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Introduction

Modern strategy in organic synthesis is based on the use of multifunctional and relatively simple
building blocks [1]. In the design of diverse complicated molecules, it is useful to proceed from
compounds with so-called “compositional functional groups” [2]. The “symbiosis” of several
functional groups at the same carbon center is know to lead sometimes to a substantial change in the
chemical properties of the substrate (see, for example, reference [3]).

N,N-Disubstituted α-formyl enamines are compounds of particular interest. Though different
syntheses of these derivatives were developed some years ago [4-7], little is known so far about their
chemical behavior. Two important features characterize this type of compounds:

a) They can be treated either as α,β-unsaturated carbonyl systems with a tertiary amino function
or as α-formyl enamines; therefore, this multifunctional pattern can lead to surprising and
unexpected reactions;
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b) In view of the presence of the tertiary amino group and of the double bond at the α-position of
the carbonyl one, these derivatives can readily provide access to various biologically important
products and natural analogues.

These features triggered our interest in the chemistry of N-protected captodative formyl enamines,
particularly in their reactivity toward nucleophiles. According to the NMR study, the most
electrophilic sites of α-formyl enamines (1) are the carbonyl and the α-carbon atoms of the olefin
atoms [8]. However, the β-position of both the terminal and internal double bond in α-ketoenamines
also sometimes shows an electrophilic character [9,10].

To our surprise, the treatment of α-formyl enamines (1) with soft nucleophiles does not lead to the
expected 1,4- and 1,2-addition products. In all cases a cascade of transformations occurs to give finally
the derivatives of α-amino acids. Thus, we have found that the enamines (1) react with alkyl- or
arylthiols to give the corresponding thiol esters in good yield [11]. Following this discovery we have
been interested in further developing methodology which would provide easy access to the
-CH(NR2)C(O)- fragment. Our attention was drawn to the tertiary α-amino esters which have a
particular significance because of their varied pharmacological properties [12]. Recently, we have
described an important route for the preparation of N,N-disubstituted α-amino esters by treatment of
the α-formyl enamines (1) with dialkyl phosphites (2) [13]. In this paper, synthetic and mechanistic
aspects of this unusual transformation are considered in more detail.

Results and Discussion

The reaction of α-formyl enamines (1) with dialkylphosphites (2) was performed at ambient
temperature, without solvent and in the presence of a concentrated solution of sodium alkoxide in a
manner similar to that described for α,β-unsaturated carbonyl compounds [14-16]. In contrast to
analogous reactions involving simple α,β-unsaturated carbonyl derivatives and other captodative
olefins, α-formyl enamines (1), under the action of dialkylphosphites (2), undergo an unusual
transformation leading to tertiary α-amino esters in 30-40% yield (Scheme 1). The moderate yields
may be explained by the polymerization of the initial substrate (1) which occurs under strong basic
conditions. It should be noted that no reaction is observed in the absence of the catalyst.
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It has been found that the structural peculiarities of substrates (1) have no influence on the results.
The desired esters (3) were successfully obtained from the substrates (1) bearing both alkyl (Me, Pr)
and aryl (Ph) substituent at the β-position. The reaction course is also independent of the structure
(cyclic or acyclic) and basicity (high or moderate) of the amine moiety.

In order to achieve the best yields in the preparation of the target esters (3) we have tested the
behavior of the enamines (1) under milder conditions. It has been found that the use of less basic
triethylamine instead of sodium alkoxide as a catalyst in the reaction of the substrate (1d) with
dimethyl phosphite (2a) affords a complex mixture, from which the expected α-amino ester (3) could
not be isolated. Since the increase in nucleophilicity should favor the addition at the carbonyl center, it
was reasonable to propose the use of more effective P-nucleophiles. It is known that dialkylphosphine
oxides easily react with various aldehydes without catalyst leading to the corresponding 1,2-adducts
[17]. However, no reaction occurs when the enamine (1d) is treated with an equimolar quantity of
di(β-phenyl)ethyl phosphine oxide (4); the signals of the unchanged starting materials are detected by
NMR spectroscopy even after leaving the reaction mixture for a day at room temperature. Therefore,
we conclude that the use of a concentrated solution of sodium alkoxide is necessary to achieve
satisfactory transformations.

The results obtained as well as some earlier published data suggest a possible mechanism of this
process that easily explains the formation of the target esters (3). A similar sequence of
transformations has previously been described for the synthesis of thiol esters from the same substrates
(1) [11]. A likely mechanism of the formation of the esters (3) is presented in Scheme 2.

Scheme 2.
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cascade of reactions. The α-ketophosphonates (7) are known to undergo a very easy cleavage of the
carbon-phosphorus bond under the action of nucleophiles – amines or alcohols [18,19]. In a similar
manner the phosphonate (7) gives the final desired product (3).

