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Abstract: The in vivo healing process of vascular grafts involves the interaction of many 
contributing factors. The ability of vascular grafts to provide an environment which allows 
successful accomplishment of this process is extremely difficult. Poor endothelisation, 
inflammation, infection, occlusion, thrombosis, hyperplasia and pseudoaneurysms are 
common issues with synthetic grafts in vivo. Advanced materials composed of 
decellularised extracellular matrices (ECM) have been shown to promote the healing 
process via modulation of the host immune response, resistance to bacterial infections, 
allowing re-innervation and reestablishing homeostasis in the healing region. The 
physiological balance within the newly developed vascular tissue is maintained via the  
recreation of correct biorheology and mechanotransduction factors including host immune 
response, infection control, homing and the attraction of progenitor cells and infiltration by 
host tissue. Here, we review the progress in this tissue engineering approach, the 
enhancement potential of ECM materials and future prospects to reach the  
clinical environment. 
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1. Introduction 
 

Extensive multidisciplinary research, especially in the latter half of the 20th century (early 1950s), 
has focused on the replacement of damaged, occluded, ruptured and atherosclerotic blood vessels  
[1–3]. Candidate materials have evolved from inert gold tubular structures [2] to the advanced 
synthetic prosthetic grafts found in modern clinical settings [1,3,4]. Cardiovascular disease (CVD) is 
currently one of the leading causes of death in the Western world, hence vascular grafts with 
increasing requirements are being used to a greater degree and in a wider variety of clinical  
scenarios [1].  

The molecular mechanisms involved in prosthetic vascular graft healing, as well as detailed analysis 
of healing kinetics in animal and human models are described in detail by Davis et al. [4] and Greisler 
et al. [5]. They revealed that the graft healing process represents an intricate, interconnected 
multicellular process which is the result of a variety of host body response mechanisms; however 
certain factors of the healing process are highly conservative and determines the total outcome for the 
restoration of vessel functionality. The graft healing process involves the coordination of host immune 
cells activity, migration, infiltration, proliferation and differentiation of endothelial cells (ECs), smooth 
muscle cells (SMCs) and their progenitors which culminate in the formation of new tissue. Their 
collaborative, balanced regulation and maintenance are pivotal for successful graft implantation. 
Disruption to the inter-regulation of this process or the negative effect of exogenous factors (bacterial 
infection, nutrition deficiencies, stresses and a variety of neurological factors) are frequent causes for 
failures of synthetic grafts by provoking pathological issues such as thrombosis, anastomotic 
hyperplasia and limited re-endothelisation. [2–9]. 

Many attempts have been made to increase the patency rates of vessel grafts. Improvements in 
manufacture, pre-treatment, modification of surface charge and topography, incorporation of 
therapeutic agents and bioactive coatings, in vitro addition of a cell monolayer [4,10–14], have all been 
shown to improve the early stage human healing processes, but have not demonstrated ideal outcomes 
in terms of long-term performance [4,7]. The general concept of material bioinertness (nontoxic and 
non-antigenic) [15,16] for vascular synthetic grafts has been unsuccessful in stimulating positive 
healing responses and improving the long-term patency of the vascular graft.  

An important alternative to synthetic materials is the use of extracellular matrix biomaterials 
derived from ex vivo tissues [17,18]. To date, numerous animal trials have demonstrated the 
performance of extracellular matrix (ECM) material for vascular graft applications, highlighting 
excellent healing properties during implantation for a variety of blood vessels (aorta, artery, vein)  
[19–25]. At certain sites of implantation, the healed graft site exhibited a histological appearance 
similar to that of normal blood vessel with evidence of early capillary penetration and full 
endothelisation. There was no evidence of infection, intimal hyperplasia, aneurysmal dilation and the 
site contained a smooth muscle media and a dense fibrous connective tissue adventitia [22]. 

A thorough elucidation of ECM material characteristics and their influences on the healing process 
is critical to the understanding of graft pathology and may lead to greater uses of ECM for 
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augmentation and the enhancement of vascular substitutes which are currently available. The main aim 
of this review is to describe and summarise factors known to date which have been shown to play a 
beneficial role in modulating cellular events in relation to the healing process. Disadvantages of ECM 
materials are described in this paper and methods which aim to improve the tissue-specificity, 
biomechanical properties and total performance of ECM grafts for a variety of cardiovascular 
applications are presented. This review is aimed at scientists of interdisciplinary fields and describes 
many unresolved fundamental aspects of vascular graft healing, thus highlighting areas of interest of 
future research and development.  

 
2. Origin of ECM Material: Source, Preparation, Biochemical Properties, Storage and 
Commercial Availability 
 

The common goal of all proposed and developed decellularisation methodologies is to efficiently 
remove all cellular and nuclear material while minimising any adverse effects on the composition, 
biological activity and mechanical integrity of the remaining ECM. Preservation of the structural 
components of the ECM allows the generated matrix to provide structural integrity and biomechanical 
strength for newly developed tissues and enable efficient reseeding [17,18]. A thorough review of the 
various decellularisation techniques has been previously compiled by Gilbert et al. [18]. Biochemical 
techniques of decellularisation include osmotic shock, solvent extraction, ionic and non-ionic 
detergents, acid/alkaline treatments and enzymatic digestion with DNase, RNase, lipase and proteases. 
Recently developed methods based on the application of periodic pressure for decellularisation of the 
skin have been reported in literature [26]. In addition to these methods, bacterial enzymes produced by 
Micrococcus luteus have been investigated for removal of cellular components and their potential in 
achieving a high quality decellularised matrices [27]. Protocols vary greatly, and are all known to have 
limitations [18].  

Numerous organs and tissues from warm-blooded animals (bovine, sheep, monkeys, pigs and 
rabbits), including humans, have been investigated to date as potential sources of ECM [18,28,29]. 
Tissues like the aorta [18], vein [30], bladder [18], small intestinal submucosa [18], skin [18], ureter 
[31], liver [18], amniotic membrane [32] and tendon [33] have been successfully decellularised  
and investigated.  

ECM materials can be manufactured and obtained in multiple forms. Multi-laminate sheets can be 
prepared by vacuum pressing methods [18] and crosslinked by various chemical and enzymatic agents 
[34–37]. Particulate suspensions, powdered and gel forms of ECM can easily be prepared and 
delivered by minimally invasive techniques to the site of interest [38], where gel can self-assemble into 
3D matrices. Material can be stored in the hydrated state without lyophilisation and cryopreserved 
[39]. Lyophilised forms of ECM have a long shelf life and are easily transportable. However, non-
lyophilised, hydrated ECMs have shown excellent biomechanical and biochemical characteristics with 
improved cellular ingrowth rates, illustrating the importance of hydration on properties such as 
biological effects, degradability, mechanical properties of the structural components (strength and 
loading response) and volumetric change [40]. 

Naturally derived materials, such as porcine small intestinal submucosa (SIS), urinary bladder 
matrix (UBM), collagen and fibrogen, offer many mechanical, chemical and biological advantages 
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over synthetic materials, due to their origin and nature [17,18]. Their natural three-dimensional 
ultrastructure and diverse composition of structural and functional proteins including collagen, elastin, 
growth factors and proteoglycans contibute to overall advantageous properties as a graft material 
[17,41–43]. However, it must be acknowledged that ECM scaffolds consist of structural and functional 
molecules secreted by the resident cells of each tissue and organ from which they are prepared. 
Therefore, the specific composition and distribution of the ECM constituents will vary depending on 
the tissue source [17,41–43]. The biochemical composition of several materials were evaluated and 
presented by Badylak et al. [17]. In brief, SIS scaffold material has been the most extensively 
characterized of all ECM materials. It is made up of approximately 90% collagen, the majority of 
which being type I, with minor amounts of types III, IV, V and VI also present. SIS ECM also contains 
glycosaminoglycans (GAGs), including heparin, heparin sulfate, chondroitin sulfate and hyaluronic 
acid. The amount of GAGs present in the tissue after processing depends greatly on the decellurisation 
methods used [18]. Previous studies have shown presence of the molecules fibronectin and laminin 
[44,45] which are known to provide adhesion ligands for cells, as well as growth factors [46] in SIS 
materials. UBM also contains the same collagen types as SIS but with greater amounts of type III as 
well as the presence of type VII, which is a central component of the endothelial basement membrane, 
a distinguishing characteristic of this matrix. Limited research was carried out on characterization and 
comparison of the spacial distribution of structural domain and the molecular components within the 
diverse range of ECM matrices. Localization and 3-D positioning of structural and biochemical 
components within the ECM matrices may have effect on cell adhesion and their migration pattern 
within the graft. With the use of 3-D imaging fluorescent microscopy, optical sectioning techniques 
and monoclonal antibody development, further investigation into the parameters mentioned above is 
possible. This information will help indentify the additional aspects and significance of material 
structure in relation to the rate of tissue healing. 

