Corrosion, Wear, and Fretting Corrosion Properties of Cr/CrN and Mo/MoN Multilayer Coatings with Biomedical Potential
Abstract
1. Introduction
2. Results
2.1. Coating Characterization
2.2. Corrosion Resistance Analysis
2.3. Fretting Wear
2.4. Fretting Corrosion
3. Discussion
4. Materials and Methods
4.1. Coating Deposition
4.2. Electrochemical Testing
4.3. Fretting
4.4. Morphology and Elemental Characterization
5. Conclusions
- (1)
- Phase composition analysis revealed that CrN and Cr2N are the dominant phases in the chromium-based nitride coatings, whereas Mo2N and Mo2O are the primary phases in the molybdenum-based system. In terms of mechanical properties, the Mo/MoN coatings exhibited superior performance compared to the Cr/CrN coatings, particularly in hardness, Young’s modulus, and resistance to deformation.
- (2)
- The Mo/MoN coatings demonstrated significantly better corrosion resistance than the Cr/CrN coatings, which can be attributed to two main factors: the barrier effect of the MoO2 oxide layer against the penetration of corrosive species, and the inherently denser microstructure of the Mo-based coating. Accordingly, the corrosion resistance ranking was established as: Mo/MoN > Cr/CrN > 316 L substrate.
- (3)
- Owing to their higher hardness and excellent deformation resistance, the molybdenum-based nitride coatings exhibited better wear resistance than the chromium-based nitride coatings. During fretting corrosion tests, no cracking was observed in the Mo/MoN coatings, indicating their high resistance to deformation-induced cracking. Furthermore, the combination of superior corrosion resistance and greater mechanical strength resulted in better overall fretting corrosion performance of the Mo/MoN coatings compared to the Cr/CrN system.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Zhou, F.; Gao, S.; Zhou, Z.; Li, L.K.-Y.; Yan, J. Effect of counterparts on the tribological properties of TiCN coatings with low carbon concentration in water lubrication. Wear 2015, 328–329, 356–362. [Google Scholar] [CrossRef]
- Zhou, S.; Zhao, W.; Qiu, Z.; Lin, S.; Zheng, Z.; Zeng, D. Improved load-bearing capacity of Mo-doped Ti-N coatings: Effects of Mo alloying and GB plasticity. Surf. Coat. Technol. 2021, 424, 127630. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, D.; Pierre, D.; Gilbert, J.L. Fretting initiated crevice corrosion of 316 LVM stainless steel in physiological phosphate buffered saline: Potential and cycles to initiation. Acta Biomater. 2019, 97, 565–577. [Google Scholar] [CrossRef]
- Liu, H.; Feng, C.; Wang, Z.; Zhang, Y.; Zhang, D.; Yan, Y. Study of fretting-initiated crevice corrosion and crevice corrosion affected fretting of stainless steel. Corros. Sci. 2023, 225, 111586. [Google Scholar] [CrossRef]
- Rtimi, S.; Baghriche, O.; Sanjines, R.; Pulgarin, C.; Ben-Simon, M.; Lavanchy, J.-C.; Houas, A.; Kiwi, J. Photocatalysis/catalysis by innovative TiN and TiN-Ag surfaces inactivate bacteria under visible light. App. Cat. B Environ. 2012, 123, 306–315. [Google Scholar] [CrossRef]
- MAli, E.; Hamzah, M.; Radzi, T. Friction coefficient and surface roughness of TiN-coated HSS deposited using cathodic arc evaporation PVD technique. Ind. Lubr. Tribol. 2008, 60, 121–130. [Google Scholar]
- VI Ivashchenko, S.; Veprek, P.E.A.; Turchi, V.I. Shevchenko. First-principles study of TiN/SiC/TiN interfaces in superhard nanocomposites. Phys. Rev. B 2012, 86, 14110. [Google Scholar] [CrossRef]
