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Abstract: Ribonuclease H (RNase H) was identified as an important target for HIV therapy. Cur-
rently, no RNase H inhibitors have reached clinical status. Herein, a series of novel thiazolone[3,2-
a]pyrimidine-containing RNase H inhibitors were developed, based on the hit compound 10i, iden-
tified from screening our in-house compound library. Some of these derivatives exhibited low
micromolar inhibitory activity. Among them, compound 12b was identified as the most potent in-
hibitor of RNase H (IC50 = 2.98 µM). The experiment of magnesium ion coordination was performed
to verify that this ligand could coordinate with magnesium ions, indicating its binding ability to the
catalytic site of RNase H. Docking studies revealed the main interactions of this ligand with RNase
H. A quantitative structure activity relationship (QSAR) was also conducted to disclose several pre-
dictive mathematic models. A molecular dynamics simulation was also conducted to determine the
stability of the complex. Taken together, thiazolone[3,2-a]pyrimidine can be regarded as a potential
scaffold for the further development of RNase H inhibitors.

Keywords: thiazolone[3,2-a]pyrimidine; RNase H; allosteric inhibitors; 3D-QSAR

1. Introduction

Acquired Immunodeficiency Syndrome (AIDS), a severe infectious disease, develops
as a consequence of Human Immunodeficiency Virus (HIV) infection [1,2]. The estimated
global prevalence of HIV infection in 2022 is 39.0 million, underscoring its enduring and
profound impact on public health worldwide [3,4]. The current standard approach for
managing HIV infection is antiretroviral therapy (ART) [5,6]. However, the prolonged
administration of ART can easily lead to the emergence of drug-resistant viral strains,
thereby limiting its long-term efficacy [7,8]. The development of innovative anti-HIV
agents is crucial and requires more attention.

In the past, targeting RNase H provided an opportunity for the development of new
anti-HIV drugs [9]. The RNase H enzyme is strategically situated within the p66 subunit
of reverse transcriptase (RT), enabling the precise hydrolysis of RNA in RNA/DNA het-
eroduplexes and tRNA precursors, to ensure seamless synthesis during the process of
reverse transcription [10,11]. The active site of RNase H contains a conserved DEDD motif,
comprising four carboxylate amino acid residues (D443, E478, D498, and D549), which
interact with two Mg2+ ions [12]. Currently reported RNase H inhibitors generally function
by binding to the active site competitively, through the chelation of trivalent ligands with
divalent metals. Such inhibitors include hydroxyisoquinolinedione, β-thujaplicinol, and
dihydroxycoumarin [13,14]. The potent and selective RNase H inhibition could be achieved
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by adopting structurally more elaborate chemotypes, such as diketoacid, pyrimidinolcar-
boxylic acid, hydroxynaphthyridine, and pyridopyrimidone, which featured a hydrophobic
aromatic moiety that was seemingly important for antiviral activity [15]. Most of these
small molecule inhibitors chelate with magnesium ions via oxygen atoms, at the active
site of the RT RNase H. As an alternative, it is also possible for nitrogen atoms to form a
chelation, such as naphthaldehyde hydrazone 1 [16], pyridopyrimidone 2, and pyrrolyl
pyrazoles 3, 4 (Figure 1) [17]. Despite extensive efforts to produce RNase H inhibitors, no
particular inhibitor has entered clinical trials [18–20]. The potential of HIV RT-associated
RNase H as a therapeutic target has yet to be fully explored [21–23].
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Figure 1. Previously disclosed representative HIV RNase H inhibitors, chelated with Mg2+. The
dotted lines in the diagram showed the interaction of the molecule with the Mg2+.

In this work, a series of novel thiazolone[3,2-a]pyrimidine derivatives were designed
and synthesized by using a structure-based design strategy (Figure 2). All of the target
compounds were then subjected to in vitro evaluation to assess their ability to inhibit the
specific enzymatic activity of recombinant RNase H. By comparing the activity results
and analyzing the molecular docking and simulations, we gained some insights into the
potential binding models of the compounds.
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ethyl ester, thiourea, and different aromatic aldehydes as three components, catalyzed 
using sulfamic acid in ethanol solvent at 80 °C, yielding 70–85%. Subsequently, 
compounds 8a–c were reacted with methyl bromoacetate in the presence of pyridine as 
the base, for 3 h under reflux in ethanol to obtain compounds 9a–c, with yields ranging 
from 55% to 80%. Compounds 9a–c were reacted with freshly prepared aromatic 
diazonium salts at 0 °C for 0.5 h in ethanol or dioxane. The reaction was then continued 
at room temperature for 2 h to obtain the final target compounds 10a–n, 11a–k, and 12a–
f, yielding 30–90%. 
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Figure 2. Docking poses of compounds 10i (A,B) at the binding pocket of the HIV-1 RT (PDB code:
3QIP). (C) The discovery of novel thiazolone[3,2-a]pyrimidine derivatives.

