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Abstract: Inkjet printing technology offers a unique approach to producing direct-patterned pixels
without fine metal masks for active matrix displays. Organic light-emitting diodes (OLEDs) consisting
of thermally activated delayed fluorescence (TADF) emitters facilitate efficient light emission without
heavy metals, such as platinum and iridium. Multi-resonance TADF molecules, characterized by their
small full width at half maxima (FWHM), are highly suitable for the requirements of wide color-gamut
displays. Herein, host-free TADF inks with a low concentration of 1 mg/mL were developed and
inkjet-printed onto a seeding layer, concurrently serving as the hole-transporting layer. Attributed to
the proof-of-concept of host-free inks printed on a mixed seeding layer, a maximum external quantum
efficiency of 13.1% (improved by a factor of 21.8) was achieved in the inkjet-printed OLED, with a
remarkably narrow FWHM of only 32 nm. Highly efficient energy transfer was facilitated by the
effective dispersion of the sensitizer around the terminal emitters.

Keywords: inkjet printing; thermally activated delayed fluorescence; organic light-emitting diodes;
host-free inks

1. Introduction

Organic light-emitting diodes (OLEDs) are recognized as the most promising energy-
saving and environmentally friendly solid-state lighting and full-color display technology
due to the advantages related to their high efficiency, wide viewing angle, high con-
trast, ultra-small thickness, flexibility, and transparency [1–3]. Most OLED panels are
mass-produced via ultra-high vacuum (<10−6 mbar) thermal evaporation processes and
have multilayer architecture composed of many functional layers. These high-vacuum
environments and fine masks require a high fabrication cost for mass production. Solution-
processing techniques are more competitive in large-area, flexible and low-cost OLED
products. Inkjet printing (IJP) is a fast, accurate, mask-free deposition process that en-
ables high material utilization and direct patterning ability, rendering inkjet printing one
of the more cost-effective deposition methods. It is clear that employing IJP to create
OLED panels is preferable, without using expensive fine metal masks and vacuum thermal
evaporation [4].

Benefiting from the rapid development of the display industry, significant progress has
been made in relation to OLEDs based on thermally activated delayed fluorescence (TADF)
materials in both the academic and industrial fields. Unlike heavy-metal phosphorescent
materials, purely organic TADF materials involve a lower production cost and provide a
more efficient way to utilize all of the electrically generated excitons. Additionally, purely
organic TADF emitters, including the twisted donor–acceptor (D-A)-type emitters and
multi-resonance TADF (MR-TADF) emitters [3], typically feature small enough singlet–
triplet energy gaps (∆ESTs) to harvest electrically generated singlet and triplet excitons
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by means of reverse intersystem crossing (RISC) and thus realize 100% internal quantum
efficiency (IQE) [5,6].

However, donor–acceptor (D-A) TADF compounds typically show very broad emis-
sion due to their charge-transfer nature, since the D and A units are connected by single
bonds, resulting in the broad distribution of accessible geometries in the excited state [2,7].
This results in poor color purity. The current state-of-the-art MR-TADF molecules are
usually grafted/substituted with the push–pull electron groups on the fixed MR parent
core to tune the emission. For instance, boron (B)/nitrogen (N) atoms are distributed on
the opposite sites to induce the separated distributions of the highest occupied molecular
orbitals (HOMOs) and the lowest unoccupied molecular orbitals (LUMOs) [8,9]. Due to
the reduced excited-state relaxation, MR-TADF emitters can achieve high efficiencies and
small FWHMs simultaneously [10,11]. Therefore, their emissions with the FWHM (<40 nm)
could be similar to those of quantum-dots and inorganic LEDs. Otherwise, the auxiliary
design of RGB color filters is necessary [12,13]. This design strategy was initially proposed
by Hatakeyama et al., sparking a research trend in the scientific community towards multi-
resonance molecules. Duan et al reported highly efficient yellow-light multi-resonance
molecules, achieving a narrow bandwidth of only 23 nm and a maximum external quantum
efficiency (EQE) of up to 37.4% in vacuum-deposited devices [8]. Wang et al successfully
synthesized a multi-resonance system incorporating C=O/N to achieve green emission,
with an EQE as high as 37.2% in the vacuum-deposited devices and a narrow bandwidth of
only 24 nm [14]. Although multi-resonance materials have shown remarkable performance
in vacuum-deposited devices, their application in inkjet printing remains limited. The
difference in the preparation methods of the emissive layer between vacuum-deposited
and inkjet-printed devices lies in the fact that, through vapor deposition, extremely low
concentrations of multi-resonant emissive molecules can be doped into the host material.
The low-concentration doping of guest molecules into the host material primarily serves to
suppress the aggregation of emissive molecules, reducing the severe non-radiative tran-
sitions caused by π–π interactions between guest molecules, which lead to luminescence
quenching and a significant decrease in the photoluminescence quantum yield (PLQY) of
the emissive molecules. Typically, MR-TADF has serious aggregation-caused quenching
(ACQ) effects due to the rigid structures [15].