- Wo, P.; Zhao, X.; Munroe, P.; Zhou, Z.; Li, K.; Habibi, D.; Xie, Z. Extremely hard, damage-tolerant ceramic coatings with functionally graded, periodically varying architecture. Acta Mater. 2013, 61, 193–204. [Google Scholar] [CrossRef]
- Pogrebnjak, A.D.; Rogoz, V.M.; Bondar, O.V.; Erdybaeva, N.K.; Plotnikov, S.V. Structure and physicomechanical properties of NbN-based protective nanocomposite coatings: A review. Prot. Met. Phys. Chem. Surf. 2016, 52, 802–813. [Google Scholar] [CrossRef]
- Polcar, T.; Cavaleiro, A. High-temperature tribological properties of CrAlN, CrAlSiN and AlCrSiN coatings. Surf. Coat. Technol. 2011, 206, 1244–1251. [Google Scholar] [CrossRef]
- Pogrebnjak, A.D.; Pshyk, A.V.; Beresnev, V.M.; Zhollybekov, B.R. Protection of specimens against friction and wear using titanium-based multicomponent nanocomposite coatings: A review. J. Frict. Wear 2014, 35, 55–66. [Google Scholar] [CrossRef]
- Gilewicz, A.; Warcholinski, B. Tribological properties of CrCN/CrN multilayer coatings. Tribol. Int. 2014, 80, 34–40. [Google Scholar] [CrossRef]
- Beresnev, V.M.; Bondar, O.V.; Postolnyi, B.O.; Lisovenko, M.O.; Abadias, G.; Chartier, P.; Kolesnikov, D.A.; Borisyuk, V.N.; Mukushev, B.A.; Zhollybekov, B.R.; et al. Comparison of tribological characteristics of nanostructured TiN, MoN, and TiN/MoN arc-PVD coatings. J. Frict. Wear 2014, 35, 374–382. [Google Scholar] [CrossRef]
- Movassagh-Alanagh, F.; Abdollah-Zadeh, A.; Asgari, M.; Ghaffari, M.A. Influence of Si content on the wettability and corrosion resistance of nanocomposite TiSiN films deposited by pulsed-DC PACVD. J. Alloy. Compd. 2018, 739, 780–792. [Google Scholar] [CrossRef]
- Hoche, H.; Pusch, C.; Oechsner, M. Corrosion and wear protection of mild steel substrates by innovative PVD coatings. Surf. Coat. Technol. 2020, 391, 125659. [Google Scholar] [CrossRef]
- Pogrebnjak, A.D.; Beresnev, V.M.; Bondar, O.V.; Postolnyi, B.O.; Zaleski, K.; Coy, E.; Jurga, S.; Lisovenko, M.O.; Konarski, P.; Rebouta, L.; et al. Superhard CrN/MoN coatings with multilayer architecture. Mater Des. 2018, 153, 47–59. [Google Scholar] [CrossRef]
- Gilewicz, A.; Warcholinski, B. Deposition and characterisation of Mo2N/CrN multilayer coatings prepared by cathodic arc evaporation. Surf. Coat. Technol. 2015, 279, 126–133. [Google Scholar] [CrossRef]
- Postolnyi, B.O.; Beresnev, V.M.; Abadias, G.; Bondar, O.V.; Rebouta, L.; Araujo, J.P.; Pogrebnjak, A.D. Multilayer design of CrN/MoN protective coatings for enhanced hardness and toughness. J. Alloys Compd. 2017, 725, 1188–1198. [Google Scholar] [CrossRef]
- Moussaoui, A.; Abboudi, A.; Aissani, L.; Belgroune, A.; Cheriet, A.; Alhussein, A.; Rtimi, S. Effect of Mo addition on the mechanical and tribological properties of magnetron sputtered TiN films. Surf. Coat. Technol. 2023, 470, 129862. [Google Scholar] [CrossRef]
- Sivakumar, M.; Dhanadurai, K.S.K.; Rajeswari, S.; Thulasiraman, V. Failures in stainless steel orthopaedic implant devices: A survey. J. Mater. Sci. Lett. 1995, 14, 351–354. [Google Scholar] [CrossRef]
- Eliaz, N. Corrosion of metallic biomaterials: A review. Materials 2019, 12, 407. [Google Scholar] [CrossRef]
- Navarro, M.; Michiardi, A.; Castaño, O.; Planell, J.A. Biomaterials in orthopaedics. J. R. Soc. Interface 2008, 5, 1137–1158. [Google Scholar] [CrossRef]
- Rabadzhiyska, S.; Kolaklieva, L.; Chitanov, V.; Cholakova, T.; Kakanakov, R.; Dimcheva, N.; Balashev, K. Mechanical, wear and corrosion behavior of CrN/TiN multilayer coatings deposited by low temperature unbalanced magnetron sputtering for biomedical applications. Mater. Today Proc. 2018, 5, 16012–16021. [Google Scholar] [CrossRef]
