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Abstract: This study presents a review of biodegradability modeling efforts including a 
detailed assessment of two models developed using an artificial intelligence based 
methodology. Validation results for these models using an independent, quality reviewed 
database, demonstrate that the models perform well when compared to another 
commonly used biodegradability model, against the same data. The ability of models 
induced by an artificial intelligence methodology to accommodate complex interactions 
in detailed systems, and the demonstrated reliability of the approach evaluated by this 
study, indicate that the methodology may have application in broadening the scope of 
biodegradability models. Given adequate data for biodegradability of chemicals under 
environmental conditions, this may allow for the development of future models that 
include such things as surface interface impacts on biodegradability for example. 
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Introduction 

Biodegradation is an interfacial phenomenon influenced by a chemical’s tendency to partition to 
various phases in the environment. Equilibrium partitioning between solid and liquid interfaces [1] 
strongly influences the biodegradability of chemicals in the presence of surfaces (e.g., soils and 
sediments). The resulting inaccessibility of solutes to microorganisms that are responsible for 
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degradation can limit biodegradation [2, 3].  Due to the need to predict the ultimate fate of chemicals 
in the environment, many methods have been developed for estimating or predicting a chemical’s 
biodegradation potential. These methods have each been constructed and are utilized in different ways 
in an effort to manage the tradeoffs between model complexity, availability of input data, and model 
reliability. Model inputs include expert opinion assessment, physical property correlations, group 
contribution, and other qualitative and quantitative indicators of biodegradability.   

Modeling techniques used include linear and nonlinear regression, chemometric analysis, neural 
networks and artificial intelligence. Each of these techniques has individual advantages and 
disadvantages and tradeoffs are managed such that all models have various limitations in their utility 
and predictive ability [4-6].  For example, individual models tend to have some level of chemical class 
specificity, either by design, or as an artifact of the breadth of the model training data set. Basic 
attributes such as model complexity, range of chemical structures and size of data set can be used to 
subjectively assess the general utility of specific models [5].   

This paper presents a discussion of the various methods to estimate biodegradability and, more 
importantly an evaluation of an artificial intelligence technique based on inductive machine learning 
that allows consideration for physical properties and group contribution effects [7, 8].  The evaluation 
has been conducted using an independent, critically reviewed database of biochemical oxygen demand 
(BOD) values that has seen limited use in model development. The inductive machine learning 
approach allows for the development of models with simple logical rules that indicate important 
structural features for biodegradability and may provide for the elucidation of relevant factors in 
determining a chemical’s availability in the environment in the presence of solid surfaces, and 
therefore its propensity to biodegrade. Factors such as acclimation and chemical concentration may 
also be incorporated in future inductive machine learning models to account for environmental 
variability and more reliably predict biodegradation.   

In this study, the inductive machine learning approach is demonstrated as sound when evaluated 
against an independent, highly reviewed data set that is not related to its training set. While the 
development of reliable and realistic biodegradability QSARs will require data from different types of 
tests to better simulate actual environmental conditions [9], the inductive machine learning approach 
shows promise for incorporating important surface interface and other environmental impacts into 
future modeling efforts. 
 
Data availability for environmental fate assessment of chemicals 
 

There are literally hundreds of thousands of anthropogenic chemicals manufactured and ultimately 
released to the environment, either through their intended use or through accidental discharge. The 
ultimate disposition of these chemicals on the environment is important in assessing their short and 
long term impact on living systems, and ultimately, on human health. While new standards and 
requirements for testing and providing data for High Production Volume (HPV) chemicals have 
promise for improving data availability for new chemicals, the sheer number of chemicals currently in 
use makes individual testing and assessment impractical. For example, it has been reported that there 
are more than 100,000 compounds existing in the European Union as indicated by the contents of the 
ENECS database [10]. Furthermore, a recent study reviewed more than 10,000 pre-manufacture 



Molecules, 2004, 9  
 

 

991

notices submitted to the United States Environmental Protection Agency between 1995 and 2001 and 
was able to find only 305 chemicals with biodegradability data [11].   