It is very challenging to design and fabricate high-performance OLEDs with small
molecules via inkjet printing. Firstly, the commercial small molecules tend to show poor
solubility and terrible film morphologies via solution processing. For example, the large
planar structure of MR-TADF molecule exhibits poor solubility. Additionally, phase separa-
tion, recrystallization, and coffee ring effects of the inkjet-printed small molecules worsen
the device performance. Therefore, many researchers adopt a co-solvent strategy to develop
the inks in order to suppress the poor film uniformity caused by the coffee ring effect [16].
Nevertheless, the uniformity of the inkjet-printed films is generally worse than that of the
spin-coated films [17]. One of the main challenge of IJP OLEDs is to develop a suitable ink
formulation and achieve stable ink-jetting to ensure uniform film deposition [18].

Therefore, research on achieving the efficient narrow-emission inkjet printing of TADF
molecules based on single-solute IJP devices has been relatively less well explored. This is
primarily due to the fact that single-solute printing inks only contain emissive guest materi-
als, which are directly printed onto the hole injection layer. Such devices are only applicable
for non-doped devices. Additionally, for emissive molecules prone to aggregation-caused
quenching, single-solute inks can also lead to severe aggregation of the guest molecules.
Consequently, the selection of guest molecules is limited by single-solute IJP. In order to
meet the requirements of doped devices, some researchers simultaneously introduce host
and guest materials into the ink. While this ensures uniform dispersion of materials in the
ink, during the IJP process, occasional unexpected phase separation phenomena may occur
alongside the solvent evaporation of the ink droplets. There are four key factors that affect
the droplet morphology: ink density, surface tension, viscosity, and nozzle diameter [19].
Additionally, the boiling point of the ink also plays a crucial role in ensuring successful
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printing [20]. When using lower-boiling-point solvents as ink, the rapid evaporation of ink
during the printing process can easily lead to nozzle clogging [21]. Ink formulations with
the lower- and higher-boiling-solvent mixture can help to avoid rapid evaporation. Huang
et al. systematically elucidated the optimization process of ink and substrate for inkjet
printing, and ultimately achieved the inkjet printing of small-molecule blue OLEDs with
a maximum current efficiency of 6.1 cd/A using environmentally friendly halogen-free
inks [4]. The study by Katiyar et al. involved the estimation of Hansen solubility parameters
to formulate inkjet-printed ink with an iridium complex-based phosphorescent material.
The fabricated devices exhibit a maximum current efficiency of 6.4 cd/A and a maximum
luminance of 5781 cd/m2.

Additionally, large-area OLEDs with a size of 80 × 80 mm2 were simultaneously
fabricated by using IJP technology for the emissive layer [22]. Cui et al. successfully
designed and synthesized three hosts to optimize the performance of the IJP device with
a maximum external quantum efficiency (EQE) of 11.0%, which was one of the highest
among the reported TADF-OLEDs fabricated via the IJP approach [23].