- Zhao, C.; Gao, W.; Wang, J.; Ju, J.; Li, J. A novel biomedical TiN-embedded TiO2 nanotubes composite coating with remarkable mechanical properties, corrosion, tribocorrosion resistance, and antibacterial activity. Ceram. Int. 2023, 49, 15629–15640. [Google Scholar] [CrossRef]
- Ni, J.; Liu, F.; Yang, G.; Lee, G.-H.; Chung, S.-M.; Lee, I.-S.; Chen, C. 3D-printed Ti6Al4V femoral component of knee: Improvements in wear and biological properties by AIP TiN and TiCrN coating. J. Mater. Res. Technol. 2021, 14, 2322–2332. [Google Scholar] [CrossRef]
- Kuleshov, A.K.; Uglov, V.V.; Chayevski, V.V.; Anishchik, V.M. Properties of coatings based on Cr, Ti, and Mo nitrides with embedded metals deposited on cutting tools. J. Frict. Wear 2011, 32, 192–198. [Google Scholar] [CrossRef]
- Jauberteau, I.; Bessaudou, A.; Mayet, R.; Cornette, J.; Jauberteau, J.L.; Carles, P.; Merle-Méjean, T. Molybdenum nitride films: Crystal structures, synthesis, mechanical, electrical and some other properties. Coatings 2015, 5, 656–687. [Google Scholar] [CrossRef]
- Hazar, H. Characterization of MoN coatings for pistons in a diesel engine. Mater. Des. 2010, 31, 624–627. [Google Scholar] [CrossRef]
- Daniel, R.; Meindlhumer, M.; Baumegger, W.; Zalesak, J.; Sartory, B.; Burghammer, M.; Mitterer, C.; Keckes, J. Grain boundary design of thin films: Using tilted brittle interfaces for multiple crack deflection toughening. Acta Mater. 2017, 122, 130–137. [Google Scholar] [CrossRef]
- Bondar, O.V.; Postol’nYi, B.A.; Beresnev, V.M.; Abadias, G.; Chartier, P.; Sobol, O.V.; Kolesnikov, D.A.; Komarov, F.F.; Lisovenko, M.O.; Andreev, A.A. Composition, structure and tribotechnical properties of TiN, MoN single-layer and TiN/MoN multilayer coatings. J. Superhard Mater. 2015, 37, 27–38. [Google Scholar] [CrossRef]
- Pogrebnjak, A.D.; Eyidi, D.; Abadias, G.; Bondar, O.V.; Beresnev, V.M.; Sobol, O.V. Structure and properties of arc evaporated nanoscale TiN/MoN multilayered systems. Int. J. Refract. Met. Hard Mater. 2015, 48, 222–228. [Google Scholar] [CrossRef]
- Stueber, M.; Holleck, H.; Leiste, H.; Seemann, K.; Ulrich, S.; Ziebert, C. Concepts for the design of advanced nanoscale PVD multilayer protective thin films. Alloys Compd. 2009, 483, 321–333. [Google Scholar] [CrossRef]
- Koshy, R.A.; Graham, M.E.; Marks, L.D. Synthesis and characterization of CrN/Mo2N multilayers and phases of Molybdenum nitride. Surf. Coat. Technol. 2007, 202, 1123–1128. [Google Scholar] [CrossRef]
- Koshy, R.A.; Graham, M.E.; Marks, L.D. Temperature activated self-lubrication in CrN/Mo2N nanolayer coatings. Surf. Coat. Technol. 2010, 204, 1359–1365. [Google Scholar] [CrossRef]
- Han, B.; Wang, Z.; Devi, N.; Kondamareddy, K.K.; Wang, Z.; Li, N.; Zuo, W.; Fu, D.; Liu, C. RBS depth profiling analysis of (Ti, Al)N/MoN and CrN/MoN multilayers. Nanoscale Res. Lett. 2017, 12, 161. [Google Scholar] [CrossRef] [PubMed]
- Xue, P.; Yang, L.; Diao, D. Nanocrystalline/amorphous biphase enhanced mechanical properties in multilayer carbon films. Surf. Coat. Technol. 2018, 334, 1–6. [Google Scholar] [CrossRef]
- Zheng, X.; Li, J.; Zhou, Y. X-ray diffraction measurement of residual stress in PZT thin films prepared by pulsed laser deposition. Acta Mater. 2004, 52, 3313–3322. [Google Scholar] [CrossRef]
- Ortiz, A.; Tian, J.; Villegas, J.; Shaw, L.; Liaw, P. Interrogation of the microstructure and residual stress of a nickel-base alloy subjected to surface severe plastic deformation. Acta Mater. 2008, 56, 413–426. [Google Scholar] [CrossRef]