Relatively new requirements for screening tests in the European Union, Canada and Japan will 
undoubtedly improve the availability of data for biodegradability and other environmental fate 
parameters. Even with these requirements, however, information provided from these tests may not be 
sufficient to conduct risk assessments [4]. In addition, consistently measuring whether or not a 
chemical is likely to biodegrade and at what rate can be difficult.  For example, analytically 
determined biodegradation half-lives have covered a wide range even when tested under similar 
conditions [12].  Even if the consistency of the results can be resolved, test conditions such as 
acclimation and test chemical concentration can produce results that are of potentially questionable 
relevance to a chemical’s actual fate in the environment [9].   

The development of models for predicting biodegradability has provided a number of useful tools 
for generally assessing the fate of various chemicals in the environment and even in helping to 
understand the mechanisms of degradation; however, work remains to be done for these tools to reach 
a level of general utility.  While years of research in physical property modeling and structure activity 
relationships has resulted in the ability to predict many chemical properties with acceptable reliability 
from knowledge only of chemical structure, prediction of biodegradability among other properties still 
needs improvement [13].  Russom et al. [14] reported, for example, that for the BIOWIN package [15], 
the EU recommends only using a slow biodegradation output as confirmation that a substance is not 
readily biodegradable and recommends against relying on fast biodegradation outputs.   

There are two frequently referenced broadly available data sources for biodegradation data, 
commonly referred to as the BIODEG and the MITI-I databases. BIODEG is a file of biodegradation 
data within the Environmental Fate Database [16] which is available commercially from Syracuse 
Research Corporation (Syracuse, N.Y., U.S.A., http://www.syrres.com/esc/). The MITI-I database is 
available directly from the Chemicals Evaluation Research Institute (Tokyo, Japan) and can be 
downloaded from http://www.cerij.or.jp/ceri_en/otoiawase/otoiawase_menu.html. These databases, in 
addition to the expert opinion survey conducted by Boethling and Sabljić [17], have been used 
extensively for model development and validation. These data sets are generally available and are 
regarded as of a high quality. It is notable that the two datasets do include some data that are 
contradictory for a small subset of overlapping chemicals in the BIODEG and MITI-I datasets [8]. 
Chemicals within these databases are generally classified as biodegradable or non-biodegradable or as 
fast or slowly biodegradable.   

The BIODEG and MITI-I datasets are sufficiently unique that it is common for independent 
models to be generated based on each. Gamberger et al. [8], for example, created two different rules, 
each designed to best predict data from one or the other dataset. The commonly used BIOWIN model 
package recommended by the EU Risk Ranking Method [14] includes separate linear and non-linear 
models built from the MITI-I and the BIODEG data [11, 18]. It has been reported that due to cross 
correlations, it is possible to develop a model that fits the training set data well but is not reliable as a 
predictor for chemicals outside the training set [19]. Based on this fact and the extensive use of the 
BIOWIN and MITI-I data in model development, it would be useful to evaluate models on an 
independent data-set to see how they perform.   
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Another set of critically reviewed data for BOD that exists has been prepared by the American 
Institute of Chemical Engineers Design Institute for Physical Properties (DIPPR)® and is available 
commercially from EPCON International (http://www.epcon.com/Product22.htm). The DIPPR 
database includes 56 chemical properties for approximately 600 chemicals selected from U.S. 
Environmental Protection Agency regulatory lists [20]. Each BOD data point in the DIPPR database 
has been critically evaluated using a 10-point criteria system which utilizes five rating parameters as 
shown in Table 1. Data sources received a score between 0 and 2 for each parameter which were then 
totaled for all of the parameters. For chemicals that had multiple data points from multiple sources, 
only the highest rated data point was chosen for this study. For a complete discussion of the criteria 
and a summary of the BOD/ThOD data see [21]. As a critically evaluated data-set that has seen limited 
use for biodegradation model development, this data-set is ideal for evaluation of models and 
modeling approaches developed to-date. 
 