We tried to confirm the postulated mechanism by isolating one of the intermediates as a stable
derivative. In a recent study of the reaction of α-formyl enamines (1) with thiols, we have reported that
all attempts to collect evidence for this sequence of transformations failed. The use of
alkylthiotrimethylsilane in the reaction with the enamine (1) under both non-catalytic and catalytic
conditions resulted in either the starting materials or the complex mixture of non-identified products,
respectively [11]. In contrast, the similar reaction of enamine (1d) with
dimethyl(trimethylsilyl)phosphite (8) [20, 21] under thermal or microwave activation was effective
(Scheme 3).

Scheme 3.
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amino acid derivatives. Further development of this remarkable methodology will be reported in due
course.

Experimental

General

1H- and 13C-NMR spectra were obtained for CDCl3 solutions on a Bruker DPX-250 NMR
spectrometer operating at 400 and 100 MHz respectively. GC/MS Analyses (EI, 70eV) were
performed on a Hewlett-Packard HP 5971A instrument. IR spectra (thin film) were recorded on a
Specord 75-IR spectrometer. The starting reagents (1a-d) were obtained from the corresponding
α-halo-α,β-unsaturated aldehydes according to our previously described method [6,7].

General procedure for the preparation of N,N-disubstituted α-amino esters (3a-e).

A concentrated solution of the corresponding sodium alkoxide (10-15 drops) was added to the
mixture of equimolar amounts (5-10 mmol) of α-formyl enamine (1) and dialkylphosphite (2). The
reaction mixture was kept at rt for 2 h and then distilled in vacuo to afford a mixture of esters (3) and
the initial phosphite (2). The latter mixture was subjected to preparative gas chromatography or was
treated with dry HCl in anhydrous Et2O followed by HCl elimination with a solution of NaHCO3 to
give pure target product (3). In this manner the following compounds were prepared:

Methyl 2-piperidinobutanoate (3a): Yield 37 %; 1H-NMR δ: 0.87 (t, J = 7.3 Hz, 3H, CH3), 1.35-1.60
(m, 6H, CH2 β,γ–CH2 piperidine), 1.60-1.80 (m, 2H, CH3CH2), 2.40-2.55 (m, 4H, α−CH2 piperidine),
3.01 (dd, J = 8.6, 6,2 Hz, 1H, CHN), 3.66 (s, 3H, OCH3); 13C NMR δ: 10.82 (CH3), 22.62 (CH2),
24.71, 26.51 (CH2, piperidine), 50.83 (NCH2), 50.91 (OCH3), 70.20 (CHN), 173.04 (C=O); IR cm-1:
1720 (C=O); MS (m/z): 185 (M+, 1), 126 (100); Calcd. for C10H19NO2 (%): C 64.83, H 10.34, N 7.56;
Found (%): C 65.02, H 10.29, N 7.68.

Ethyl 2-piperidinobutanoate (3b): Yield 35 %; 1H-NMR δ: 0.90 (t, J = 7.3 Hz, 3H, CH3), 1.27 (t, J =
7.1 Hz, 3H, CH3CH2O), 1.35-1.60 (m, 6H, β,γ–CH2 piperidine), 1.65-1.85 (m, 2H, CH3CH2), 2.40-
2.55 (m, 4H, α−CH2 piperidine), 3.04 (dd, J = 8.6, 6,2 Hz, 1H, CHN), 4.15 (q, J = 7.1 Hz, 2H,
CH3CH2O); 13C-NMR δ: 10.84 (CH3), 14.63 (CH3), 22.62 (CH2), 24.71, 26.46 (CH2, piperidine),
50.88 (NCH2), 59.97 (OCH2), 70.20 (CHN), 172.41 (C=O); IR cm-1: 1718 (C=O); MS (m/z): 199 (M+,
1), 126 (100); Calcd. for C11H21NO2 (%): C 66.29, H 10.62, N 7.03; Found (%): C 65.85, H 10.72, N
7.43.

Methyl 2-morpholinobutanoate (3c): Yield 32 %; 1H-NMR δ: 0.87 (t, J = 7.3 Hz, 3H, CH3), 1.55-1.75
(m, 2H, CH2), 2.45-2.60 (m, 4H, N(CH2)2), 3.00 (dd, J = 8.4, 6,6 Hz, 1H, CHN), 3.60-3.70 (m, 4H,
O(CH2)2), 3.65 (s, 3H, OCH3); 13C-NMR δ: 10.58 (CH3), 22.11 (CH2), 50.12 (NCH2), 51.05 (OCH3),
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67.36 (OCH2), 69.64 (CHN), 172.51 (C=O); IR cm-1: 1730 (C=O); MS (m/z): 187 (M+, 1), 128 (100);
Calcd. for C9H17NO3 (%): C 57.73, H 9.15, N 7.48; Found (%): C 57.38, H 9.36, N 7.75;.