2. Results and Discussion
2.1. Chemistry

The synthetic route of the target compounds 10a–n, 11a–k, and 12a–f is depicted in
Scheme 1. Compounds 8a–c were synthesized via the Biginelli reaction, using acetoacetic
ethyl ester, thiourea, and different aromatic aldehydes as three components, catalyzed
using sulfamic acid in ethanol solvent at 80 ◦C, yielding 70–85%. Subsequently, compounds
8a–c were reacted with methyl bromoacetate in the presence of pyridine as the base, for 3 h
under reflux in ethanol to obtain compounds 9a–c, with yields ranging from 55% to 80%.
Compounds 9a–c were reacted with freshly prepared aromatic diazonium salts at 0 ◦C for
0.5 h in ethanol or dioxane. The reaction was then continued at room temperature for 2 h to
obtain the final target compounds 10a–n, 11a–k, and 12a–f, yielding 30–90%.
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Scheme 1. Synthesis of compounds 10a–n, 11a–k, and 12a–f. Reagents and conditions: (a) SO2(NH2)2,
EtOH, 80 ◦C, 2 h, yield: 70–85%; (b) methyl bromoacetate, pyridine, EtOH, reflux, 3 h, yield: 55–80%;
(c) 1. ArNH2, NaNO2, HCl, H2O, 0 ◦C, 30 min; 2. pyridine, EtOH, 0 to 25 ◦C, 3 h, yield: 30–90%.
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2.2. Anti-HIV-1 Activity of Compounds 10a–n, 11a–k, and 12a–f

We initiated this project by screening our-in-house compound library and compound
10i was identified as one of the potentially active RNase H inhibitors (IC50 = 8.32 µM).
Results from the docking study in Figure 2A,B indicated that 10i was well positioned into
the binding pocket of RNase H. The nitrogen atoms of the azo group of the compounds
participate in the chelation of magnesium ions with the oxygen atoms of the thiazolone
structure. The Ar1 and Ar2 aromatic segments of the molecule also approach the protein
surface, through hydrophobic interactions. These findings provide important information
for further structural optimization. All these newly designed thiazolone[3,2-a]pyrimidine
derivatives were evaluated for their inhibitory activity against HIV RT-associated RNase
H, using the diketo acid RDS1643 as positive control. The results are reported in Table 1.
Among this series, compounds 12a, 12b, and 12f were found to be the most active deriva-
tives, with IC50 values ranging from 2 to 3 µM. The inhibitory activity of compounds 10d
(IC50 = 8.27 µM), 10g (IC50 = 9.01 µM), 12b (IC50 = 2.97 µM), and 12f (IC50 = 3.275 µM)
was stronger than others, when the polar substituents were present at the 2-position of
the aryl group. The presence of polar substituted groups at the 2-position of the aromatic
moiety Ar2 showed a significantly enhanced inhibitory activity, compared to Ar2 with a
3-substituted group or without any substituents on the aromatic ring. The presence of a
methyl group at the 2-position of 12d led to a minor decrease in activity (IC50 = 44.86 µM),
suggesting that non-polar substituents on Ar2’s aromatic moiety may negatively impact its
inhibitory activity. The decrease in activity observed in compounds containing a sulfonic
acid group might be attributed to the excessively strong acidity of the sulfonic acid group,
which could protonate the diazo group within the molecule. The strong solvent effect
of compounds induced by large polar sulfonic acid groups might also contribute to the
reduced inhibitory activity of these compounds. When Ar2 was changed from a phenyl
group to a naphthyl group, the activity of compound 10f gained a great improvement over
that of compound 10k. Generally, by comparing the compounds from series 10, 11, and 12,
we found compounds belonging to series 12 exhibited higher inhibitory activity, indicating
that the Ar1 fragment with a single methoxy substitution at the 4-position was favorable
for increasing their biological activities. And when a negatively charged polar group was
present at the 2-position of Ar2, the inhibitory activity is enhanced.