Table 1. Evaluation Criteria used for BOD Data in the DIPPR database 
 

Rating Parameter Required for Highest Rating 
Experimental Technique Follow Standard Methods 
Temperature Maintained at 20 ºC 
Seed Acclimation Used acclimated seed 
Concentration of Chemical Dilution 2-6 mg/L O2 depletion 
Internal Consistency ThOD≥ BOD 

 
Review of modeling efforts 
 

There are a large number of correlations and models for biodegradability currently in the literature.  
For example, Raymond et al. [5] presented 41 correlations for various individual homologous series of 
chemicals and Loonen et al. [22] referred to an EU study that evaluated 84 individual models. Most 
models generate results that generally indicate propensity for biodegradability such as readily 
biodegradable, slowly biodegradable, or not readily biodegradable and typically do not produce 
quantitative results such as half lives or degradation rates. These semi-qualitative model outputs have 
been noted as useful for screening tools but lacking in utility for full scale fate modeling as 
environmental compartment models, or “box models”, typically require at least compartmental half 
lives [4]. The fact that even consistent analytical results are difficult to obtain additionally suggests 
however, that screening level tools likely represent the finest level of detail that can be reasonably 
obtained given the complexity of the systems involved and the current level of understanding of 
biodegradation mechanisms.  While the models constructed to-date certainly have utility, the 
continued development of models with predictable accuracy and that can reasonably account for 
multiple factors and provide insight into fundamental modes of action related to biodegradability, 
including interface phenomena, will require continued research.  

A number of detailed reviews of modeling efforts are available [4, 5, 6, 23]. This work does not 
intend to repeat that work, but rather present a brief discussion of general modeling efforts to-date with 
a more detailed discussion and evaluation of an inductive machine learning method utilized by 
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Gamberger et al. [7].  The evaluation was conducted using a critically reviewed database that has seen 
limited use in model development and therefore should provide for reasonable independent assessment 
of the models’ ability to predict the biodegradability of chemicals not included in the model training 
sets. This discussion also includes considerations of potential future directions related to interface 
considerations.   

The types of approaches to modeling are generally categorized for the purposes of this study as; 
regression models, human expert system models, and machine learning models. Rorije [10] noted that 
the rule based artificial intelligence approach used by Gamberger et al. [7] cannot be compared in a 
straightforward fashion to other types of modeling approaches and as such, this method has seen 
limited review in the literature. 
 
Regression models 
 

Regression models consist of linear, multiple linear, and non-linear correlations of biodegradation 
rates with parameters including physical or chemical properties and/or molecular connectivity indices.  
Commonly used properties include molecular weight, solubility, and structural fragment or group 
contributions.  Molecular connectivity indices have also been used that relate to branching, volume, 
and molecular weight as well as other factors.  A number of previously published regression models 
are presented in Table 2. 

 
Table 2. Examples of Published Biodegradation Models Representative of Common 

Modeling Approaches  

Model Reference Training Data Set Descriptors used Modeling Technique Used 
Boethling and Sabljić [17] Results of expert opinion 

survey 
Molecular connectivity 
indices 2Xv and 4Xpc, 
molecular weight, and number 
of chlorine atoms 