In this contribution, we developed a host-free ink strategy, where the host materials
were spin-coated as a seeding layer prior to the inkjet-printed emitters. We screened a con-
ventional fluorescent polymer poly(9-vinylcarbazole) (PVK) and the host 1,3-bis(carbazol-
9-yl) benzene (mCP) to construct a binary-blended hole-transporting layer (HTL). The MR-
TADF emitter with bis(di(t-butyl)carbazolyl)phenylene as a parent skeleton, i.e., BCzBN,
featuring a large and rigid π-conjugated core skeleton was used as the guest emitter, which
possessed a high PLQY, a small FWHM, and improved solubility. The IJP devices were
prepared with the binary ink of SBA-2DPS:BCzBN, where SBA-2DPS was used to sensitize
BCZBN. This resulted in a maximum EQE of 10.1%, which was over 4-fold higher than that
(2.5%) of the device with the single-component solute of BCzBN. To further enhance device
efficiency and reduce the aggregation quenching of BCzBN, we optimized the ink composi-
tion, and a maximum EQE of 13.1% was achieved, accompanied by a small FWHM of only
32 nm. To the best of our knowledge, this represents the highest EQE for inkjet-printed
devices based on MR-TADF molecules.

2. Results and Discussion

To prevent direct contact between the emissive layer and the hole-injection layer
poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS), we employed
the mixed HTL with the small-molecule fluorescent material mCP and PVK, which could
avoid being completely dissolved by the ink used to print the host-free emitters. Moreover,
PVK is key to addressing the issue of poor film uniformity of mCP and the problem of
post-annealing recrystallization due to a low glass transition temperature (Tg < 60 ◦C) of
mCP. To balance charge transport, we employed mCP:PVK at a ratio of 80:20 (wt./wt.) in
the HTL. Figure 1 illustrates the molecular structures of the HTL, the sensitizer SBA-2DPS,
and the terminal emitter BCzBN, along with the energy level diagram of the device.

As shown in Figure 2a,b, the steady-state PL spectra of the IJP BCzBN and SBA-
2DPS:BCzBN = 50:50 (wt./wt.) onto the HTL exhibit the characteristic emission of BCzBN
with the residual emission from the HTL. Due to the good overlap of the absorption of
the terminal emitter BCzBN and the emission of the sensitizer SBA-2DPS (see Figure 2c),
no residual emission from the sensitizer is detected (see Figure 2b) due to the complete
energy transfer. At the same time, it can also be observed that energy transfer from the hole
transport layer mCP to the sensitizer is achievable. The emission band ranging from 350 to
450 nm originating from PVK is mainly attributed to the emission from the gaps between
the adjacent droplets.
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is significantly higher when a sensitizer is introduced into the ink compared with the sin-
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of the dot spacing, since the emission mainly originated from BCzBN. However, the de-
layed lifetimes of the spin-coated films with only the guest emitter BCzBN are approxi-
mately 90 µs. It is surprising that the spin-coated film with the SBA-2DPS:BCzBN mixture 
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films and UV-vis absorption of the SBA-2DPS and BCzBN solution (10−5 M).

The steady PL intensity of the IJP BCzBN on the HTL is shown in Figure S1. At a
dot spacing of 80 µm, the highest intensity is achieved. As the spacing decreases, the
droplets merge with each other, causing significant solute aggregation and fluorescence
quenching. This leads to a decrease in spectral intensity. Figure S2 shows the steady PL
intensity of SBA-2DPS:BCzBN films under identical testing condition. The intensity of
the IJP film is significantly higher when a sensitizer is introduced into the ink compared
with the single-solute ink, indicating efficient energy transfer and reduced aggregation
quenching of the guest emitter BCzBN by increasing the intermolecular distance using the
sensitizer. As shown in Figures S3–S5, the droplets printed with a dot spacing of 80 µm
exhibit individual and separated round patterns. In contrast, the spin-coated film is quite
flat and smooth (Figure S6b).

To investigate the photophysics of the films, the time-resolved PL spectra of the printed
and spin-coated films were compared (see Figure 3 and Table S1). The delayed lifetimes
of the printed films from the dual solute are around 60 µs, nearly independent of the dot
spacing, since the emission mainly originated from BCzBN. However, the delayed lifetimes
of the spin-coated films with only the guest emitter BCzBN are approximately 90 µs. It
is surprising that the spin-coated film with the SBA-2DPS:BCzBN mixture (Figure 3c)
displayed a delayed lifetime of 57.5 µs. Therefore, the reduction in the delayed lifetime
stems from the fast and efficient energy transfer process from the sensitizer SBA-2DPS to
the guest molecule BCzBN.