Methyl 2-piperidinohexanoate (3d): Yield 31 %; 1H-NMR δ: 0.85 (t, J = 7.1 Hz, 3H, CH3), 1.20-1.60
(m, 12H, (CH2)3, β,γ–CH2 piperidine), 2.40-2.55 (m, 4H, α−CH2 piperidine), 3.07 (dd, J = 8.8, 6,0 Hz,
1H, CHN), 3.65 (s, 3H, OCH3); 13C-NMR δ: 14.06 (CH3), 22.70, 24.79, 26.60, 28.67, 29.37 (CH2),
50.91 (OCH3), 50.92 (NCH2), 68.66 (CHN), 173.23 (C=O); IR cm-1: 1728 (C=O); MS (m/z): 213 (M+,
1), 154 (100); Calcd. for C12H23NO2 (%): C 67.57, H 10.87, N 6.57; Found (%): C 67.83, H 10.55, N
6.85.

Ethyl 2-diethylamino-3-phenylpropiolate (3e): Yield 30 %; 1H-NMR δ: 1.00 (t, J = 7.1 Hz, 6H,
CH3CH2N), 1.14 (t, J = 7.1 Hz, 3H, CH3CH2O), 2.53 (dq, J = 13.2, 7.0 Hz, 2H, CH3CH2N), 2.77 (dq, J
= 13.2, 7.1 Hz, 2H, CH3CH2N), 2.87 (dd, J = 13.4, 6.2 Hz, 1H, CH2), 3.05 (dd, J = 13.4, 8.6 Hz, 1H,
CH2), 3.60 (dd, J = 8.6, 6,2 Hz, 1H, CHN), 4.05 (dq, J = 7.1, 3.8 Hz, 2H, CH3CH2O), 7.15-7.30 (m,
5H, C6H5); 13C-NMR δ: 13.94 (CH3), 14.39 (CH3), 36.47 (CH2), 44.65 (NCH2), 60.03 (OCH2), 65.17
(CHN), 126.24, 128.22, 129.38, 138.96 (C6H5), 172.74 (C=O); IR cm-1: 1728 (C=O); MS (m/z): 249
(M+, 1), 176 (100), 158 (61), 130 (27), 91 (33), 56 (34); Calcd. for C15H23NO2 (%): C 72.25, H 9.30, N
5.62; Found (%): C 71.66, H 9.12, N 5.98.

Reaction of enamine (1d) with dimethylphosphite (2c) in the presence of triethylamine.

The reaction of enamine (1d) with dimethylphosphite (2a) was carried out according to the general
procedure except that an equimolar amount of triethylamine was used instead of sodium methoxide.
Only decomposition of the starting material to unidentified products occurred.

Reaction of enamine (1a) with dipropylphosphite (2c).

Enamine (1a) (1.5 g, 10 mmol) and dipropylphosphite (2c) (1.6 g, 10 mmol) were reacted as
indicated in the general procedure using sodium methoxide in methanol as a catalyst. The reaction
mixture was distilled to give 1.6 g of a mixture consisting mainly of ester (3a) and starting phosphite
(2c).

Reaction of enamine (1d) with di(β-phenyl)ethylphosphine oxide (4).

A mixture of the enamine (1d) (106 mg, 0.52 mmol) and phosphine oxide (4) (135 mg, 0.55 mmol)
was placed in a tube. The tube was then subjected to microwave irradiation in a commercial
microwave oven (700 W) for 5 min. The cooled tube was opened and the contents were analysed by
NMR: only the signals of the unchanged starting materials were detected.
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Reaction of enamine (1d) with dimethyl(trimethylsilyl) phosphite (8).

а) To cooled enamine (1d) (0.20 g, 1.0 mmol) was added dimethyl(trimethylsilyl)phosphite (8)
(0.18 g, 1.0 mmol) under a dry argon atmosphere and reaction mixture was heated for 2 h at 95oC. The
pure ether (9) was isolated by vacuum distillation: b.p. 120-121oC (1 mm); Yield 0.30 g (78 %);
1H-NMR δ: 0.22 (s, 9H, (CH3)3Si), 0.85 (t, J = 7.0 Hz, 6H, CH3CH2N), 3.08 (q, J = 7.0 Hz, 4H,
CH3CH2N), 3.71 (d, J = 11.0 Hz, 6H, CH3O), 4.02 (s, 2H, PhCH2), 7.10-7.40 (m, 5H, C6H5);
13C-NMR δ: 0.50 (CH3Si), 13.53 (CH3), 35.40 (PhCH2), 43.69 (NCH2), 52.07 (d, J = 5.8 Hz, OCH3),
125.94, 128.12, 128.88, 139.36 (C6H5), 147.70, 148.19 (C=C); 31P-NMR δ: 20.05; IR cm-1: 1686
(C=C); . Calcd. for C18H32NO4PSi (%): C 56.08, H 8.37, N 3.63, P 8.03, Si 7.29; Found (%): C 56.67,
H 8.53, N 3.65, P 7.79, Si 7.05.

b) A mixture of substrate (1d) (0.30 g, 1.5 mmol) and dimethyl(trimethylsilyl)phosphite (8) (0.27
g, 1.5 mmol) was placed in a tube. The tube was then subjected to microwave irradiation in a
commercial microwave oven (700 W) for 2 min intervals. This process was repeated 5 times (i.e., total
of 10 min). The cooled tube was opened and the contents were distilled to give the same ether (9) in
52% yield.
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