Linear and multiple linear 
regression 

Boethling et al. [29] BIODEG and results of 
expert opinion survey 

Molecular weight and 
calculated structural  
fragment/group contributions 

Multiple linear and 
nonlinear regression 

Howard et al. [15] BIODEG Structural fragment/group 
contributions 

Linear and nonlinear 
regression 

Huuskonen  [19] Results of expert opinion 
survey 

Various atom-type 
electrotopological state 
indices 

Multiple linear regression 
and artificial neural 
network 

Loonen et al. [30] Data measured using MITI-I 
protocol 

Structural fragment/group 
contributions 

Partial least squares 
discriminant analysis  

Loonen et al. [22] Data measured using MITI-I 
protocol 

Structural fragment/group 
contributions 

Partial least squares 
discriminant analysis 

Cambon and Devilers [26] Results of expert opinion 
survey 

Structural features and 
molecular weight 

Neural network 

Gamberger et al. [7, 8] BIODEG, expert opinion 
survey, and MITI-I 

Structural features and 
molecular weight 

Inductive machine learning 

Klopman [31, 32] BIODEG Method uses machine learning 
techniques to determine 
relevant descriptors 
mathematically from data on 
activity and basic chemical 
structure. 

Knowledge-based learning 
system 

Rorije et al. [33] (model 
specific to anaerobic 
degradation) 

Anaerobic degradation data 
from Environmental Fate 
Database EFDB [34] 

Used Klopman method [32] to 
generate fragments important 
for anaerobic biodegradation. 

Used Klopman [32] method 
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These models are attractive in their relative ease of development given reasonable availability of 
data and model inputs, but are generally limited to specific chemical classes. Additionally, while 
statistical measures can be undertaken to reduce the risk of chance correlations, their possibility 
remains. It has been reported, for example, that the significance of some variables may be difficult to 
rationalize given known factors that influence biodegradation [15]. The inability to rationalize the 
significance of some variables may suggest that they are the result of chance correlations.   
 
Expert system/survey models 
 

Human expert systems or survey models are designed to capture the collective wisdom of experts 
in the field of biodegradation in a process that results in identification of important structural features 
that stimulate or inhibit biodegradation. The models are constructed by conducting surveys of 
biodegradation experts regarding biodegradation potential of various chemicals.  The survey results 
are correlated against structural fragments and other chemical properties to identify fragments and 
properties important for biodegradation. These correlations may be done using regression or other 
mathematical tools and so expert system models commonly also fit under other classifications, 
however the exclusive use of expert opinion information is a feature of the models unique enough to 
justify individual classification. The collection of expert opinions may lead to the potential 
identification of structural elements or other factors influencing biodegradability that may not be 
obvious to any individual expert. On the other hand, it has also been reported that the divergence of 
opinions of surveyed experts may indicate that biodegradation rates and pathways are not always 
obvious [17] and therefore warrant careful analysis and consideration prior to application.   
 
Machine learning based models 
 

Machine learning techniques include neural networks and inductive learning and utilize computers 
to process available data against chemical structural features and properties to elucidate important 
features and properties relevant for biodegradation. Neural network techniques were noted some time 
ago as a promising tool for summarizing biodegradability data [24] and have been described as 
attractive for developing robust models due to their ability to account for a variety of interacting 
factors that influence a chemical’s biodegradability [25]. These models follow a similar logic to the 
expert system/survey models in that they seek to identify subtleties that are not initially obvious, but 
utilize computer and mathematical analysis to more rigorously identify the important structural 
features and properties. These techniques are attractive for modeling complex processes like 
biodegradation due to their dynamic nature and ability to modify their behavior in response to their 
environment, store experimental knowledge, and make that knowledge available for modeling [26]. 
Another advantage of using machine learning techniques is their ability to point out the importance of 
specific descriptors and relations among descriptors that are likely to stimulate further investigations 
into the specific mechanisms of biodegradation [8]. Similarly, understanding structural features 
discovered through machine learning analysis may be additionally helpful in designing chemicals with 
a higher propensity for degradability by including substituents that promote degradability and 
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removing substituents that inhibit degradability [27].  Examples of published machine learning 
modeling efforts are presented in Table 2. 
 
Application of model batteries 
 

In addition to the discrete use of individual models, it has been suggested in the past that a number 
of models can be used successively to evaluate confidence in the results.  It is logical that if multiple 
models are run for the same chemical and produce conflicting results, then those results are potentially 
questionable.  At a minimum, the user is faced with a decision about which one, among the conflicting 
models, is more accurate given comparably appropriate models (e.g. no class specificity or other issues 
with either model training set).   

