Deep Eutectic Solvents as a Sustainable Approach for Silica Recovery from Rice Husk
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of Rice Husks
2.1.1. Physico-Chemical Characterization
2.1.2. Thermogravimetric Analysis (TGA)
2.1.3. X-Ray Fluorescence (XRF)
2.1.4. Scanning Electron Microscopy (SEM)
2.1.5. X-Ray Diffraction (XRD)
2.2. Lignin Dissolution
2.3. Total Sugar Content Quantification
3. Materials and Methods
3.1. Materials
3.2. Preparation of DES
3.3. Dissolution Process and Biomass Characterization
3.4. Lignin Determination
3.5. Total Sugar Determination
3.6. Determination of Sugars Using HPLC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Freitas, L.C.; Barbosa, J.R.; da Costa, A.L.C.; Bezerra, F.W.F.; Pinto, R.H.H.; de Carvalho Junior, R.N. From Waste to Sustainable Industry: How Can Agro-Industrial Wastes Help in the Development of New Products? Resour. Conserv. Recycl. 2021, 169, 105466. [Google Scholar] [CrossRef]
- Rajesh Banu, J.; Preethi; Kavitha, S.; Tyagi, V.K.; Gunasekaran, M.; Karthikeyan, O.P.; Kumar, G. Lignocellulosic Biomass Based Biorefinery: A Successful Platform Towards Circular Bioeconomy. Fuel 2021, 302, 121086. [Google Scholar] [CrossRef]
- Bhat, M.A.; Bhat, M.A.; Jan, S.; Shah, A.A.; Jan, A.T. Lignocellulosic Biomass in Circular Economy: A Techno-Transition in Carbon Neutrality Towards Sustainable Energy Production: Biofuels in Circular Economy. Biomass Bioenergy 2024, 189, 107349. [Google Scholar] [CrossRef]
- Velvizhi, G.; Balakumar, K.; Shetti, N.P.; Ahmad, E.; Kishore Pant, K.; Aminabhavi, T.M. Integrated Biorefinery Processes for Conversion of Lignocellulosic Biomass to Value Added Materials: Paving a Path Towards Circular Economy. Bioresour. Technol. 2022, 343, 126151. [Google Scholar] [CrossRef]
- Bhattacharyya, S.C. Viability of Off-Grid Electricity Supply Using Rice Husk: A Case Study from South Asia. Biomass Bioenergy 2014, 68, 44–54. [Google Scholar] [CrossRef]
- Kook, J.W.; Choi, H.M.; Kim, B.H.; Ra, H.W.; Yoon, S.J.; Mun, T.Y.; Kim, J.H.; Kim, Y.K.; Lee, J.G.; Seo, M.W. Gasification and Tar Removal Characteristics of Rice Husk in a Bubbling Fluidized Bed Reactor. Fuel 2016, 181, 942–950. [Google Scholar] [CrossRef]
- Empresa Brasileira de Pesquisa Agropecuária—EMBRAPA. Utilização de Subprodutos do arroz na Alimentação Animal. 2005. Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/352207/utilizacao-de-subprodutos-do-arroz-na-alimentacao-animal (accessed on 16 May 2025).