A partial list of ECM-based, commercially available products is given in Tables 1 and 2. Form, 
source and composition of intact ECMs commercially exploited to date are diverse. This makes them 
highly desirable for many clinical applications. SIS is the most extensively clinically used ECM and 
has been used to reconstruct various tissues such as the abdominal wall, urinary bladder wall, tendons, 
intestine wall tissue, urethra and ureter [47–53]. There are a variety of commercially available 
collagenous matrices, typically consisting of renatured-purified collagen lyophilised to form sheets or 
wafers. Examples include collagen type I sheets, collagen matrix (collagen type I and types I and III), 
connective tissue composites and collagenous gels. Two of the most established products in clinical 
use are Dermagraft® (Anginera™) and Transcyte®. These are most commonly used in the treatment 
of diabetic foot ulcers and surgically excised full-thickness and deep partial-thickness thermal burn 
wounds, respectively. Dermagraft® is a cryopreserved living allogenic dermal equivalent, made from 
neonatal foreskin fibroblasts cultured on a bioresorbable polyglycolic (Dexon®) or polyglactin 
(Vicryl®) polymer matrix, and characterised by production of growth factors such as vascular 
endothelial (VEGF). Transcyte® is a temporary skin cover made from a collagen-coated non-
bioresorbable nylon mesh seeded with allogenic neonatal human dermal fibroblasts. Both products are 
now being investigated for off-label applications with promising results. 
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Table 1. A selection of ECM based products is listed below as identified by Badylak et al. [17]. 

Product Company  Material Processing Form 

AlloDerm  Lifecell  Human skin  Natural  Dry sheet 

AlloPatch® Musculoskeletal Transplant Foundation Human fascia lata  Natural  Dry sheet 

Axis™ dermis  Mentor Human dermis  Natural  Dry sheet 

Bard® Dermal Allograft  Bard  Cadaveric human dermis  Natural  Dry sheet 

CuffPatch™ Arthrotek  Porcine SIS  Cross-linked  Hydrated sheet 

DurADAPT™ Pegasus Biologicals Horse pericardium  Cross-linked Dry sheet 

Dura-Guard® Synovis Surgical  Bovine pericardium Cross-linked Hydrated sheet 

Durasis® Cook SIS Porcine SIS Natural  Dry sheet 

Durepair® TEI Biosciences Fetal bovine skin Natural  Dry sheet 

FasLata® Bard Cadaveric fascia lata Natural  Dry sheet 

Graft Jacket® Wright Medical Tech Human skin Natural  Dry sheet 

Oasis® Healthpoint  Porcine SIS Natural  Dry sheet 

OrthADAPT™ Pegasus Biologicals  Horse pericardium  Cross-linked Dry sheet  

Pelvicol® Bard Porcine dermis Cross-linked Hydrated sheet 

Peri-Guard® Synovis Surgical  Bovine pericardium Cross-linked Dry sheet 

Permacol ™ Tissue Science Laboratories  Porcine skin  Cross-linked  Hydrated sheet 

PriMatrix™ TEI Biosciences  Fetal bovine skin  Natural  Dry sheet  

Restore ™ DePuy Porcine SIS Natural Dry sheet 

Stratasis® Cook SIS  Porcine SIS Natural Dry sheet 

SurgiMend ™ TEI Biosciences  Fetal bovine skin  Natural  Dry sheet  

Surgisis® Cook SIS  Porcine SIS  Natural  Dry sheet  

Suspend ™ Mentor Human fascia lata Natural Dry sheet 

TissueMend® TEI Biosciences Fetal bovine skin Natural Dry sheet 

Vascu-Guard® Synovis Surgical  Bovine pericardium Cross-linked  Dry sheet 

Veritas® Synovis Surgical  Bovine pericardium Cross-linked  Hydrated sheet 

Xelma ™ Mölnlycke Health Care ECM protein, PGA, water  Gel  

Xenform ™ TEI Biosciences  Fetal bovine skin  Natural  Dry sheet  

Zimmer Collagen Patch® Tissue Science Laboratories  Porcine dermis Cross-linked  Hydrated sheet 

Table 2. Additional ECM based products listed below as identified by the authors. 

Product Com pany Material Processing Form  
Anginera ™ (i) Theregen Seeded (ii) Dexon or Vicryl  Sheet 

Apligraf® Apligraf Seeded (iii) Bovine Collagen I  Cross-linked  Fibrous sheet 

Biobrane® Bertek Pharmaceuticals 
Inc. 

Silicone, Porcine Dermal Collagen I 
coated Nylon Covalently bonded Bi-layered sheet 

Biostite® Vebas S.r.l Collagen I, HA (iv), CS (v)  Powder 

Collagraft™ Zimmer Bovine dermis, HA, TCP(vi) Cross-linked  Granules 

Collapat II® Biomet Calf skin collagen, HA Cross-linked  Sponge 

Healos FX® DePuy Spine, Inc. Collagen with HA coating Cross-linked Fibrous material 

Integra® Integra LifeSciences  Silicone, Collagen I, GAGs(vii) Cross-linked  Fibrous sheet 

OrCel® Ortec International Inc. Collagen I Cross-linked  Sponge/Gel 

TransCyte™ Smith & Nephew Silicone, Seeded Porcine Dermal 
Collagen coated Nylon  Bi-layered sheet 

(i) Anginera™ was formally known as Dermagraft (ii) Allogenic neonatal fibroblasts (iii) Fibroblasts & keratinocytes (iv) 

Hydroxyapatite (v) Tricalcium Phosphate (vi) Chondroitin Sulphate (vii) Glycosaminoglycans. 
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3. Factors and Molecular Mechanisms of the ECM Bioactivity during Healing  
 
3.1. The Early Response and Healing of Vascular Graft Material  
 

Following material implantation, one of most important determinants for the acceptance and healing 
process is the immune cascade [54–57]. Due to their surface properties, microstructure, degree of 
antigenicity of structural compounds, ability to absorb plasma proteins and overall porosity, 
biomaterials can directly influence the adhesion and differentiation processes of adaptive and innate 
immune cells. Macrophages are the dominant infiltrating cells which respond rapidly to biomaterial 
implantation in tissues [58,59]. These cells and their fused morphologic variants usually remain at 
biomaterial-tissue interfaces for the life-time of the device in vivo. As a component of the immune 
system, macrophage activities are closely related to immune responses, inflammation and foreign body 
responses. However, macrophages also mediate the biodegradation of bioresorbable materials via 
phagocytosis and extracellular degradation [60]. Macrophages are essential for the regeneration 
process which occurs via alteration of reactive oxygen intermediate production, cytokine secretion  
[55–57] and the regulation of recruitment, proliferation and differentiation of vascular cells [61]. 

After graft implantation into the host, monocytes from the circulatory system are attracted to the 
site and may undergo distinctive pathways of differentiation (polarization) into either classically 
activated M-1 macrophages or the alternative M-2 phenotype [62]. This process is highly dependent on 
the graft material properties [55,57,63]. During interaction with synthetic graft materials, monocytes 
activate M-1 inflammatory pathways and release pro-inflammatory cytokines which propagate into 
inflammation and fibrosis (Figure 1). In contrast, the dynamic process of macrophage infiltration in 
ECM material has been shown to stimulate polarization of monocytes into the M-2 anti-inflammatory 
phenotype which is generally characterised by enhanced secretion of regenerative trophic factors 
which promote cell proliferation, reduce apoptosis and stimulate angiogenesis, and is considered to be 
a ’healing’ macrophage type [63]. The M-2 macrophages also have a capacity to transdifferentiate into 
ECs, provide local replacement of damaged cells and enchance endothelisation rate of the graft surface 
[64]. The presence of the M-2 macrophage type and its ability to secrete cytokines with chemotactic 
and mitogenic factors while simultaneously providing partial degradation of the ECM material in order 
to facilitate new tissue in-growth, are all factors which have beneficial effects on the early stage  
of healing. 

Patients implanted with vascular grafts exhibit T-cell activation which is biomaterial induced 
[56,57,63], and leukocyte Th1/Th2 response has previously being characterized for SIS-ECM material 
[63]. Characterisation of tissue cytokines showed that SIS strongly stimulated the expression of IL-4 
and development of Th2 phenotype, while the expression of IFN-γ (Th1) was 100 fold less than the 
response elicited by the xenogeneic biomaterial. It was concluded that the source of ECM did not alter 
the restricted Th2 immune response [62,65]. The Th2 response elicited by SIS does not adversely 
affect the hosts’ ability to mount a protective systemic immune response to T-dependent or  
T-independent vaccines or overcome viral or bacterial infections [66]. 
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Figure 1. Pathways of monocyte differentiation during interaction with synthetic and ECM materials. 