To elucidate the electroluminescent performance of the inkjet-printed OLEDs, four
different devices with the dot spacings of 50 (Device A), 60 (Device B), 70 (Device C), and
80 µm (Device D) were respectively fabricated with the structures of indium tin oxide
(ITO)/PEDOT:PSS (40 nm)/mCP:PVK (80:20, 40 nm)/IJP film/bis[2-(diphenylphosphino)
phenyl]ether oxide (DPEPO) (10 nm)/1,3,5-tri(m-pyrid-3-yl-phenyl)benzene (TmPyPB)
(50 nm)/lithium 8-hydroxyquinolinolate (Liq) (1 nm)/Al (100 nm). Here, the IJP films
consisted of host-free and single-solute BCzBN dissolved in a co-solvent of cyclohexanone
and N-methylpyrrolidone at a concentration of 1 mg/mL. Figure 4 shows the current–
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voltage–luminance characteristics of the OLEDs. The electroluminescence spectra of the IJP
devices exhibit an identical small FWHM of only 32 nm, ensuring high color purity. Unlike
the PL spectra of the IJP films, there is no residual emission from the HTL.
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As shown in Table 1, the maximum EQE of the device D reached 2.5%. However, the
maximum EQE of the device with a printing dot spacing of 50 µm was only 0.6%. With
the increase in dot spacing, the EQE of the device increases. These results demonstrate
that employing a single-solute strategy is not efficient enough due to the pronounced
aggregation quenching effects of the MR-TADF emitters.

Table 1. Comparison of the EL performances of the inkjet printing devices with different print-
ing spacings.

Device λmax
a (nm) FWHM b (nm) Von

c (V) CEmax
d (cd/A) EQEmax

e (%) CIE(x,y) f

A 488 32 11.5 1.1 0.6 (0.14, 0.38)
B 488 32 9.5 2.1 0.9 (0.14, 0.38)
C 488 32 7.3 2.5 1.3 (0.14, 0.39)
D 488 32 7.5 4.6 2.5 (0.12, 0.38)

a Peak wavelength of the electroluminescent spectrum. b Full width at half maximum of the electroluminescent
spectrum. c Driving voltage at a brightness of 10 cd/m2. d Maximum current efficiency. e Maximum external
quantum efficiency. f Commission Internationale de I’Eclairage 1931 color coordinates.

Therefore, to serve as a dispersant and reduce the aggregation of the guest molecule
BCzBN, the TADF sensitizer SBA-2DPS was introduced into the ink. An ink mixture of
SBA-2DPS:BCzBN = 50:50 (wt./wt.) was prepared to fabricate the emissive layer again
with a dot spacing of 50 (Device E), 60 (Device F), 70 (Device G), and 80 µm (Device H),
respectively. As shown in Figure 5a, the electroluminescent spectra of all of the devices
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displayed no residual emission from the sensitizer and HTL (see Figure 2), indicating an
improved efficient energy transfer process under electrical excitation. At the same time, a
relatively small FWHM is maintained, ensuring the high color purity of the dual-solute
device. Moreover, for the printed dual-solute devices, the leakage current was significantly
reduced, indicating excellent metal/organic contact (see Figure 5c). As illustrated in
Figure 5b, the device G achieved a maximum EQE of 10.1%, which is four times higher
than that of the single-solute device D (2.5%). The inset of Figure 5b shows a microscopic
photograph of the device under electroluminescence. The droplets display bright sky-blue
emissive patterns. The introduction of the sensitizer led to a significant reduction in the
driving voltage. For instance, the operation voltages at a luminance of 10 cd/m2 were
found to be 5.6, 4.6, 4.6, and 4.5 V, respectively, for the devices E, F, G, and H (see Table 2).
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Table 2. Comparison of the EL performances of the inkjet printing devices with different print-
ing spacings.