- Nguyen, N.T.; Tran, N.T.; Phan, T.P.; Nguyen, A.T.; Nguyen, M.X.T.; Nguyen, N.N.; Ko, Y.H.; Nguyen, D.H.; Van, T.T.T.; Hoang, D.Q. The Extraction of Lignocelluloses and Silica from Rice Husk Using a Single Biorefinery Process and Their Characteristics. J. Ind. Eng. Chem. 2022, 108, 150–158. [Google Scholar] [CrossRef]
- Quispe, I.; Navia, R.; Kahhat, R. Energy Potential from Rice Husk Through Direct Combustion and Fast Pyrolysis: A Review. Waste Manag. 2017, 59, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kwon, J.H.; Lee, J.W.; Lee, H.; Chang, J.H.; Sang, B.I. Preparation of High Purity Silica Originated from Rice Husks by Chemically Removing Metallic Impurities. J. Ind. Eng. Chem. 2017, 50, 79–85. [Google Scholar] [CrossRef]
- Chun, J.; Gu, Y.M.; Hwang, J.; Oh, K.K.; Lee, J.H. Synthesis of Ordered Mesoporous Silica with Various Pore Structures Using High-Purity Silica Extracted from Rice Husk. J. Ind. Eng. Chem. 2020, 81, 135–143. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X.; Xue, B.; Li, W.; Ding, Z.; Yang, X.; Qiu, J.; Wang, Z. Rice Husk-Based Hierarchical Porous Carbon for High Performance Supercapacitors: The Structure-Performance Relationship. Carbon 2020, 161, 432–444. [Google Scholar] [CrossRef]
- Kamari, S.; Ghorbani, F. Extraction of Highly Pure Silica from Rice Husk as an Agricultural By-Product and Its Application in the Production of Magnetic Mesoporous Silica MCM-41. Biomass Convers. Biorefinery 2021, 11, 3001–3009. [Google Scholar] [CrossRef]
- Nzereogu, P.U.; Omah, A.D.; Ezema, F.I.; Iwuoha, E.I.; Nwanya, A.C. Silica Extraction from Rice Husk: Comprehensive Review and Applications. Hybrid Adv. 2023, 4, 100111. [Google Scholar] [CrossRef]
- Dominic, M.; Joseph, R.; Sabura Begum, P.M.; Kanoth, B.P.; Chandra, J.; Thomas, S. Green Tire Technology: Effect of Rice Husk Derived Nanocellulose (RHNC) in Replacing Carbon Black (CB) in Natural Rubber (NR) Compounding. Carbohydr. Polym. 2020, 230, 115620. [Google Scholar] [CrossRef]
- Nuaklong, P.; Jongvivatsakul, P.; Pothisiri, T.; Sata, V.; Chindaprasirt, P. Influence of Rice Husk Ash on Mechanical Properties and Fire Resistance of Recycled Aggregate High-Calcium Fly Ash Geopolymer Concrete. J. Clean. Prod. 2020, 252, 119797. [Google Scholar] [CrossRef]
- Taiye, M.A.; Hafida, W.; Kong, F.; Zhou, C. A Review of the Use of Rice Husk Silica as a Sustainable Alternative to Traditional Silica Sources in Various Applications. Environ. Prog. Sustain. Energy 2024, 43, e14451. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel Solvent Properties of Choline Chloride/Urea Mixtures. Chem. Commun. 2003, 1, 70–71. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DES) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef]
- Durand, E.; Lecomte, J.; Villeneuve, P. From Green Chemistry to Nature: The Versatile Role of Low Transition Temperature Mixtures. Biochimie 2016, 120, 119–123. [Google Scholar] [CrossRef]
- Martins, M.A.R.; Pinho, S.P.; Coutinho, J.A.P. Insights into the Nature of Eutectic and Deep Eutectic Mixtures. J. Solut. Chem. 2019, 48, 962–982. [Google Scholar] [CrossRef]
- Audeh, D.J.S.A.; Carniel, A.; Borges, C.P.; Coelho, M.A.Z.; Buarque, F.S.; Ribeiro, B.D. Hydrophobic Deep Eutectic Solvents for Ethanol, Propan-1-Ol, and Propan-2-Ol Recovery from Aqueous Solutions. Processes 2024, 12, 1255. [Google Scholar] [CrossRef]