 
 

The Th2 response of macrophages during the integration ECM material may be partially explained 
by the lower hydrophobicity of the ECM surface compared with some synthetic materials [42]. 
Brodberk et al. [67] determined that leukocyte cytokine mRNA responses to implanted biomaterials 
are highly dependent on surface chemistry. Surfaces displaying various chemistries (hydrophobic, 
hydrophilic, anionic, and cationic) were placed into stainless steel cages and implanted 
subcutaneously. Semi-quantitative RT-PCR analyses revealed that hydrophilic surfaces showed a 
decreased expression of pro-inflammatory cytokines, IL-6 and IL-8. 

ECM materials can locally modulate the host immune response via monocyte polarization (M2) or 
leukocyte activation (Th2) can suppress aggressive immune responses with no side effect or depletion 
of an immune reponse to bacterial infection or strong antigenic compounds, and can have a therapeutic 
effect and promote tissue remodeling. 

 
3.2. Antimicrobial Resistance of ECM Materials 

 
Vascular graft infection remains a serious complication with the application of synthetic graft 

materials [68–76]. The infection rate is highest for infrainguinal grafts at a rate of 2-5%, for 
aortofemoral grafts the rate is 1-2%, and for aortic grafts it is approximately 1%. Infection rates for 
prosthetic vascular graft infection range between 1-6%, between 0.5-5% for aortic graft infections  
[73–75] and 4-20% for prosthetic arteriovenous (AV) access grafts [76].  

The most common organisms which are known to be causative agents of graft infections belong to 
various bacterial species: Gram-positive bacteria (such as Staphylococcus aureus, Staphylococcus 
epidermidis, Streptococcus viridans, and Streptococcus faecalis), and the Gram-negative bacteria 



Int. J. Mol. Sci. 2009, 10             
 

 

4382

species (Escherichia coli, Pseudomonas aeruginosa, and Proteus mirabilis). Anaerobes (Clostridium 
sp.) are rarely associated with the onset of infection, however they have been reported in a number of 
clinical cases in relation to aortic graft infection [77,78]. Cases of mycotic infection (Candida sp.) at 
graft sites have also been reported in literature [79].  

Attachment of bacteria to the material surface is thought to be facilitated by numerous molecular 
mechanisms [80,81], which physical nature and strength are differ. For example, hydrophobic 
interaction [81], slime-mediated attachment and affinity attachment via specific–ligand binding to 
exposed chemical groups on the material surfaces [82–88].  

The natural ability of microorganisms to adapt and apply various molecular mechanisms in order to 
adhere and develop a biofilm, make the concept of altering surface properties by physical, chemical 
and biological pre-treatment and modification techniques in order to provide an improved graft with 
minimal risk of infection, becomes much more difficult and complex. 

The post-implantation healing process of vascular grafts is greatly affected and delayed by the 
presence of bacterial infection [89]. Bacteria are able to proliferate rapidly forming a highly protective 
microenvironment (mature biofilm) following initial attachment [90]. The hosts’ ability to control the 
removal and inactivation of these organisms is reduced as the biofilm matures and encapsulates in the 
“coat” composed with exopolysaccharides (EPS) [91]. The effectiveness of antibacterial drug 
penetration through the thick and chemically complex barrier is highly decreased [92–96]. This can 
have an adverse affect on the healing process through the production of destructive enzymes and 
endotoxins which have the ability to modulate and promote chronic inflammation [97–101]. 
Inflammatory response involving neutrophils and macrophages result in the release of free radicals 
[99] and numerous lytic enzymes (MMPs, TIMPs) [102] which can have a detrimental effect on the 
cellular processes involved in healing and can also cause damage to the surrounding tissue. Released 
proteases can affect growth factor activity, inhibit the process of accommodation of progenitor cells 
and/or the migration of fully differentiated vascular cells from near regions of the vessel and overall 
greatly affect tissue healing. 

The limited success of pharmacological treatments for infected grafts continues to challenge 
vascular medicine. The process of infected graft replacement with a new one poses a high risk of  
re-infection at the site post-implantation and this is a major threat [68,103,104]. In order to prevent 
proliferation of the attached bacteria and inhibit the development of later stage infection, numerous 
approaches have been attempted to develop an infection-resistant graft with local delivery of the 
antibacterial component. For example, the incorporation of antibiotics [105–120] and silver 
nanoparticles [121,122] in vascular grafts material are commonly used approches for this purpose. 
However, these attempts provide only temporary solutions [123,124]. As we become more adept at 
managing the infections, the bacterial phenotype evolves into evermore virulent strains via 
mobilization of antibiotic–resistant genetic elements which become resistant to even more advanced 
antimicrobial agents [125]. In the case of silver application, lysed bacteria and absorbed protein on the 
surface of the coated material will increase the distance between the active coating layer and the 
microorganisms, this may lead to inefficiency of the antibacterial coating. 

Recent studies have shown potent bacteriostatic activity of peptides which are obtained by acid/heat 
digestion of ECM material from various tissues and organs (liver, bladder, intestine) [126,127]. 
Activity against microorganisms was found to be of bacteriostatic nature (inhibit or delayed a 
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proliferation process) and was determined by the presence of multiple peptides in the ECM. In this 
study, proliferation of Gram-positive and Gram-negative bacteria was shown to be inhibited for up to 
12 hours by the peptide mixtures. This short-term effect was proposed to be beneficial in preventing 
the initial increase in bacterial number during initial healing and allowed the host inflammatory and 
humoral responses to be modulated. In contrast to synthetic graft material, during animal clinical 
studies processed ECM materials have shown to be resistant to persistent bacterial infection even after 
deliberate contamination with Staphylococcus aureus at the implantation site [128,129].  

The origin of these antibacterial ECM peptides, the amino acid composition, degree of structural 
homology in relation to natural antimicrobial peptides (AMP) [130–133] and defensins [134], the 
pathways of their incorporation, storage and release in vivo from the ECM, are all aspects which have 
not been identified. The full spectrum of activity of low-molecular peptides has yet to be determined. 
A detailed evaluation of the antibacterial therapeutic properties of ECM materials needs to be  
fully investigated. 

 
4. Vascular Tissue Development 
 
4.1. Therapeutic Properties of the Remodeling Products of ECM Material  
 

Endothelisation of the vascular graft is an important step during graft healing. ECs provide the 
optimal naturally occurring anti-thrombogenic and blood-compatible surface [8]. The development of 
an endothelial monolayer on the luminal surface of synthetic vascular graft, would prevent thrombus 
formation by inhibiting platelet accumulation on the graft surface [2–4], and hence improve long-term 
patency rates. There are currently three major mechanisms proposed for spontaneous in vivo 
endothelisation of vascular grafts: 1) the migration of ECs inward across the anastomosis from the 
native vessel (pannus ingrowth); 2) the deposition of circulating endothelial progenitor cells (EPCs) 
onto the luminal surface of synthetic vessel grafts; and 3) EC coverage derived from the ingrowth of 
capillaries through porous grafts (transmural endothelisation) [4,5,8,9].  

Mature ECs originating from surrounding host vascular tissue may contribute to endothelial 
reconstruction on the graft by migrating to the material surface. However, mature ECs are terminally 
differentiated cells with a low proliferative potential, therefore their capacity to substitute damaged 
endothelium is limited. EPCs are a more valuable source of vascular endothelail cells and their 
effective accommodation at the graft site is an important requirement for vascular healing and tissue 
reconstruction [135–138]. The anatomical origin of these cells is an important factor which influences 
the rate of healing progress. Circulating EPCs, derived from peripheral blood, may give rise to fully 
matured, differentiated ECs when incorporated within injured vessels which then contribute to  
re-endothelisation and neo-vascularisation processes at the vascular graft [138]. The recruitment of 
EPCs from the bone marrow to homing sites of vasculogenesis is regulated by many factors, including 
chemokines and growth factors. The precise mechanism of EPC mobilization and differentiation is not 
entirely elucidated and is still under investigation [136]. There are factors which may inhibit the 
attachment of EPCs to the site of implantation [138]. The material properties and surface structure of 
the graft may not always provide a favorable microenvironment for their recruitment and may inhibit 
the rate of attachment and proliferation of EPCs [137,139]. Certain therapeutic compounds in patients 
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with severe CVD lead to a reduction in the quantity and quality of circulating EPCs and greatly 
impacts the rate of the endothelium repair [140]. Graft implantation in these patients resulted in 
impaired healing and failure of the vascular graft due to dysfunctional endothelium.  