The general concept of utilizing multiple models and concluding that reliable results cannot be 
obtained given conflicting results has been suggested in previous studies [6, 15]. However this concept 
has more recently been rigorously evaluated. A recent study presented the use of model batteries 
selected through Bayesian analysis to improve the reliability of predictions or better qualify 
questionable predictions [28]. The model battery approach consists of selecting a series of models and 
qualifying confidence in the model results based on whether each of the models agrees or not. While 
not a fundamentally new approach to modeling, the battery test approach is a new method of formally 
assessing the reliability of the results obtained from various models or sequential combinations of 
models.   
 
Gamberger et al.  inductive machine learning artificial intelligence model  
 

As described above, Gamberger et al. have developed inductive machine learning models for 
predicting biodegradation potential of organic chemicals. Two of these models have been selected for 
further analysis and are termed for this study “Rule A” [7] and “Rule B” [8].  Rule A was developed 
from the expert opinion data-set reported by Boethling and Sabljić [17] and Rule B was developed 
from MITI-I test data. These Rules use the structural descriptors noted in Table 3, but have different 
outcomes regarding the significance of those descriptors in biodegradability based on the nature of the 
data on which they were built. The MITI-I data has been reported to have a tendency to under-predict 
biodegradability and therefore classifies some compounds as non-degradable that are classified as 
degradable under other test conditions, such as those conditions that the chemicals in the BIODEG 
database were tested under [6]. This under-prediction has been reported in part to be potentially caused 
by the relatively high chemical concentration used in the MITI-I test which is higher than what is 
likely to be experienced in the environment, and may produce toxic effects on the test inoculum [4]. 
Based on these data differences, it is reasonable that two distinct models be developed, one as a 
general utility biodegradation model based on the Boethling and Sabljić [17] survey data (i.e. Rule A) 
and one which was developed to more closely predict the results of the MITI-I test (i.e. Rule B). 

The inductive machine learning method involves describing each chemical with a number of 
structural descriptors as input variables. The structural descriptors used by Gamberger et al. are 
presented in Table 3. Binary output variables are assigned to each chemical with a 1 for fast 
biodegradability and 0 for slow biodegradability based on the training set data. Each chemical 
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represents a learning example and analysis is conducted to find individual rules that satisfy all of the 
learning examples. The simplest rule is assumed to have the greatest chance of being most correct 
against test data. Once the simplest rules are identified, they are further analyzed to determine if the 
exclusion of any single chemical can reduces the number of basic logical elements.  If this occurs, that 
chemical is removed as a potential outlier or incorrect data point. Chemicals are removed in this 
manner until a simple non-reducible solution is obtained which is the rule that models the data best.  
Rules A and B are presented in common language format in Table 4 and in mathematical format in 
Table 5. 
 

Table 3.  Structural descriptors used in construction of Artificial Intelligence 
biodegradation models (from [7, 8]) 

Descriptor 
Designation Rule A Descriptors Rule B Descriptors 

a Presence of heterocyclic or anhydride 
groups 

Presence of heterocyclic nitrogen atom 

b Presence of ester, amide, or anhydride 
groups 

Presence of ester, amide, or anhydride 
groups 

c Number of chlorine atoms Number of chlorine atoms 
d Bicyclic alkanes Bicyclic alkanes 
e Chemical composed only of carbon, 

hydrogen, nitrogen, and oxygen atoms 
Chemical composed of only carbon, 
hydrogen, nitrogen, and oxygen atoms 

f Presence of nitro group Presence of nitro group 
g Number of rings Number of rings 
h Presence of epoxy group Presence of epoxy group 
i Primary alcohols and phenols Primary alcohols and phenols 
j Molecular weight Molecular weight 
k Number of all C-O bonds Number of all C-O bonds 
l  Number of tertiary amino groups 
m  Number of quaternary carbon atoms 
n  Number of C=C bonds 
o  Number of aromatic amino groups 
p  Number of acid groups 
r  Number of ester groups 

 
Table 4.  Rules developed for inductive machine learning model by Gamberger et al. 