- Florindo, C.; Lima, F.; Ribeiro, B.D.; Marrucho, I.M. Deep Eutectic Solvents: Overcoming 21st Century Challenges. Curr. Opin. Green. Sustain. Chem. 2019, 18, 31–36. [Google Scholar] [CrossRef]
- Sosa, F.H.B.; Abranches, D.O.; Da Costa Lopes, A.M.; Coutinho, J.A.P.; Da Costa, M.C. Kraft Lignin Solubility and Its Chemical Modification in Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2020, 8, 18577–18589. [Google Scholar] [CrossRef]
- Achinivu, E.C.; Howard, R.M.; Li, G.; Gracz, H.; Henderson, W.A. Lignin Extraction from Biomass with Protic Ionic Liquids. Green Chem. 2014, 16, 1114–1119. [Google Scholar] [CrossRef]
- Alvarez-Vasco, C.; Ma, R.; Quintero, M.; Guo, M.; Geleynse, S.; Ramasamy, K.K.; Wolcott, M.; Zhang, X. Unique Low-Molecular-Weight Lignin with High Purity Extracted from Wood by Deep Eutectic Solvents (DES): A Source of Lignin for Valorization. Green Chem. 2016, 18, 5133–5141. [Google Scholar] [CrossRef]
- Roy, S.; Chundawat, S.P.S. Ionic Liquid–Based Pretreatment of Lignocellulosic Biomass for Bioconversion: A Critical Review. Bioenergy Res. 2023, 16, 263–278. [Google Scholar] [CrossRef]
- Ponce, J.; da Silva Andrade, J.G.; dos Santos, L.N.; Bulla, M.K.; Barros, B.C.B.; Favaro, S.L.; Hioka, N.; Caetano, W.; Batistela, V.R. Alkali Pretreated Sugarcane Bagasse, Rice Husk and Corn Husk Wastes as Lignocellulosic Biosorbents for Dyes. Carbohydr. Polym. Technol. Appl. 2021, 2, 100061. [Google Scholar] [CrossRef]
- Ayeni, A.O.; Daramola, M.O.; Sekoai, P.T.; Adeeyo, O.; Garba, M.J.; Awosusi, A.A. Statistical Modelling and Optimization of Alkaline Peroxide Oxidation Pretreatment Process on Rice Husk Cellulosic Biomass to Enhance Enzymatic Convertibility and Fermentation to Ethanol. Cellulose 2018, 25, 2487–2504. [Google Scholar] [CrossRef]
- Barana, D.; Salanti, A.; Orlandi, M.; Ali, D.S.; Zoia, L. Biorefinery Process for the Simultaneous Recovery of Lignin, Hemicelluloses, Cellulose Nanocrystals and Silica from Rice Husk and Arundo Donax. Ind. Crops Prod. 2016, 86, 31–39. [Google Scholar] [CrossRef]
- Brand, M.A.; Jacinto, R.C.; Antunes, R.; da Cunha, A.B. Production of Briquettes as a Tool to Optimize the Use of Waste from Rice Cultivation and Industrial Processing. Renew. Energy 2017, 111, 116–123. [Google Scholar] [CrossRef]
- Baetge, S.; Kaltschmitt, M. Rice Straw and Rice Husks as Energy Sources—Comparison of Direct Combustion and Biogas Production. Biomass Convers. Biorefinery 2018, 8, 719–737. [Google Scholar] [CrossRef]
- Shen, X.J.; Wen, J.L.; Mei, Q.Q.; Chen, X.; Sun, D.; Yuan, T.Q.; Sun, R.C. Facile Fractionation of Lignocelluloses by Biomass-Derived Deep Eutectic Solvent (DES) Pretreatment for Cellulose Enzymatic Hydrolysis and Lignin Valorization. Green Chem. 2019, 21, 275–283. [Google Scholar] [CrossRef]
- Rao, J.; Lv, Z.; Chen, G.; Peng, F. Hemicellulose: Structure, Chemical Modification, and Application. Prog. Polym. Sci. 2023, 140, 101675. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, M.; Sun, Q.; Ma, J.; Xia, A.; Huang, Y.; Zhu, X.; Liao, Q. Elucidation of the Interaction Effects of Cellulose, Hemicellulose and Lignin During Degradative Solvent Extraction of Lignocellulosic Biomass. Fuel 2022, 327, 125141. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Venkatachalam, P. Valorization of Rice Husk Agricultural Waste Through Lignin Extraction Using Acidic Deep Eutectic Solvent. Biomass Bioenergy 2023, 173, 106776. [Google Scholar] [CrossRef]