Multiple in vivo clinical studies reveal that prosthetic vascular grafts often remain mostly without 
an endothelium, even after decades of implantation [141,142]. Several techniques have been proposed 
in order to improve synthetic graft performance [143]. The first option involves EPC therapy 
(exogenous introduction of vascular progenitors) in order to facilitate restoration and assist the healing 
of vascular grafts. This method has great potential for improving the quality of life and longevity of 
patients with severe cardiovascular and peripheral vascular disease [134]. A second method involves 
the modifications of graft surface in order to facilitate the formation of a complete endothelial lining 
on the graft in vitro, prior to implantation [144–147]. Another option is to seed ECs on the luminal side 
of the graft in an in vitro bioreactor, prior to implantation, which involves multisteps processes of 
harvesting and culturing of autologous ECs or differentiated stem cells derived from the patient. 
Although in vivo studies using EPCs have shown excellent results in terms of graft endothelisation 
[148–151], very few clinical studies have been undertaken in order to determine its long-term effect on 
graft patency. Considering the multiple complications associated with re-endothelisation of synthetic 
materials in vivo and the limited availability of stem cell and cell culture laboratories in clinical 
environments, performing in vitro endothelisation before graft implantation is challenging [152].  

In contrast, ECM grafts show efficient endothelisation in vivo. In vitro studies have shown that 
degradation products of ECM work as chemoattractants which possess chemotactic and/or mitogenic 
activities and stimulate a migration of fully differentiated mammalian ECs and undifferentiated 
multipotential progenitor cells to the site from which the product is released [153,154]. Recruitment 
the patient’s own EPC is presents extremely important beneficial characteristics of this type material 
and very important for the healing process. Steps which occur during this process are demonstrated in 
Figure 2.  

The effect of incorporation of various biochemical factors (single proteins and peptides) originating 
from ECM material on synthetic surface in terms of EPC adhesion, growth, migration, differentiation 
and a graft endothelisation was recently reviewed [155]. The incorporation of single ECM components 
may present advantages over utilization of the complete matrix alone due to their selective  
well-defined biological activities and function [156–160]. However, single components of matrix or 
peptides derived from one type of ECM protein may have a lower activity compared to the native 
ECM ligand due to the absence of complementary or modulatory domains and amino acids. The 
process of isolating this component for this use is complex and challenging. Suitable methods which 
enable the presentation of relatively large biological functional ECM components still have to be 
determined and optimised.  
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Figure 2.  Chemoattractive bioactivity of ECM degradation products. During the ECM 
remodeling process (due to activity of macrophages, SMC), degradation products are 
released into the blood stream these recruit multipotent progenitor cells (MPCs) from bone 
marrow by chemoattractant activity of the peptides and degradation products. The 
circulating progenitor cells (CPCs) then migrate to the site of implantation and aid in the 
endothelisation process. 

 
 
4.2. Bioenergetics of Vascular Healing 
 

As with many other processes of recovery after serious surgical trauma, graft healing and process of 
new vessel tissue development are very expensive processes in terms of energy consumption [161–
163]. It is well recognized that energy is required for open wound healing and a protein deficiency 
caused by altered nutrient delivery retards healing of the open wound [164–172]. The renewal of the 
vascular tissue involves several components such as cell proliferation and ECM protein synthesis on 
the graft site. Both of these components require protein substrates and both metabolic processes are 
accelerated in order to repair the wound. In addition to that, several energy-consuming biochemical 
pathways (such as DNA synthesis, maintenance of the membrane potential and intracellular pH level) 
need to be considered in order to estimate the full energy requirement during this step of graft 
acceptance. Efficient and rapid delivery of biochemical units (peptides, amino acids) to the site of 
healing may help sustain the metabolic requirement of the process without need of the additional 
nutritional diet of the patient or dependance on a fully functioning digestive system (ability to absorb 
nutrients) and circulatory system (delivery and transport of these nutrients into the site of injury). The 
biochemical composition and origin of structural groups of synthetic materials are non-comparable to 
native tissue polymers and as a result have a very low biodegradation rate. Therefore synthetic material 
does not provide the additional source of energy and material for reconstruction which is required for 
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production of new cells and proteins. The requirement of exogenous energy by the cell, may serve as 
an important factor influencing neo-tissue development where local limitation in the energy may 
reduce the replicative capacity of progenitor cells and affect the rate of healing process at the site of 
the prosthetic vascular grafts. In contrast, ECM material undergoes biodegradation and remodeling 
which provide energy, biochemical essential structural units and components necessary for protein 
synthesis and remodeling. All these factors contribute to cell growth, their metabolic activity and 
development of neo-tissue. 

 
5. Vascular tissue Functionality and Homeostasis Maintenance 
 
5.1. Biomechanical Properties of Graft Materials and Their Importance in Sufficient Reconstruction of 
Vascular Tree  
 

Mechanical factors are recognized as important parameters which affect short and long-term graft 
patencies [4,5,16,173]. Researchers have identified that one of the factors limiting the success of 
prosthetic vascular grafts is material mismatch with the host vessel in terms of strength, stiffness, 
compliance and elasticity. Salacinski et al., have shown that mechanical properties including 
compliance mismatch, diameter mismatch and Young's modulus all greatly affect the graft 
performance and failure rate [173] and support the idea that an ideal vascular graft must have similar 
viscoelasticity to the native vessel [174]. Data for compliance and elasticity of native vessels and 
various small-diameter grafts made from different materials is tabulated in Table 3. 

 
Table 3. Compliance and Modulus of Elasticity of native blood vessel and various graft materials. 

Vessel type Compliance 
Modulus of Elasticity 

(E) 
Reference 

Carotid (man) 14.7% 0.4 × 106 dynes/cm2 [175] 
Carotid (man) - 6.07 × 106 dynes/cm2 [176] 
Asc. A (man) - 0.76 × 106 dynes/cm2 [176] 

SIS, 3-layer (pig) 4.6- 8.7% 8.03 × 106 dynes/cm2 [177] 
Saphenous Vein 1.96 - 0.64% 5.5 × 106 dynes/cm2 [178,179]  

Dacron® 0.76% 56.49 × 106 dynes/cm2 [178,180] 
ePTFE 0.2% 39.07 × 106 dynes/cm2 [180,181] 

 
The compliance of 3-layered small diameter SIS grafts was shown to be 4.6% (d = 5 mm) and 8.7% 

(d = 8 mm) [177], only slightly less than those of carotid and femoral arteries, about four times more 
compliant than a typical vein graft and an order of magnitude more compliant than modern synthetic 
vascular grafts of expanded ePTFE and Dacron®. The influence of these particular parameters on flow 
pattern and hence the cellular healing process will be highlighted in Section 5.2. 

Mechanical properties of ECM material vary depending on the animal species, age, organ, 
physiological and mechanical functions of the organ, size of the organ, species-specific localisation of 
structural components, protein-homology and protein identity within the tissue and degree of ECM 
cross-linking [177,182,183]. For example, the modulus of elasticity for canine jejunum is  
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8.5 MPa [183] compared to that from porcine sources at 7 MPa [177]. Manufacturing and processing 
parameters such as dehydration time, technique, sterilisation methods and storage conditions are 
important parameters which could potentially affect the mechanical properties of ECM devices and 
should be taken into consideration when engineering tissue constructs [182]. The effect of varying the 
number of layers on the biaxial strength is illustrated in Table 4.  

 
Table 4. Biaxial failure load of multi-laminated bioscaffolds [182]. 

 SIS UBM  
2-layer 42 ± 9 N 19 ± 7 N 
4-layer 130 ± 29 N 35 ± 2 N 
8-layer 325 ± 53 N  

 
For example, sterilisation by ETO has been shown to have the least detrimental effect upon the 

mechanical properties of UBM. Gamma and e-beam irradiation decrease the uniaxial and biaxial 
strength and maximum tangential stiffness. However, ETO had no effect on strength or energy 
dissipated, indicative of unchanged viscoelasticity. All methods significantly decreased material 
stiffness, when compared to non-sterilised controls (48–60%) [184].  