- Zhou, K.; Liu, D.; Li, M.; Zhang, X.; Gao, F.; Liu, Y.; Gao, Y.; Li, X. Investigation of the corrosion and wear failure behavior and mechanism of TiN/Ti multilayer with varying thickness. Eng. Fail. Anal. 2025, 176, 109648. [Google Scholar] [CrossRef]
- Zhou, K.; Liu, D.; Yang, Z.; Zhang, X.; Wang, Y.; Liu, Y.; Li, M.; Wu, J. Effect of TiN/Ti multilayer coatings with different microstructure on wear, corrosion, and fatigue performance of high strength steel. Ceram. Int. 2025, 51, 25990–26002. [Google Scholar] [CrossRef]
- Najem, A.; Campos, O.S.; Girst, G.; Raji, M.; Hunyadi, A.; García-Antón, J.; Bellaouchou, A.; Amin, H.M.A.; Boudalia, M. Experimental and DFT Atomistic Insights into the Mechanism of Corrosion Protection of Low-Carbon Steel in an Acidic Medium by Polymethoxyflavones from Citrus Peel Waste. J. Electrochem. Soc. 2023, 170, 93512. [Google Scholar] [CrossRef]
- Bassit, M.; Boudalia, M.; Bhoelai, M.; Bellaouchou, A.; Garcia, A.J.; Amin, H.M. Nanoscale evaluation of the dynamic interface and corrosion resistance of the chemically generated oxide film on dental vitallium alloy in simulated physiological solution. Surf. Interfaces 2025, 65, 106517. [Google Scholar] [CrossRef]
- Amegroud, H.; Boudalia, M.; Elhawary, M.; Garcia, A.J.; Bellaouchou, A.; Amin, H.M. Electropolymerized conducting polyaniline coating on nickel-aluminum bronze alloy for improved corrosion resistance in marine environment. Colloids Surf. A Physicochem. Eng. Asp. 2024, 691, 133909. [Google Scholar] [CrossRef]














| Coating | Hardness (GPa) | Elastic Modulus (GPa) | H/E | H3/E2 |
|---|---|---|---|---|
| CrN | 13.5 ± 3.1 | 186.1 ± 11.4 | 0.07 | 0.07 |
| MoN | 21.5 ± 2.1 | 214.6 ± 10.6 | 0.10 | 0.22 |
| Sample | Rs (Ωcm−2) | CPEf (Ω−5 cm−2sn) | n1 | Rf (Ωcm−2) | CPEdl (Ω−5 cm−2sn) | n2 | Rct (Ωcm−2) |
|---|---|---|---|---|---|---|---|
| 316 L ss | 58.13 | 1.47 | 0.96 | - | - | - | 9.67 × 104 |
| CrN | 60.27 | 2.49 | 0.93 | 1.08 × 105 | 72.99 | 0.43 | 1.08 × 106 |
| MoN | 66.96 | 36.68 | 0.91 | 3.40 × 106 | 20.24 | 1 | 3.22 × 106 |
| Coating | Volume Loss (μm3) | Error (μm3) | Area (μm2) | Error (μm2) |
|---|---|---|---|---|
| CrN | 17,693 | 77 | 48,862 | 459 |
| MoN | 12493 | 342 | 36079 | 107 |
| Volume (μm3) | Error (μm3) | Depth (μm) | Error (μm) | |
|---|---|---|---|---|
| 316 L ss | 417,786 | 96,761 | 6.64 | 1.48 |
| Cr/CrN | 42,788 | 3121 | 2.38 | 0.21 |
| Mo/MoN | 15,324 | 175 | 1.05 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Chen, B.; Han, B.; Liu, H.; Zhang, T.; Dong, B. Corrosion, Wear, and Fretting Corrosion Properties of Cr/CrN and Mo/MoN Multilayer Coatings with Biomedical Potential. Molecules 2025, 30, 4640. https://doi.org/10.3390/molecules30234640
Chen L, Chen B, Han B, Liu H, Zhang T, Dong B. Corrosion, Wear, and Fretting Corrosion Properties of Cr/CrN and Mo/MoN Multilayer Coatings with Biomedical Potential. Molecules. 2025; 30(23):4640. https://doi.org/10.3390/molecules30234640
Chicago/Turabian StyleChen, Lin, Bingyan Chen, Boxing Han, Heng Liu, Tianyi Zhang, and Baojun Dong. 2025. "Corrosion, Wear, and Fretting Corrosion Properties of Cr/CrN and Mo/MoN Multilayer Coatings with Biomedical Potential" Molecules 30, no. 23: 4640. https://doi.org/10.3390/molecules30234640
APA StyleChen, L., Chen, B., Han, B., Liu, H., Zhang, T., & Dong, B. (2025). Corrosion, Wear, and Fretting Corrosion Properties of Cr/CrN and Mo/MoN Multilayer Coatings with Biomedical Potential. Molecules, 30(23), 4640. https://doi.org/10.3390/molecules30234640