- Sathyamoorthi, S.; Phattharasupakun, N.; Sawangphruk, M. Environmentally Benign Non-Fluoro Deep Eutectic Solvent and Free-Standing Rice Husk-Derived Bio-Carbon Based High-Temperature Supercapacitors. Electrochim. Acta 2018, 286, 148–157. [Google Scholar] [CrossRef]
- Ramalingam, G.; Priya, A.K.; Gnanasekaran, L.; Rajendran, S.; Hoang, T.K.A. Biomass and Waste Derived Silica, Activated Carbon and Ammonia-Based Materials for Energy-Related Applications—A Review. Fuel 2024, 355, 129490. [Google Scholar] [CrossRef]
- Padwal, C.; Pham, H.D.; Hoang, L.T.M.; Mundree, S.; Dubal, D. Deep Eutectic Solvents Assisted Biomass Pre-Treatment to Derive Sustainable Anode Materials for Lithium-Ion Batteries. Sustain. Mater. Technol. 2023, 35, e00547. [Google Scholar] [CrossRef]
- Hu, E.; Hu, K.; Xu, Z.; Hu, X.; Dearn, K.D.; Xu, Y.; Xu, Y.; Xu, L. Investigation into the Morphology, Composition, Structure and Dry Tribological Behavior of Rice Husk Ceramic Particles. Appl. Surf. Sci. 2016, 366, 372–382. [Google Scholar] [CrossRef]
- Melvin, G.J.H.; Chai, K.F.; Tamiri, F.M. Characterization of Carbonized Waste Materials: Rice Husk and Saw Dust. In IOP Conference Series: Materials Science and Engineering; Institute of Physics Publishing: Bristol, UK, 2019; Volume 606. [Google Scholar]
- Di, J.; Qin, L.; He, Y.C. Valorization of Biomass to Furfuryl Alcohol via Chemoenzymatic Cascade Catalysis by Deep Eutectic Solvent-Silica Heterogeneous Catalyst and Reductase Biocatalyst in the Aqueous System. Biomass Convers. Biorefinery 2023, 13, 15837–15844. [Google Scholar] [CrossRef]
- Gabriele, F.; Chiarini, M.; Germani, R.; Tiecco, M.; Spreti, N. Effect of Water Addition on Choline Chloride/Glycol Deep Eutectic Solvents: Characterization of Their Structural and Physicochemical Properties. J. Mol. Liq. 2019, 291, 111301. [Google Scholar] [CrossRef]
- Kaur, G.; Singh, N.; Rajor, A.; Kushwaha, J.P. Deep Eutectic Solvent Functionalized Rice Husk Ash for Effective Adsorption of Ofloxacin from Aqueous Environment. J. Contam. Hydrol. 2021, 242, 103847. [Google Scholar] [CrossRef] [PubMed]
- Kuddushi, M.; Nangala, G.S.; Rajput, S.; Ijardar, S.P.; Malek, N.I. Understanding the Peculiar Effect of Water on the Physicochemical Properties of Choline Chloride Based Deep Eutectic Solvents Theoretically and Experimentally. J. Mol. Liq. 2019, 278, 607–615. [Google Scholar] [CrossRef]
- Pandey, A.; Pandey, S. Solvatochromic Probe Behavior within Choline Chloride-Based Deep Eutectic Solvents: Effect of Temperature and Water. J. Phys. Chem. B 2014, 118, 14652–14661. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, W.; Xia, Q.; Guo, B.; Wang, Q.; Liu, S.; Liu, Y.; Li, J.; Yu, H. Efficient Cleavage of Lignin–Carbohydrate Complexes and Ultrafast Extraction of Lignin Oligomers from Wood Biomass by Microwave-Assisted Treatment with Deep Eutectic Solvent. ChemSusChem 2017, 10, 1692–1700. [Google Scholar] [CrossRef]
- Yu, H.; Xue, Z.; Shi, R.; Zhou, F.; Mu, T. Lignin Dissolution and Lignocellulose Pretreatment by Carboxylic Acid Based Deep Eutectic Solvents. Ind. Crops Prod. 2022, 184, 115049. [Google Scholar] [CrossRef]
- Muley, P.D.; Mobley, J.K.; Tong, X.; Novak, B.; Stevens, J.; Moldovan, D.; Shi, J.; Boldor, D. Rapid Microwave-Assisted Biomass Delignification and Lignin Depolymerization in Deep Eutectic Solvents. Energy Convers. Manag. 2019, 196, 1080–1088. [Google Scholar] [CrossRef]