In addition, the mechanical properties of ECM material are more dynamic than those of synthetic 
materials due to the susceptibility of ECM material to degradation and remodeling in vitro and in vivo. 
In vitro studies have shown that material undergoes ultrastructural changes during incubation with 
Human Umbilical Vein Endothelial Cells (HUVECs) seeded onto the substrates. UBM weight losses 
up to 2.5% over a 5 day period were recorded. ECM weight loss correlated to an increased production 
of metalloproteases MMP-1 and MMP-9, both of which are known contributors to ECM degradation, 
angiogenesis and vessel remodeling [185]. In vivo studies provided complementary results and showed 
that during graft healing and remodeling, the compliance, modulus of elasticity and burst pressure of 
ECM graft approached the corresponded mechanical properties of native vessel [186]. Sterilisation of 
ECM material has been shown to influence on the rate of ECM degradation. An extensive in vitro 
degradation study of SIS over a 49 day period found that e-beam irradiation almost doubled the rate of 
hydrolytic degradation compared with unsterile SIS, gamma irradiation and ETO (42% versus  
23–27%) [187]. These changes are a result of collagen backbone degradation and the difference 
between the radiation methods could be attributed to the dose and form. Hence, the choice of 
sterilisation technique should be carefully considered and tailored to the intended application, load 
bearing requirements and degree of degradability. 

In order to engineer a graft which mimics the native soft tissue, manipulation of certain variables 
such as the origin of the ECM, the number of layers [42,182], the decellularisation method (physical, 
enzymatic or chemical treatment) [18] and sterilisation techniques (ETO, gamma irradiation, electron 
beam irradiation) must be determined and elucidiated in order to form a stable reproducable protocol 
for graft development in each size and substitute location (vein, artery). 

The principal strategy being developed to prevent hemodynamic disturbance within the region of 
the anastomosis is based on the design and fabrication of more compliant ECM–based grafts with 
viscoelastic properties which mimic those of the human artery. Methods have been introduced to 
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characterize flow structure and wall shear stress (WSS), which may be used in order to provide 
quantitative comparison of different haemodynamic environments associated with various vascular 
geometries. Computational fluid dynamics (CFD) and finite element analysis (FEA) softwares may be 
applied in studies to visualise the flow pattern using velocity vectors, velocity contours and shear stress 
distribution within the vascular tree or graft replacement region. As these parameters are very difficult 
to measure in vivo, computational modeling can become a nessesary and essential tool of analysis the 
effect of geometry and shape of the graft placement site on flow pattern and severity of flow alteration 
[188,189]. Indeed, CFD and FEA offer much more repeatability and resolution than in vitro and in vivo 
methods, however, computations must be carefully validated against experimental and clinical data. 
Preliminary evaluations of graft design have utilised CFD to characterise wall shear stress on tubular 
ECM grafts and FEA has been used to evaluate stress distributions during mechanical testing of ECM 
materials; both of these computational methods show good prospects for utilisation in the evaluation of 
ECM materials as a graft material [190]. The major development of clinical imaging, such as magnetic 
resonance imaging (MRI) or computed tomography (CT), opens new avenues for detailed patient-
specific information on the actual hemodynamics and structural behavior of living tissues. The 
coupling of CFD/FEA with clinical biomedical imaging technologies may provide an efficient 
standard evaluation of material performance as a part of clinical practice in the surgical planning and 
design of graft materials for specific location in the vascular tree. 
 
5.2. Mechanotransduction Pathways in the Healing Process of Vascular Graft 

 
It is desirable that the compliance of the graft matches that of the native vessel to avoid potential 

stagnant regions [181] or disturbances to the local haemodynamics around the anastomosed site. This 
interruption establishes abnormal pulsatile mechanical stresses at the anastomosis. These stresses can 
result in suture-line disruption, formation of a false aneurysm, and development of subintimal 
hyperplasia [3]. These events can either result in thrombosis and increased pannus ingrowth at the 
anastomosis, thus threatening the patency of the implanted vascular graft. The vascular endothelium is 
a vital organ, whose healthy physiology and function are essential for normal vascular vessel 
physiology. The dysfunction of vascular endothelium can be a critical factor in the pathogenesis of 
vascular disease. ECs lining the blood vessels are transducers of various physiological stimuli which 
are actively involved in many physiological processes such as regulation of selective permeability, 
blood coagulation and homing of immune cells to specific sites of the body. Activation of 
mechanotransductory intracellular pathways is pivotal to shear stress adaptation and is regulated via 
integrin–mediated connections and cells within the sub-endothelial substrate. These pathways, which 
are influenced by shear stress, are known to modulate gene expression, cell migration and 
proliferation. Relationships between hemodynamic parameters [191–199], such as wall shear stress 
and intra-luminal healing, show that a molecular and cellular cascade is triggered by the various flow 
patterns created at the anastomosis site which reflects the compliance differences between the material 
and native vessel. The latter results in turbulent flow, which due to its action on vascular endothelium 
induces pro-inflammatory and pro-thrombotic expression pathways. Molecular determinants of these 
cellular pathways stimulated within anastomosis sites of synthetic (PFTE) graft are summarised in 
Table 5.  
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Table 5. Regulation of the molecular cascade in the area of turbulent flow. 

Graft 
Material 

Location 

Biological Response in anastomosis site 

Reference 
Methodology Up-Regulated Biomarkers Down-Regulated Biomarkers 

PTFE 

Carotid 
artery 
(Dog) 

Microarray, RT-
PCR and 
immunohisto-
chemistry. 

(α1) collagen -I,  
(α2) collagen-I,  
80K-L protein 
(MARCKS), osteopontin,  
NAP-22, VESPR. 

Smoothelin-B,  
tropomyosin 2 (β), 
calcium/calmodulin-dependent 
protein kinase II,  
RBP-MS types 4 and 5, cysteinerich 
motor neuron 1 

[200] 

Aorta 
(monkey) 

Immunohisto-
chemistry 

Osteoblast-specific factor-2 
(OSF2)/Cbfα1, (α2)collagen-I, 
(α1)collagen-III, versican, 
(α3)collagen-VI, 
(α2)collagen-V, 
(α1) collagen-V. 

SPARClike-1 (SPARCL1)/hevin,  
RGS5.  

[201] 

 
As can be seen from the data, molecular determinants of osteogenesisis and vascular bed 

remodelling are present in the vascular tissue in the area of turbulent flow, where the molecular marker 
of SMC contractility (like smoothelin) is down regulated demonstrating that blood vessel function and 
structure are pathologically altered.  

It was shown in a previous study by Orr et al. [202] that flow-induced activation of the atherogenic 
transcription factor NF-κβ occurs in a matrix-specific manner. In a study conducted by Jalali et al. 
[203], it was found that EC mechanotransduction in response to shear stresses requires the activation 
of integrins by their specific ligands which are supported, controlled and influenced by formation of 
new integrin-ligand connections. Through integrin mechanotransduction, shear stress produced by 
blood flow upregulates genes involved in regulation of apoptosis, cell cycle arrest, morphological 
remodelling and nitrogen oxide production; which contribute to atheroprotective effects [204]. 
Integrins are glycoproteins within the membrane, composed of α and β subunits. To date, 18α and 8β 
subunits have been identified in mammalian cells [204], with each of these subunits spanning the 
extracellular and cytoplasmic domain. The major ECM proteins that interact with vascular ECs include 
collagen, laminin, fibronectin, vitronectin, and fibrinogen [205]. Various ECM proteins have been 
shown to bind to different integrins, and in turn activate different signalling molecules. For example, 
collagen type I matrix binds to α2β1 and α1β1 integrins in the endothelium [206–208]. Laminin tends 
to bind with α6β1 integrin in ECs [209]. Fibronectin mainly binds to α5β1 and αvβ3 integrins. 
Vitronectin and fibrinogen also bind to αvβ3 integrin [205]. The density and distribution of ECM 
proteins are known to be controlling factors in the level of integrin-ECM adhesive interaction and play 
an important role in regulating cell migration [205]. The cytoplasmic domains of both the α and β 
subunits interact with signalling molecules and cytoskeletal proteins to regulate cellular events (such as 
signal transduction, cytoskeletal organisation) as well as regulating cell motility via the modulation of 
integrin affinity and/or avidity. 