Device λmax
a (nm) FWHM b (nm) Von

c (V) CEmax
d (cd/A) EQEmax

e (%) CIE(x,y) f

E 488 32 5.6 8.7 4.5 (0.13, 0.39)
F 488 32 4.6 10.7 5.8 (0.13, 0.37)
G 488 32 4.6 18.7 10.1 (0.12, 0.37)
H 488 32 4.5 14.4 8.1 (0.12, 0.35)

a Peak wavelength of the electroluminescent spectrum. b Full width at half maximum of the electroluminescent
spectrum. c Driving voltage at the brightness of 10 cd/m2. d Maximum current efficiency. e Maximum external
quantum efficiency. f Commission Internationale de I’Eclairage 1931 color coordinates.

To further enhance the device efficiency, the proportion of the sensitizer SBA-2DPS
was increased to 70 wt.%, while the optimized dot spacing was fixed at 50 µm. The emissive
layer was inkjet-printed with the dual-solute ink of SBA-2DPS:BCzBN = 70:30 (wt./wt.) at
a concentration of 1 mg/mL in the co-solvent system. As illustrated in Figure S8a, despite
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a further reduction of BCzBN, there is no noticeable change in the electroluminescent spec-
trum, indicating that efficient energy transfer remains in the emissive layer. Simultaneously,
a small FWHM of only 32 nm was achieved. The device with a dot spacing of 50 µm reached
a maximum EQE of 13.1% (see Figure S8b and Table S2), which is comparable with the
spin-coated devices shown in Figure S9 and Table S3. It is worth mentioning that the overall
EL performance of these IJP OLEDs with the host-free inks surpasses those of the recently
reported state-of-the-art devices (see Figure S10) [22–27]. Based on our dual-solute and
host-free inks strategy, cost-effective inkjet-printed OLEDs with a simplified architecture
are achievable.
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3. Experimental Section

The PL and UV absorption spectra were measured using a Hitachi F-4600 fluorescence
spectrophotometer (Tokyo, Japan) and Shimadzu UV-2700 UV-VIS spectrophotometer
(Tokyo, Japan), respectively. The transient PL decay curves were obtained using a FluoTime
300 (PicoQuant GmbH, Berlin, Germany) with a Picosecond Pulsed UV-LASER (LASER375,
Berlin, Germany) as the excitation source.

3.1. OLED Fabrication and Characterization

The pre-patterned ITO glass substrates were cleaned in an acetone and ethanol ultra-
sonic bath continuously. Afterwards, the substrates were dried with N2 and loaded into a
UV-ozone chamber for a 20 min treatment. A ca. 40 nm thick PEDOT:PSS was spin-coated
onto the ITO substrate and then baked at 120 ◦C for 10 min. The hole-transporting layer
was spin-coated directly on the PEDOT:PSS, followed by a baking process at 120 ◦C for
10 min. Except for the emitting layer, the electron-transporting layer and the electron-
injecting layer, followed by the Al cathode used in the IJP devices, were evaporated at
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a pressure of 10−6 mbar in a high-vacuum chamber, consecutively. Finally, the devices
were encapsulated in UV-curable epoxy in a glovebox before being measured in ambient
air. The electroluminescent properties of the devices were measured using a PR735 Spec-
traScan Spectroradiometer (PhotoResearch, Syracuse, NY, USA) combined with a Keithley
2400 source meter unit (Cleveland, OH, USA).

3.2. Inkjet Printing of the Emitting Layer

Other than the emitting layer, the preparation process of the other functional layers
of inkjet-printed OLED was consistent with that of spin-coating OLED. Prior to inkjet
printing, the mixed seed layer of mCP (80 wt.%):PVK (20 wt.%) was prepared by spin-
coating directly on PEDOT:PSS. Then, the host-free inks comprising the TADF emitter
was inkjet printed on the mCP:PVK layer with the dot spacing of 50, 60, 70, and 80 µm,
respectively. The temperature of the substrate was fixed at 40 ◦C. In this experiment,
single-nozzle printing was employed to achieve simultaneous coverage of the active areas,
printing a rectangular pattern measuring 9 mm × 7.5 mm. The peak voltage of the printing
waveform was set to 18 V, with a frequency of 960 Hz, and the printing waveform is shown
in Figure S11. The inkjet printing operation was carried out with an MP1100 electronics
printer from Shanghai MiFang Electronic Technology (Shanghai, China). After setting all
parameters, printing commenced. Subsequently, the printed samples were transferred to a
glovebox for annealing at 50 ◦C for 10 min to remove any residual solvents. The subsequent
evaporation and encapsulation processes were identical to those used in the spin-coating
device fabrication process.