- Guo, Z.; Ling, Z.; Wang, C.; Zhang, X.; Xu, F. Integration of Facile Deep Eutectic Solvents Pretreatment for Enhanced Enzymatic Hydrolysis and Lignin Valorization from Industrial Xylose Residue. Bioresour. Technol. 2018, 265, 334–339. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, J.; Xiao, J.; He, X.; Zhang, K.; Yuan, S.; Peng, Z.; Chen, Z.; Lin, X. Enhanced Enzymatic Hydrolysis and Lignin Extraction of Wheat Straw by Triethylbenzyl Ammonium Chloride/Lactic Acid-Based Deep Eutectic Solvent Pretreatment. ACS Omega 2019, 4, 19829–19839. [Google Scholar] [CrossRef]
- Su, Y.; Huang, C.; Lai, C.; Yong, Q. Green Solvent Pretreatment for Enhanced Production of Sugars and Antioxidative Lignin from Poplar. Bioresour. Technol. 2021, 321, 124471. [Google Scholar] [CrossRef]
- Mamilla, J.L.K.; Novak, U.; Grilc, M.; Likozar, B. Natural Deep Eutectic Solvents (DES) for Fractionation of Waste Lignocellulosic Biomass and Its Cascade Conversion to Value-Added Bio-Based Chemicals. Biomass Bioenergy 2019, 120, 417–425. [Google Scholar] [CrossRef]
- Li, Q.; Dong, Y.; Hammond, K.D.; Wan, C. Revealing the Role of Hydrogen Bonding Interactions and Supramolecular Complexes in Lignin Dissolution by Deep Eutectic Solvents. J. Mol. Liq. 2021, 344, 117779. [Google Scholar] [CrossRef]
- Buarque, F.S.; de Souza, C.E.C.; Ferreira, R.M.; Sabino, T.O.; Teixeira, O.M.J.; Bandeira, L.F.M.; Fraga, A.C.; Coelho, M.A.Z.; Ribeiro, B.D. Dissolution and Enzymatic Hydrolysis of Sugarcane Bagasse Using Ionic Liquids and Deep Eutectic Solvents. Process Biochem. 2024, 147, 257–267. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, L.; Chen, L.; Zhou, W.; Wang, C.; Ma, L. Exploring Carbohydrate Extraction from Biomass Using Deep Eutectic Solvents: Factors and Mechanisms. iScience 2023, 26, 107671. [Google Scholar] [CrossRef]
- Morais, E.S.; Freire, M.G.; Freire, C.S.R.; Silvestre, A.J.D. Improved Production of 5-Hydroxymethylfurfural in Acidic Deep Eutectic Solvents Using Microwave-Assisted Reactions. Int. J. Mol. Sci. 2022, 23, 1959. [Google Scholar] [CrossRef]
- Liu, L.; Li, Q.; Wan, C. Deep Eutectic Solvent-Based Microextraction System for Simultaneous Lignocellulose Fractionation and Furfural Production. Green Chem. 2024, 27, 1519–1528. [Google Scholar] [CrossRef]
- Hu, F.; Jung, S.; Ragauskas, A. Pseudo-Lignin Formation and Its Impact on Enzymatic Hydrolysis. Bioresour. Technol. 2012, 117, 7–12. [Google Scholar] [CrossRef]
- Buarque, F.S.; Carniel, A.; Ribeiro, B.D.; Coelho, M.A.Z. Selective Enzymes Separation from the Fermentation Broth of Yarrowia Lipolytica Using Aqueous Two-Phase System Based on Quaternary Ammonium Compounds. Sep. Purif. Technol. 2023, 324, 124539. [Google Scholar] [CrossRef]
- Cai, J.; He, Y.; Yu, X.; Banks, S.W.; Yang, Y.; Zhang, X.; Yu, Y.; Liu, R.; Bridgwater, A.V. Review of Physicochemical Properties and Analytical Characterization of Lignocellulosic Biomass. Renew. Sustain. Energy Rev. 2017, 76, 309–322. [Google Scholar] [CrossRef]
- Apaydın Varol, E.; Mutlu, Ü. TGA-FTIR Analysis of Biomass Samples Based on the Thermal Decomposition Behavior of Hemicellulose, Cellulose, and Lignin. Energies 2023, 16, 3674. [Google Scholar] [CrossRef]