The integrin-ligand connection acts as a source of communication, transmitting signals from the 
ECs to the ECM and vice versa, coordinating cellular activity. As previously mentioned, the 
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predominant structural component of ECM matrices is collagen; EC attachment to this type of matrix 
occurs via α2β1 integrins. This interaction inhibits activation and nuclear translocation of NF-κβ and 
the pro-infammatory molecular cascade under pathological flow conditions. This effect may be 
beneficial at the early stage of cell repopulation and migration through an anastomosis site, allowing 
successful tissue reconstruction of the graft without thrombosis developing. Integrin mediated 
mechanotransduction involves multiple kinases (FAK, c-Src, and Fyn), adaptor molecules (CAS and 
Shc), guanine nucleotide exchange factors (C3G and SOS) as well as small GTPases (Rap1 and Ras) 
responsible for activating mitogen-activated protein kinases (MAPKs) such as ERK. In static 
conditions, the integrins are inactive and signalling does not occur. Shear stress is required to activate 
the integrins. Through specific interactions of the α and β subunits, the FAK/c-Src and Cav-1/Fyn 
pathways are activated. Activation pattern is directly associated with members of the Rho small 
GTPase family, including RhoA, Cdc42, and Rac. RhoA, Cdc42 and Rac each have particular 
functions in regulating the actin-based cytoskeletal structure. RhoA increases cell contractility, focal 
adhesions and actin stress fiber formation; Cdc42 regulates filopodia formation; and Rac regulates 
membrane ruffling [210]. The importance of the β2-integrin family in lipopolysaccharide (LPS) 
stimulation was highlighted by Monick et al. [211]. LPS stimulation plays an important role in 
regulating the inflammatory process, thus the link between this stimulation and the role of β2-integrins 
is important in terms of tissue remodelling. It has also been found that laminar shear stress suppresses 
the G1- to S-phase transition in ECs [212,213]. This leads to an increased expression of p21 which 
inhibits cyclin-dependent kinases, thus inhibiting cell proliferation and remodelling. The regulation of 
transcription factor expression was compared under disturbed flow conditions and uniform laminar 
shear stress conditions by Nagel et al. [214]. The ECs subjected to disturbed flow, similar to that found 
in atherosclerosis-prone areas, showed increased levels of nuclear localized NF-κβ, Egr-1, c-Jun and  
c-Fos compared with those exposed to uniform laminar shear stress or under static conditions. NF-κB 
induces the transcription of a large range of genes implicated in inflammatory response [215]. It also 
plays a fundamental role in protecting vascular SMCs against apoptosis and weakening of vascular 
wall. This transcription factor is stimulated by flow through the integrin and Rac dependent production 
of reactive oxygen species. It has been previously shown that uniform laminar shear stress plays an 
inhibitory role in the pro-inflammatory gene expression in ECs located in close proximity to  
SMC [214,215].  

As the specific activation of inflammatory cascades is complex, further studies into the gene 
expression of various scaffold materials are needed to predict in vivo performance. Intuitively it would 
be expected that the performance of synthetic grafts would be impeded due to their nature and the 
inability of integrins to bind to corresponding ECM ligands and thus inhibiting of initiation of 
“healthy” mechanotransduction within the vascular cell. From this point of view, naturally derived 
scaffolds have a distinct advantage. However, certain ECM components trigger more favourable 
responses than others. Gene expression in response to physiological fluid flow has yet to be fully 
characterised for all ECM materials. 

In a study conducted by Cenni et al. [216], integrin expression was evaluated for ECs alone and 
ECs in contact with polyethylene terephthalate (PET) woven Dacron. The following integrins were 
evaluated under both conditions by flow cytometry: VLA-2 (α2β1-CD49b/CD29), VLA-5  
(α5β1-CD49e/CD29), VLA-6 (α6β1-CD49f/CD29) and αVβ3-CD51/CD61). The isolated ECs in 
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contact with woven Dacron showed a significant decrease in the expression of CD29 and CD49e and 
the other integrins were not modified by contact with the material. CD29 and CD49e are the α5β1 
integrin types which are known to have affinity to fibronectin ligands and are important for cell 
adhesion. The decrease in this integrin type may suggest that adhesion chemistry between vascular cell 
and synthetic material differs from that of cell adhesion to natural ECM components. Strength of 
adhesion and retention under the flow shear stress and rate of EC migration on this type of substrate 
may lead to incomplete endothelial lining which may result in thrombogenicity [216]. To combat these 
issues, synthetic materials such as PET and PTFE are often coated in fibronectin. Plasma treated PET 
and PTFE have also shown improved adhesion and growth of ECs [217]. Depending on the nature and 
origin of ECM materials, different integrins are expressed. Activation of certain integrins suppresses 
the activation of other specific integrins, maintaining a balance which aims to promote healthy tissue 
remodelling. Manipulation of integrin activation could eliminate adverse remodelling events, for 
example, by blocking the inhibition of integrin α2β1 (activated on fibronectin through protein kinase 
Cα) then collagen signaling can occur via this integrin and inhibit the flow induced activation of the 
atherogenic transcription factor NF-κβ [218]. The state of EC surface thrombogenicity is under 
substrate control, and is also related to the cellular differentiation status (as shown in Figure 3). 
 

Figure 3. The effect of sub-endothelial substrate on the activation pattern of  
pro-inflammatory cellular mechanisms of mechanotransduction. This figure illustrates the 
biochemical processes induced by fluid shear stress for both a synthetic material and ECM 
scaffold material. As fluid flows across the EC layer (depicted in red), the mechanosensors 
at the endothelium surface sense the stress and react by transmitting signals through the 
transmembrane integrins (illustrated in red and blue). Specific integrin 
mechanotransduction pathways are thus activated, sending messages from ‘inside-out’ 
through specific integrins, triggering certain responses. Depending on which type of 
integrin is activated, various responses occur. Synthetic materials are prone to stimulate a 
pro-inflammatory response of adhered cell [217] and exposed to the flow, in which 
presentation on the surface of vascular endothelium of adhesion molecules (for example 
VCAM-1) induce a subsequent attraction, rolling and adhesion and subsequent attachment 
of leukocytes to the site.  
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These cellular processes demonstrate the potential of the underlying vascular material to affect the 
long-term cellular functionality of the prosthesis. Ex vivo evaluation of the material properties in order 
to support functionality of the EC and their mechanotransduction capacities require optimization. In 
vitro studies under static conditions have been popular for characterization of EC thrombogenicity and 
shear resistance due to their logistical simplicity, but are not necessarily reflective of the surface 
thrombogenicity under flow conditions where mechanotransduction activation in a fashion similar to 
the vascular tree in vivo are necessary and its modulation by substrates may be analysed and 
determined. A biorheological conditioning protocol proposed by O’Keeffe et al. [219] can provide a 
efficient informative in vitro screening method which would allow determination of vascular cell 
behaviour on surface graft material under pathological shear stress, elucidate an alteration pattern of 
the molecular cascade of endothelial cell mechanotransduction, investigate the ability of materials to 
support a polarization and EC cytoskeleton reorganisation under various flow patterns (which may be 
recreated in the anastomosis site of a graft vessel). The undestanding of molecular mechanisms of graft 
failure will lead to the possibility of further modification of the vascular material in order to enhance 
clinical performance of prosthetic and ECM grafts. 
 
5.3. Restoration of Innervation and Blood Vessel Homeostasis  

 
In recent years, biomedical research has clarified the involvement of neuromodulation in human 

tissue processes which occur during healing [220,221]. However, limited data exists on the  
re-innervation pattern of vascular graft materials during the healing process due to the complexity of 
the neuron detection and analysis [222,223]. However even limited findings have demonstrated the 
role of innervation and its pattern may play a part in the development of fully functional tissue during 
the healing of vascular graft [224,225]. 

Anatomical investigations reveal that blood vessels and nerve fibres run throughout the body 
alongside one another and the mechanisms involved in wiring both networks are proposed to be similar 
(Figure 4) [226–228]. Recent morphological and pharmacological findings support the hypothesis of 
active communication between vascular and neural networks and their interactions may contribute to 
the health and homeostasis of vascular vessels [229–231].  

The blood vessels are innervated by the autonomic nervous system. Sympathetic adrenergic nerves, 
which travel along arteries and nerves, are found in the adventitia (outer wall of a blood vessel). The 
sympathetic fibres mediate a vasoconstrictive action in the vascular bed as well as providing 
secretomotor activity. Activation of vascular sympathetic nerves cause vasoconstriction of arteries and 
veins mediated by α-adrenoreceptors [232,233]. Neurogenic control of vascular tone and vascular 
innervations of the blood vessel adventitia have been well documented [230,231]. The release of 
neurotransmitter and chemical signalling occurs in small enlargements along the nerve fibres. Nerve 
stimulation can elicit different responses, in terms of type and amplitude, at different areas of the 
vascular system [234,235]. Neurogenic vasocontrol can thus follow different patterns depending on 
which molecules are released and what local reactions they trigger. Active molecules released locally 
from adventitial nerves may diffuse and act directly on the adventitia and the media or act on the 
endothelium which in turn will release molecular signals (like nitrogen oxide) which then influences 
the media [229]. The complexity of neurochemically defined autonomic nerves stimulating the vessel 
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baroreceptor and chemoreceptor regions suggests functionally separate, independently regulated 
pathways. Auger et al. [230] summarised previous literature and concluded that vascular autonomic 
and various types of sensory nerves inclusive of cholinergic, adrenergic, peptidergic or nitrergic are 
found in different proportions and density depending on the specific anatomical site. One of the 
findings of this study was that the variety of nerves which can be found in the adventitia is directly 
related to the presence of many neuron-related peptides and molecules (such as acetylcholine, 
noradrenaline, neuropeptide Y, substance P(SP), calcitonin gene-related peptide (CGRP), neurotensin 
and vasoactive intestinal peptides (VIP)) in different quantities at various anatomical regions, although 
their complete physiological roles are not yet known. 