Rule A [7] Rule B [8] 
A chemical will biodegrade fast if any of the 
following conditions is met: 

(a) chemicals with one or more C-O bonds 
and molecular weight below 180 
(b) chemicals built of C,H,N, and O atoms but 
without a nitro group and having a number of 
rings equal to or smaller than the number of 
C-O bonds 
 

A chemical will biodegrade fast if any of the 
following conditions is satisfied: 

(a) acyclic chemicals with one C-O bond, but 
without quaternary carbons 
(b) esters, amides, or anhydrides built of C, H, 
N, and O atoms, but without or with 2 C=C 
bonds 
(c) acyclic esters, amides, or anhydrides without 
quaternary carbons 
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Table 4. Cont. 

(c) chemicals built of C,H, N, and O atoms but 
without a nitro group and their molecular 
weight must be in the range from 95 to 135 

(d) esters, amides, or anhydrides built of C, H, 
N, and O atoms, having one ring or less but 
without quaternary carbons 
(e) acyclic chemicals built of C, H, N, and O 
atoms, but without either quaternary carbons or 
tertiary amino groups and without or with 2 
C=C bonds 
(f) chemicals built of C, H, N, and O atoms, 
acyclic or with 1 ring, with at least one C-O 
bond, but without either quaternary carbons or 
tertiary amino groups and without or with 2 
C=C bonds. 

 
Table 5.  Mathematical representation of two Rules developed by Gamberger et al.  (See 

Table 3 for structural descriptors with letter designations) 

Rule 1 [7] Rule 2 [8] 
Chemical will biodegrade fast if any of the 
following terms is satisfied: 

(k  ≠0) (j  < 180)  
(e = 1) (f = 0) (g ≤ k) 
(e = 1) (f = 0) (95 < j < 135)  

Chemical will biodegrade fast if any of the 
following terms is satisfied: 

(m = 0) (k = 1) (g = 0) 
(b = 1) (n ≠ 1) (e = 1) 
(b = 1) (m = 0) (g = 0) 
(b = 1) (m = 0) (e = 1) (g ≤ 1) 
(m = 0) (e = 1) (l = 0) (n ≠ 1) (g = 0) 
(m = 0) (e = 1) (l = 0) (n ≠ 1) (k ≠ 0) (g ≤ 1) 
 

 
Rules A and B have been subject to review against the expert survey results of Boethling and 

Sabljić [17] and the BIODEG and MITI-I Data.  Summaries of these evaluations have been reported in 
the literature [8] and are presented below in Tables 6 and 7. 
 

Table 6.  Results of Rule A when applied to Boethling and Sabljić [17] expert survey 
data and data from the BIODEG database [35]. 

 

Test Set 
Biodegradability 
indication 

Number of correct 
predictions 

Percent of correct 
predictions 

Readily Biodegradable 8/8 100% 23 Chemicals from Boethling 
and Sabljić [17] expert survey Slowly Biodegradable 14/15 93% 

Readily Biodegradable 9/9 100% 17 Chemicals selected from 
BIODEG database Slowly Biodegradable 8/8 100% 
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Table 7.  Results of Rule B when applied to MITI-I data test set [8] 

Test Set 
Biodegradability 
indication 

Number of correct 
predictions 

Percent of correct 
predictions 

Fast Biodegradation 279/364 77% 
762 MITI-I data points 

Slow Biodegradation 355/398 89% 
 

With these positive results as an indication of the power of the method, an additional analysis was 
conducted with the critically reviewed DIPPR data set as an additional external check of the soundness 
of the method for predicting biodegradation.  The results of this check are presented in the following 
section. 
 
