of electrochemical/electromagnetic triggering of specific metabolic pathways could be 

coupled with biophotonic analysis, where rapid screening and fine tuning of a desired effect could be 

devised. Such bioelectromagnetic and biophotonic monitoring could also be of significant interest to 

metabolic and genetic engineering, by incorporating and correlating electrochemical and endogenous 

electromagnetic signals with gene expression and enzymatic activity.  

The pervasive utilization of water in the cultivation of microorganisms particularly with algae, 

suggests possible application of the principles discovered in ultra-high dilution and activation studies 

to enhance and modulate biological responses. Water used in the growth medium for cultivation may 

be imprinted by various methods (electromagnetic information transfer probably being the most 

convenient) with specific information on relevant organic and inorganic nutrients as well as 

biochemical growth promoters to enhance growth characteristics, while decreasing demand for the 

potentially large amounts of the donor substance.  

The combination of these separate disciplines, could blossom into a new integrative bioengineering 

approach that incorporates the diverse specializations of molecular biology, biochemistry, 

electrochemistry, biophysics, and quantum physics that could open up significant biotechnological 

progress of engineering of living systems for bioprocessing, bioconversion, biofuel and bioenergy 

applications (Figures 6 and 7).  

 

Figure 7. Bioengineering of algae cultivation. 

 
 

6. Conclusions 

 

Traditional cultivation and manipulation of biological systems have consisted of natural selection 

and genetic engineering modalities. Recently metabolic engineering and synthetic biology are gaining 

wide attention from the scientific community due to their immense potential in altering the metabolism 
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in living systems especially microbes for medical, agricultural, industrial and environmental 

applications. However, genetic manipulation of microbes and living systems for agricultural and 

environmental applications may affect the ecosystem adversely as the changes in the species are 

permanent and inherited. In case of bioelectromagnetic stimulation, system reacts more in a transient 

fashion. The changes even if inherited are not sustained by the species for long thus they might be 

safer over genetic manipulation.  

This review provided a broad spectrum of potentially useful bioeffects on microorganisms that are 

currently or potentially valuable in biotechnology and bioenergy. At this point it is difficult to ascertain 

exactly how economically feasible these emerging methods and potential technologies will be due to a 

variety of unknown factors from the nature and scalability of the bioeffects to the electronic design and 

efficiency for large-scale implementation. However, it is the aim to stimulate interest in the field and 

invite scientists with new ideas into the long standing discipline of bioelectromagnetics that modern 

biology is only recently starting to understand. In the new horizon of biologically derived fuels and 

materials, advancements in the area of biostimulation could impact the direction of biotechnology 

towards an energetic approach that may boost the potential for emerging biotechnologies such as 

microalgae based biofuel and biomass production.  

Biofuels, bioenergy and carbon capture are considered to be the current priorities for the entire 

global community. The International Energy Agency (IEA) has reported that the world’s primary 

energy need is projected to grow by 55% between 2005 and 2030, at an average annual rate of 1.8% 

per year. Fossil fuels are the main source of primary energy and if the governments around the world 

stick to current policies, the world will need almost 60% more energy in 2030 than today. 

Transportation is one of the fastest growing sectors using 27% of the primary energy. At the present 

staggering rates of consumption, the world’s fossil oil reserve will be exhausted in less than 45 years. 

Considering the negative impacts of utilizing fossil fuel energy sources, many countries have already 

mandated the use of biofuels and set the targets to replace significant quantities of fossil derived fuels. 

Second and third generation biofuels such as lignocellulosic ethanol and algae biofuels are considered 

to be the viable alternatives as they do not compete with food needs. Bioelectromagnetic stimulation of 

microbes particularly with microalgae provides a new extended domain of disciplines and 

methodologies for cultivation, harvesting and processing of biomass for production of biofuels, 

bioenergy and added value bioproducts. Though this technology is promising, lots of research efforts 

are needed in future to exploit its commercial potential for biotechnology and biofuel applications.  
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