 
Figure 4. Illustration by the Belgian anatomist Andreas Vesalius, highlighting the 
similarities in the arborisation of the vascular and nervous networks. Vessels (red) and 
nerves (green). [227], Copyright, Reprinted with permission from the Nature  
Publishing Group. 

 
 

Modern surgical procedures utilized for implantation of vascular grafts have been shown to cause 
extensive damage to the sympathetic nerves which supply and accompany blood vessels [237,238]. 
Some procedures may cause extensive degeneration of adrenergic nerves and the extent of denervation 
may vary with vessel type with regard to their anatomical characteristics and structure (elastic or 
muscular). Comparative studies were able to determine that rate of nerve re-growth in muscular vessels 
is faster than that of elastic vessel. Re-growth of injured fibers can be altered and lead to hyper or 
denervation along the graft reconstruction or only at certain parts. Preliminary analysis of data 
indicates that a non-matching to the original pattern of nerve re-growth may lead to a lack or alteration 
of vessel tone autoregulation in the graft region and its exclusion from the baroreflex modulation of 
blood flow. This growth pattern is potentially regulated by a number of factors such as chemical 
affinity of the material surface, cytokine and growth factor gradient along the grafted site, the type of 
ECM molecule deposition, adsorption to the material, the presence and distribution of required 
chemical ligand to the surface and within the scaffold, inflammatory sites and infection.  

In newly developed vascular tissue, neuromodulation activity or its complete absence appears to 
greatly affect the functionality of the vessel itself, the healing process of the vessel and its homeostasis. 
Instability, due to focal unbalancing of constrictive forces and regulated, molecular signaling may 
serve as a pathophysiological basis for the well-established phenomenon of vascular SMC hypertrophy 
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and hyperplasia after grafting [239], occlusion of the vascular graft [240] or its dilation (pseudo 
aneurysms) [241]. 

Recent studies have reported successful re-innervation of ECM reconstructed organs [242–244], 
and the capacity of ECM materials to support nerve conduits and promote growth of the Schwann cell 
(SC) [244–248]. During biocompatibility studies in vitro [248], when co-cultured with SCs, SIS-ECM 
showed good ability to support SCs adhesion, survival, migration and proliferation on its surface. 
Observation of the ultrastructure of SCs by TEM demonstrated that SCs adhered tightly and grew 
productively on the surface of SIS. MTT assay also showed that SIS did not have a cytotoxic effect on 
SCs. Quantitative analysis of nerve growth factor-β (NGF-β) and brain-derived neurotrophic factor 
(BDNF) by ELISA, as well as semi-quantitative analysis of NGF-β mRNA and BDNF mRNA by  
RT–PCR, showed that SCs seeded on SIS had more productive function of secretion than the normal 
cultured SCs. NGF-β and BDNF are the main growth factors secreted by SCs, which are known to 
have neurotrophic effects on nerve regeneration. Adhesion and growth of the nerve cells is guided by 
specific structural components of ECM laminins [249–253]. There is a significant lack of research 
focusing on the analysis of innervation fibre density, their localization in the adventia and media of the 
synthetic and ECM grafts. This issue needs to be elucidated and determined in future studies, but the 
authors hypothesize that ECM graft material may provide a better support for the re-innervation of the 
newly developed vascular tissue and an enhanced structural and chemical microenvironment for the 
reconstruction of a balanced interactive network between the nervous system and remodeled vascular 
tissue. ECM material has the potential to provide a homeostatic environment based on the regulation of 
vasoactivity function, thus increasing its ability to regulate blood flow and function in a similar manner 
to the native non-injured vessel compared with vessels substituted by synthetic materials. 

 
6. Future Perspectives for Cardiovascular Implants Based on ECM  
 

With the enhanced healing properties previously discussed, biologically derived ECM materials 
have been shown to be diverse and inconsistent in both structure and morphology [41], and affected by 
a number of factors such as the manufacturing process (i.e., mechanical decellularisation vs. chemical 
decellularisation) [18] and the age and health status of the animal at harvest. Numerous limitations and 
problems are associated with decellularising techniques and procedures, as described previously in 
detail [18,254–256], may have great influence on ECM product quality, mechanical and biochemical 
properties, biocompatibility and clinical performance [257–259]. Mechanical methods of 
acellularization, including repeated freeze-thawing, sonication, or other physical means of disrupting 
cells' plasma membranes, provide a direct, mild and rapid tissue decellularisation, but used alone, such 
methods are not capable of completely removing cellular material, which has been shown to prevent 
complete recellularisation of this material by host cells [257–259]. It remains a concern for the 
biomedical community that trace amounts of potentially antigenic compounds of animal origins (lipids, 
DNA, glycosilation products) have been reported to be present for certain types of ECM material and 
may provoke an inflammatory response at the placement site [260,261]. Complete removal of these 
antigenic compounds from the material is important for improving the biocompatibility of ECM 
material; however, such a goal seems to be quite challenging and difficult to achieve with the 
application of standard biochemical extraction methods, due to the high degree of chemical complexity 
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and variability of the contaminants. The degradation and damage of structural components due to the 
absence of a long-active protease inhibitors, multiple incubation and rinsing steps during the long 
decellularisation procedures may unintentionally remove desirable ECM components and lead to an 
alteration of mechanical properties of the ECM material [262]. The ability of a decellularisation 
method to sufficiently remove of lipid moeities from the tissue has been shown to have a dramatic 
impact on the rate of graft calcification and substantially decrease patency time in vitro [263,264]. 
Minimally invasive tissue-specific decellularisation techniques with detailed manufacturing protocols 
where in vivo performance will be supported by enhanced cell repopulation, minimal infiltration of 
inflammatory cell and calcification still need to be developed in the near future. 

Suitability of materials derived from various organs for clinical application in the vascular area are 
still under investigation as the biochemical and biophysical properties are not always tailored to the 
potential tissue characteristics desirable for the application [17,18]. Modification, remodelling and 
ECM matrix deposition that can be performed in vitro utilising cellular machinery able to perform the 
most complex synthesis reactions and cleavage of others with high specificity and efficiency, presents 
a potential method to improve the biological properties of ECM material obtained by decellularisation 
of non-vascular organs (SIS) for vascular application [265]. SIS-ECM material was pre-conditioned 
with human endothelial cells in vitro and during the conditioning process, remodelling of the matrix 
and synthesis of novel components as well as deposition of sub-endothelial matrix (basement 
membrane) known to be absent in the original SIS material, was shown to occur. Following 
decellularisation of the cell-seeded scaffold, neo-ECM was shown to have improved biological activity 
and the vascular endothelial cells seeded on the neo-matrix had enhanced organization of the cell 
junction, an increased metabolic activity and released a lower amount of pro-inflammatory 
prostaglandin PG1 compared to the cells incubated on the control SIS. Neo-ECMs were also shown to 
have a lower degree of human platelet adhesion and improved thrombogenic potential.  

In this state-of-the-art era, with strong development in genetic engineering methods [266] and the 
multitude of recombinant vectors [267], gene delivery systems [268–280], the variety of cell lines 
which are able to express recombinant ECM molecules, enzymes and growth factors [281–283] all 
show great promise for ECM material modification. A more complete understanding has emerged 
of the native molecular regulation of the ECM remodelling process by the cells under chemical and/or 
mechanical stimulation (flow [284], stretch [285], pressure [286]), providing an optimised 
physiological environment within an engineered bioreactor. This may facilitate a more physiological 
remodelling process, ultimately leading to a more manufacturable tissue-specific ECM material. 
Advanced bioreactor design and application will be an essential part of conditioning the ECM material 
and ECM- material based constructs with further advances in the technology making the engineering 
of more complex tissues and organs (multi-functional, multi-layered, bio-chemical, bio-properties) a 
reality in the clinical environment. 

ECM material has been shown to a very attractive material as a base or one of the structural 
components for a composite repair material as part of the continuing challenge to find ways to translate 
the mechanical properties and clinical performance of ECM biomaterials to vascular clinical 
applications. In order to increase the mechanical strength of ECM, cross-linking structural components 
with chemicals such as glutaraldehyde, 1-Ethyl-3-[3-dimethylaminopropyl] carbodiimide 
hydrochloride (EDC or EDAC) and hexamethylene-diisocyanate is applied; however, modification by 
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this type of method has been shown to have a lower degradation rate in vivo, promote early 
calcifications and changes the host tissue response from an anti-inflammatory, constructive 
remodelling response to a pro-inflammatory, foreign body response.  