- Mohamad Ibrahim, M.N.; Chuah, S.B.; Wan Rosli, W.D. Characterization of Lignin Precipitated From The Soda Black Liquor of Oil Palm Empty Fruit Bunch Fibers by Various Mineral Acids. ASEAN J. Sci. Technol. Dev. 2017, 21, 57. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Pin, T.C.; Nakasu, P.Y.S.; Mattedi, S.; Rabelo, S.C.; Costa, A.C. Screening of Protic Ionic Liquids for Sugarcane Bagasse Pretreatment. Fuel 2019, 235, 1506–1514. [Google Scholar] [CrossRef]







| Rice Husks | In Natura (%) | Carbonized (%) |
|---|---|---|
| Lipids | 0.79 ± 0.25 | 0.79 ± 0.52 |
| Proteins | 1.95 ± 0.12 | 0.81 ± 0.01 |
| Ash | 18.61 ± 0.46 | 91.36 ± 0.06 |
| Moisture | 7.52 ± 0.08 | 1.86 ± 0.01 |
| Carbohydrates | 71.13 ± 0.08 | 5.18 ± 0.01 |
| DES | Total Mass Loss—In Natura (%) | Total Mass Loss—Carbonized (%) |
|---|---|---|
| Untreated | 59.84 | 8.19 |
| ChCl: lactic acid | 76.89 | 7.89 |
| ChCl: acetic acid | 78.45 | 8.11 |
| ChCl: ethylene glycol | 84.49 | 7.37 |
| ChCl: glycerol | 86.30 | 8.27 |
| Betaine: lactic acid | 83.60 | 8.14 |
| Betaine: acetic acid | 82.58 | 9.01 |
| DES | SiO2 | K2O | CaO | Ag2O | Fe2O3 | Al2O3 | P2O5 | LOI * |
|---|---|---|---|---|---|---|---|---|
| in natura rice husk | ||||||||
| Untreated | 12.97 | 0.92 | 0.76 | 0.92 | 0.97 | 0.77 | 0.30 | 81.37 |
| ChCl: lactic acid | 15.10 | 0.35 | 0.77 | 1.61 | 0.84 | 0.80 | 0.61 | 76.89 |
| ChCl: acetic acid | 16.30 | 0.35 | 0.74 | 1.13 | 0.89 | 0.70 | 0.35 | 78.45 |
| ChCl: ethylene glycol | 11.69 | 0.27 | 0.68 | 0.34 | 0.81 | 0.67 | 0.46 | 84.49 |
| ChCl: glycerol | 11.80 | 0.21 | 0.38 | 0.16 | 0.43 | 0.32 | - | 86.30 |
| Betaine: lactic acid | 12.37 | 0.32 | 0.67 | - | 0.87 | 0.77 | 0.38 | 83.60 |
| Betaine: acetic acid | 13.06 | 0.43 | 0.69 | - | 0.88 | 0.79 | 0.45 | 82.58 |
| carbonized rice husk | ||||||||
| Untreated | 76.36 | 5.52 | 2.26 | 0.91 | 2.10 | 1.66 | 1.46 | 8.85 |
| ChCl: lactic acid | 79.91 | 3.59 | 2.40 | 0.87 | 1.82 | 1.44 | 1.19 | 7.89 |
| ChCl: acetic acid | 77.15 | 3.41 | 2.21 | 1.49 | 2.14 | 1.49 | 1.56 | 8.11 |
| ChCl: ethylene glycol | 80.95 | 4.16 | 2.10 | 0.42 | 1.18 | 0.89 | 1.02 | 7.37 |
| ChCl: glycerol | 78.46 | 4.04 | 2.17 | 0.93 | 1.20 | 0.79 | 0.67 | 8.27 |
| Betaine: lactic acid | 80.22 | 3.43 | 2.18 | 0.65 | 1.38 | 1.14 | 0.93 | 8.14 |
| Betaine: acetic acid | 77.90 | 3.68 | 2.04 | 1.64 | 2.23 | 1.47 | 0.67 | 9.01 |
| Characterization | In Natura (%) |
|---|---|
| Extractives | 8.11 |
| Lignin | 48.16 ± 2.25 |
| Glucan | 26.05 ± 0.80 |
| Xilan | 13.96 ± 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faria-Júnior, C.S.; Silva, L.d.S.; Cunha, A.L.C.; Buarque, F.S.; Ribeiro, B.D. Deep Eutectic Solvents as a Sustainable Approach for Silica Recovery from Rice Husk. Molecules 2025, 30, 4697. https://doi.org/10.3390/molecules30244697
Faria-Júnior CS, Silva LdS, Cunha ALC, Buarque FS, Ribeiro BD. Deep Eutectic Solvents as a Sustainable Approach for Silica Recovery from Rice Husk. Molecules. 2025; 30(24):4697. https://doi.org/10.3390/molecules30244697
Chicago/Turabian StyleFaria-Júnior, Célio S., Lucas dos Santos Silva, Armando L. C. Cunha, Filipe S. Buarque, and Bernardo Dias Ribeiro. 2025. "Deep Eutectic Solvents as a Sustainable Approach for Silica Recovery from Rice Husk" Molecules 30, no. 24: 4697. https://doi.org/10.3390/molecules30244697
APA StyleFaria-Júnior, C. S., Silva, L. d. S., Cunha, A. L. C., Buarque, F. S., & Ribeiro, B. D. (2025). Deep Eutectic Solvents as a Sustainable Approach for Silica Recovery from Rice Husk. Molecules, 30(24), 4697. https://doi.org/10.3390/molecules30244697