Results and Discussion 

Evaluation of inductive machine learning model using 5-day Biochemical Oxygen Demand 
 

As Table 2 shows, among the machine learning modeling efforts, the inductive machine learning 
models developed by Gamberger et al. [7, 8] are unique in that they are presented in an if-then-else 
format that is relatively simple to apply given basic understanding of a chemical’s structure. In a recent 
comprehensive review of biodegradability prediction, Jaworska et al. [4] described the inductive 
machine learning approach as notable in that it was a simple system that could achieve results 
comparable with more complex models.  This method takes advantage of the attractive attributes of 
machine learning in utilizing the power of a computer to analyze the complex interactions of various 
structural features and physical/chemical properties that stimulate or inhibit biodegradability but 
provides results that do not require a computer to utilize.  Based on this ease of use, it would be useful 
to evaluate this model using a high quality data set that is independent of the model training set. Given 
the utilization of the BIODEG and MITI-I data in either the development of or previous efforts for 
validation of the inductive machine learning Rules, this study compared the results of the application 
of these Rules to the chemicals in the DIPPR database.  

The DIPPR database includes experimental BOD and calculated ThOD data. In order to assess 
completion of biodegradation during the BOD test, BOD values are converted to a percentage of 
Theoretical (stoichiometric) Oxygen Demand (ThOD) from which the level of biodegradability is 
estimated. The ThOD was determined as described elsewhere [36]. For the purposes of this study, a 
BOD/ThOD value of less than or equal to 0.10 was considered to indicate that a chemical is not readily 
biodegradable and a value greater than 0.10 was considered to indicate that a chemical is 
biodegradable [21]. The DIPPR database contained quality BOD data and calculated ThOD values for 
133 chemicals. 90 chemicals were classified as biodegradable (BOD/ThOD > 0.10) and 43 chemicals 
were classified as non-biodegradable (BOD/ThOD) < 0.10). Predictions following the inductive 
machine learning method results were compared to BOD/ThOD values in the DIPPR database and the 
results of the comparison are illustrated in Table 8. 
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Table 8. Results of comparison of inductive machine learning Rules A and B against 
DIPPR BOD/ThOD data 

Results Rule A Rule B 
Number of biodegradable chemicals correctly predicted 79/90 67/90 
Percent of biodegradable chemicals correctly predicted 88% 74% 

 
Number of non-biodegradable chemicals correctly predicted 21/43 26/43 
Percent of non-biodegradable chemicals correctly predicted 49% 61% 

 
Overall number correct 100/133 91/133 
Overall percent correct 75% 68% 

 
Both Rules performed reasonably well for predicting biodegradable chemicals but less well for 

predicting non-biodegradable chemicals. An analysis of the chemicals that were incorrectly predicted 
suggests that there may be some groups that are not adequately addressed in either Rule, perhaps as a 
result of the chemicals in the training sets for each Rule. For example, 17 of the incorrectly predicted 
chemicals had aromatic rings, including biphenyl and α-naphthylamine which were classified as non-
biodegradable under both Rule A and B but had BOD/ThOD ratios greater than 0.10.   

The number of compounds with rings that were predicted incorrectly as indicated by BOD/ThOD 
ratio may indicate that the modeling sets for Rule A and B did not contain enough compounds with 
multiple rings and positive biodegradability data to account for the importance of adjacent groups.  
Correction factors are sometimes used to compensate for interaction between individual functional 
groups [19] and models that don’t account for interactions among fragments in multifunctional 
molecules may be somewhat simplistic [29]. The lack of data for compounds with multiple rings may 
have resulted in an inadequate accounting for the importance of functional group interactions that may 
promote biodegradability in some of these compounds in the inductive machine learning model. 

With positive results of independent validation of both Rules against the DIPPR data, it would be 
useful to evaluate another commonly used model against the DIPPR data to see how they compare.  
An analysis was conducted of the linear and non-linear models in the BIOWIN package against the 
133 chemical validation set which produced the results illustrated in Table 9. 
 