Decellularised ECM materials have been incorporated with synthetic scaffolds successfully to date 
through a number of approaches. A multilayered poly(styrene sulfonate)/poly(allylamine 
hydrochloride) (PSS/PAH) have recently been used as luminal coatings onto human umbilical arteries, 
demonstrating a high graft patency post 3 months rabbit implantation and restoring initial compliance 
of the tissue [287]. Stankus et al. developed a composite scaffold containing poly (ester urethane) urea 
elastomer (PEUU) and UBM [288,289]. As the water-soluble electrospun UBM was a fragile and 
brittle material, it was blended with PEUU and dissolved in hexafluoroisopropanol and then 
electrospun. The scaffold was also more resistant to degradation compared to electrospun UBM alone 
and had improved mechanical properties. The scaffold was both strong and distensible with a tensile 
strength of 4.9 ± 1.6 MPa and a breaking strain of 85 ± 28%, compared to lyophilized sheets of UBM 
(0.3–0.4 MPa and 47–67% strain, respectively) [288,290]. After 28 days implantation in a rat 
subcutaneous model, there was an increase in scaffold degradation and cellular infiltration with 
increasing UBM proportions. In vitro seeding with SMCs displayed enhanced adherence and 
proliferation with increasing UBM proportions. Most likely, this is due to increased cell adhesion sites 
retained from the biological component (e.g., collagen, fibronectin, laminin) and growth factors, which 
survived the enzymatic digestion and acidic conditions during initial processing and electrospinning 
solvent conditions. Despite the fact that the harsh fluoroalcohols typically employed to electrospin 
collagen/ECM material effectively denature collagen to gelatin [291], with losses of more than 90% of 
triple-helical structure, the gelatinous structures with retained growth factors do confer an enhanced 
bioactivity. The synthetic portion comprising of bioresorbable or non-resorbable meshes such as 
Prolene™, Vicryl™, Mersilene™, PDS II™, Panacryl™, and Monocryl™ can be introduced by 
preparation of laminated structures of ECM sheets presenting a new method of manufacturing  
hybrid-ECM material with enhanced properties. Hence, a synthetic scaffold enhanced with an ECM 
component may possess more consistent mechanical properties, such as failure strengths, compliance 
and degree of shrinkage [292], whilst eliminating the need to cross-link or laminate the structures. 
Incorporation of ECM components into the synthetic material adds several desirable characteristics 
which are absent even from the most advanced textured synthetic scaffolds and forms a ‘smarter’ 
biomaterial [293], and introduces new functions of the material with near-physiological 
multifunctionality of the natural ECM, complex signalling, improved control of cell-matrix 
interactions [294] and cell-specific matrix response. 

Specific ECM components have been commonly used (e.g., collagens, fibronectins, laminins) in 
cell culture for many years and have been shown to have strong effects on cell attachment and growth. 
The intricate, ordered nature of the ECM, combined with the complex combination of biomolecular 
cues, is highly difficult to reproduce with synthetic scaffolds. At best, common synthetic ECMs exploit 
one or two biomolecular classes. A recent study elegantly demonstrated that the tissue-specific matrix 
components cause significant differences in adhesion efficiencies, growth rates, morphology and 
phenotypes of skin, muscle and liver cells, suggesting the need for more appropriate, tissue-specific 
matrices for in vitro cell culture [296]. As mentioned previously, the major disadvantage of synthetic 
vascular materials is their lack of a confluent endothelium and that they are prone to thrombus 
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induction, embolism and occlusion. They are also less durable than autologous material and are 
associated with poor healing and lack of compliance and often require extensive use of anticoagulant 
or antithrombotic agents [297]. Therefore, the importance of creating a suitable endothelium on the 
luminal surface of any diameter synthetic vessel substitute is paramount. Coatings of proteins, 
decellularised matrices are being pursued to increase the bioactivity of the prostheses in order to render 
then more suitable for EC seeding. Common approaches to treat vascular graft surfaces include 
autologous fibrin coating [298,299] or heparin [300,301] and have been met with mixed success. On 
the whole, these linings do not provide vital vascular functions such as vascular responsiveness or 
other biological secretory functions seen with normal blood vessels [302]. A mixture of collagen type 
I, elastin and poly (D, L-lactide-coglycolide) (PLGA) to impart increased mechanical strength was 
electrospun to form a non-cytoxic tubular construct with similar compliance to native arteries and 
minimal inflammatory response [303]. Tillman et al. electrospun a collagen type I - PCL tubular 
scaffold, pre-seeded with ECs and SMCs under bioreactor conditioning flow [304]. The grafts used 
had a caliber of 5 mm and were able to support EC and SMC growth under pulsatile flow conditions. 
Although smaller diameters are associated with a higher degree of thrombotic occlusion most remained 
patent at 1 month, even without the presence of anti-thrombogenic ECs. For example, the 
Hemashield™ vascular graft is a woven double-velour polyester graft impregnated with weakly cross-
linked purified bovine collagen, softened by exposure to glycerol. This confers anti-thrombogenicity, 
an improved healing response and eliminates the need for pre-clotting, which is patient-specific,  
time-consuming and troublesome.  

Replacement of the vessel, in major surgical cases, may serve as a symptomatic treatment of 
atherosclerotic lesions or aneurisms that have developed in the vessel wall altering its structure and 
function but does not target the cause of disease known to include molecular and biochemical 
processes in the blood and the blood vessel wall, and their interface such as deposition of plaques, 
cholesterol, platelets and other related molecules within the arterial walls. Due to this factor, long–term 
performance of the ECM material and functionality of the new vessel tissue depends on the origin of 
the disease, genetic predisposition, specific diet, age, hormone status and many other risk factors. ECM 
as a protein–based material may be further modified and activated as a potential delivery method of 
therapeutic agents (drugs, enzymes, inhibitors) which can be released after incorporation of the 
material into the body. This approach may only provide a short-term treatment due to quick exhaustion 
of quantity and activity of the loaded functional protein or drug. Incorporation of the specific DNA 
molecules with coding sequence of the disease-related gene, its uptake by the host cell during 
repopulation of the ECM vessel following development of the stable/induced subpopulation of the 
vascular cell may potentially provide a new resistant to arteriosclerosis development vascular tissue 
due to continuous or inducible synthesis appropriate enzyme, cellular receptor or ECM components 
coded by delivered DNA molecules. 

The future perspectives for the application of ECM technology to vascular applications still have 
many obstacles to its success and development, with decellularisation, material properties and 
component modification processing still at the development stages. The advancement of these 
technologies should ensure a highly improved bioscaffold for the treatment in cardiovascular 
applications. Furthermore with the application of new research and approaches to ECM materials may 
allow many of the outlined shortfalls in the current treatment approaches to be eliminated.  



Int. J. Mol. Sci. 2009, 10             
 

 

4398

7. Conclusions  
 

With our expanding knowledge of molecular cascades during natural healing and their inter-
relationship, it remains very challenging to develop a material which may avoid the natural recognition 
system of our body. The creation of a prosthetic vascular graft material for clinical use which will be 
able to achieve an excellent treatment regime and eliminate many of the current complications requires 
considerable further scientific investigation.  

The long-term patency of the vascular graft is a challenging goal for the vascular surgeon. After the 
early stages of graft acceptance, the degree of functionality of the developing grafted vessel is 
regulated by physical and biorheological forces (shear stress, wall pressure, particle deposition). 
Reconstruction of the active dynamic and complex inter-communication with another system of the 
human body (neural) has influence on modulation of the cellular and molecular events that underlie 
regulation of vascular tissue adaptation and final healing. The success of a vascular graft is shown to 
depend upon the intrinsic properties of the graft material and the hemodynamic environment recreated 
at the grafting site. The degree to which the homeostatic mechanisms are perturbed, the extent of 
pathophysiologic responses and their resolution are scales of the host reactions to the biomaterial 
determine the ultimate success of the graft.  

Biological material composed of decellularised tissue matrices has been shown to have the potential 
to stimulate and augment healing processes via multiple biological activities during symptomatic 
treatment of atherosclerotic lesions or aneurisms. A range of ECMs have been shown to provide an 
excellent microenvironment for the many processes that occur in the early stages of healing and allow 
a long-term maintenance of balanced homeostasis and functional neo-tissue development. Applications 
of this type of biomaterial in clinical use may lead to successful regeneration therapies for the patient. 
Further development of techniques to improve the degree of biostability, biocompatibility and 
calcification potential of a decellularized matrices should be considered in future studies. 
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