4. Conclusions

In summary, the common small-molecule host mCP and the fluorescent polymer PVK
were introduced as the seeding layer of the inkjet-printed OLEDs, physically isolating
the emitters prepared from the host-free inks. This separation mitigates the concentration
quenching of the multi-resonant TADF emitters. The adoption of the highly efficient TADF
molecule SBA-2DPS as a sensitizer is crucial to enhancing the electroluminescence, since it
is powerful in reducing exciton quenching and facilitating highly efficient energy transfer.
Ultimately, the inkjet-printed devices achieved a considerably high external quantum
efficiency of 13.1%, representing an improvement factor of ca. 22, compared with the inkjet-
printed devices consisting of the single-solute BCzBN fabricated with the same parameter
(dot spacing of 50 µm). This strategy would be universal for the inkjet-printed devices with
any other host-free emitters/inks.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29092147/s1, Figure S1: PL spectra of BCzBN films
printed on the hole transporting layer with the different dot-spacings of 50, 60, 70, and 80 µm,
respectively. The spectrum of the hole-transporting layer was provided as reference; Figure S2:
PL spectra of SBA-2DPS:BCzBN = 50:50 (wt./wt.) co-doped films on the hole transporting layer
with the different dot spacings of 50, 60, 70, and 80 µm, respectively; Figure S3: Micrographs of the
inkjet-printed BCzBN films with different dot spacing: (a) 50 µm, (b) 60 µm, (c) 70 µm, and (d) 80 µm;
Figure S4: Surface profiles the inkjet-printed films with different dot spacings: (a) 50 µm, (b) 60 µm,
(c) 70 µm, and (d) 80 µm; Figure S5: Micrographs of the inkjet-printed SBA-2DPS:BCzBN=50:50 films
with different dot spacing: (a) 50 µm, (b) 60 µm, (c) 70 µm, and (d) 80 µm; Figure S6: Surface profiles of
the inkjet-printed film (a) and the spin-coated film (b); Figure S7: (a) Thickness profile of PEDOT:PSS
and seeding layer measured from a Bruker Dektak Profiler. (b) Surface profile of inkjet-printed
SBA-2DPS:BCzBN = 50:50 film with a dot spacing of 80 µm; Figure S8: (a) Normalized EL spectra
of the inkjet-printed devices with dual-solute ink of SBA-2DPS:BCzBN = 70:30 (wt./wt.). (b) EQE
versus current density curves for devices at different printing spacings, (c) Current density–voltage
curves. (d) Luminance–voltage curves; Figure S9: (a) Normalized EL spectra of the spin-coated
devices. (b) External quantum efficiency versus current density curves for the spin-coated devices.
(c) Current density–voltage curves. (d) Luminance–voltage curves; Figure S10: Figure of merit
of EQE and FWHM of OLEDs based on inkjet printing reported in literature; Figure S11: Inkjet
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printing waveform; Table S1: Prompt and delayed fluorescence lifetime constants of the printed and
spin-coated films; Table S2: Comparison of the EL Performances of the inkjet-printed devices with the
dual-solute ink of SBA-2DPS:BCzBN = 70:30 (wt./wt.); Table S3: Comparison of the EL Performances
of the spin-coated devices with different EML: mCP:BCzBN = 99:1 for Devcie M, mCP:PVK:BCzBN =
79:20:1 for Devcie N, mCP:SBA-2DPS:BCzBN = 94:5:1 for Devcie O, and mCP:SBA-2DPS:BCzBN =
89:10:1 for Devcie P.
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