Table 9. Results of comparison of BIOWIN against DIPPR BOD/ThOD data 

Results Linear Non-linear 
Number of biodegradable chemicals correctly predicted 78/90 79/90 
Percent of biodegradable chemicals correctly predicted 87% 88% 

 
Number of non-biodegradable chemicals correctly predicted 21/43 19/43 
Percent of non-biodegradable chemicals correctly predicted 49% 44% 

 
Overall number correct 99/133 98/133 
Overall percent correct 74% 74% 
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When compared against the DIPPR data, the inductive machine learning Rules developed by 
Gamberger et al. provide very similar reliability results to both the linear and non-linear BIOWIN 
models.  These results suggest that both methods are comparably robust.  BIOWIN is used 
prominently by the U.S. Environmental Protection Agency in conducting pre-manufacture notice 
reviews [11] and is therefore considered a reasonably reliable model for predicting biodegradability. 
The inductive machine learning Rules have been shown to have comparable performance but the 
machine learning technique used to generate the Rules has a unique advantage in its ability to account 
for a number of diverse and even competing factors.  This suggests that the method is likely to have 
additional application in potentially modeling broader aspects of biodegradability such as interactions 
with surfaces including microbial cell walls and other interfacial phenomena. 

Conclusions: Utilization of Artificial Intelligence to introduce interface considerations 

Limitations in available data and in the current level of understanding of how to represent various 
environmental factors influencing biodegradation currently limit what can be realistically done to 
develop environmentally relevant QSARs for biodegradability [9]. As soil and sediments are the 
principal sink for many hydrophobic organic substances [4], understanding interactions between solid 
surface/solute/microbe interfaces will be important to advance the predictability of existing QSARS.  
Boethling and Sabljić [17] for example used only data from tests that incorporated natural water and 
detrital sediment for evaluating the results of their expert opinion survey model as these conditions 
were reported as essential to reflect environmentally relevant biodegradation rates. A number of 
models developed to-date include a molecular weight cut-off based on the presumption that 
exceptionally large molecules cannot be transported across the cellular wall [8, 37]. It has been 
reported that models and handbook data tend to under-predict fate of persistent organic pollutants 
(POPs) but are more reliable for less persistent substances [38]. While there may be a number of 
factors contributing to this under-prediction of persistence it is very likely that interface effects and 
transport of heavily sorbed pollutants may limit bioavailability and subsequently biodegradability.  
Additionally, another study reported and verified a positive correlation between solubility and 
biodegradability [39]. This correlation may further suggest that solute concentration and therefore 
transport of sorbed or organic phase pollutants into the solute impacts biodegradation. 

Artificial intelligence techniques have been noted as promising for their ability to allow for 
efficient consideration of large numbers of descriptors and modeling parameters [26] and their ability 
to account for interacting factors [25]. The artificial intelligence inductive machine learning model 
developed by Gamberger et al. has been shown in this study as fundamentally sound when evaluated 
against a critically reviewed external data-set and another commonly used biodegradability model.  
However, efforts to-date with these and other modeling techniques have focused on chemical 
structures and properties modeled against available biodegradability data. There have not been 
considerable efforts to-date to investigate and model important interfacial and other environmental 
conditions.   

Given adequate data including such interfacial and environmental conditions, these models may be 
extendable to include surface interactions and other factors that could be analyzed in future modeling 
efforts.  For example, when evaluating the biodegradation potential of chemicals discharged to the 
environment, models may take the total organic carbon content of the receiving waters and of the 
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sediments of those waters as well as other potential surfaces issues such as the relative oxidation level 
of sediment material and suspended clay particle content as inputs.  Some models have been developed 
for specific environmental conditions, such as anaerobic degradation [33], but the authors are unaware 
of any studies that consider environmental compartment parameters such as surface interactions 
rigorously.  This is likely due to lack of data, but if such data were available, artificial intelligence 
modeling techniques have been proven to be able to address chemical property and structural group 
contributions to biodegradability and have considerable promise for including environmental and 
interfacial considerations in realistic settings. 
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