Table 1. RNase H inhibition of the synthesized compounds 10a–n, 11a–k, and 12a–f.
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10f Ph 2-SO3H-Naph 7.04 ± 0.57
10g Ph 2-COCH3-Ph 9.01 ± 2.17
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10l Ph 3-NO2-Ph 6.41 ± 0.24
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Table 1. Cont.

Comp. Ar1 Ar2 IC50 (µM) a

10m Ph 3-COCH3-Ph 18.39 ± 0.79
10n Ph 3-CO2CH3-Ph 7.03 ± 0.17
11a 2,3,4-3OMe-Ph 2-OMe-Ph 11.81 ± 0.91
11b 2,3,4-3OMe-Ph Ph 48.95 ± 4.73
11c 2,3,4-3OMe-Ph 2-Me-5-CO2H-Ph 8.23 ± 2.44
11d 2,3,4-3OMe-Ph 3-NO2 10.10 ± 1.64
11e 2,3,4-3OMe-Ph 2-SO3H-Ph >100 (97%)
11f 2,3,4-3OMe-Ph 2-SO3H-4-OMe-Ph >100 (61%)
11g 2,3,4-3OMe-Ph 2-SO3H-Naph 19.95 ± 3.84
11h 2,3,4-3OMe-Ph 2-CO2CH3 10.05 ± 0.95
11i 2,3,4-3OMe-Ph 2-COCH3 >100 (100%)
11j 2,3,4-3OMe-Ph 3-CO2CH3-Ph 42.15 ± 9.78
11k 2,3,4-3OMe-Ph 3-COCH3-Ph 21.96 ± 0.36
12a 4-OMe-Ph 2-COCH3-Ph 3.98 ± 0.30
12b 4-OMe-Ph 2-CO2CH3-Ph 2.97 ± 0.88
12c 4-OMe-Ph 3-CO2CH3-Ph 4.71 ± 0.86
12d 4-OMe-Ph 2-Me-5-CO2H 17.97 ± 1.87
12e 4-OMe-Ph 3,4,5-tri-OMe-Ph 8.99 ± 0.27
12f 4-OMe-Ph 2-SO3H-Naph 3.28 ± 0.92

RDS1643 [24] 8.6 ± 1.30
a Compound concentration required to reduce HIV-1 RT-associated RNase H activity by 50%. b Percentage of the
control activity measured at the indicated compound concentration.

2.3. QSAR Model

To further design HIV-1 RNase H inhibitors with improved activity, based on the
molecular scaffold, we trained a QSAR model for this series of molecules to investigate
the structure–activity relationship. We utilized the QSAR module in Maestro. We used
pIC50 as the predicted value, with the unit of IC50 activity converted to moles. Among
the obtained models, a QSAR model based on the Kernel Partial Least Squares algorithm
demonstrated a good fit to both the training and test datasets. The training and prediction
outcomes were depicted in Figure 3. For this mathematical model, the training set’s S.D.
(standard deviation) = 0.3783, r2 = 0.7242, while the test Set’s rmse = 0.3287 and q2 = 0.6857.
These results indicated that the model had a certain degree of reliability, which can guide
further structural optimization.
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2.4. Prediction of Physicochemical Properties

The values of the physicochemical parameters of compounds with good inhibitory
activity were assessed using a free online forecasting tool (www.swissadme.ch/ (ac-
cessed on 31 December 2023)); they are summarized in Table 2. The compounds tested
did not penetrate the blood–brain barrier, act as P-gp substrates, or inhibit CYP1A2 or
CYP2D6. They were not identified as pain-inducing, indicating no interaction with mul-
tiple targets and avoiding false positive results. Notably, the representative compound
12b complied with the Lipinski rule. Our findings confirm their safety and favorable
physicochemical properties.

Table 2. Prediction of pharmacokinetics of representative compounds with good inhibitory activity.

Compd.
a GI

Absorption
b BBB

Permeant

c P-gp
Substrate

CYP1A2
Inhibitor

CYP2D6
Inhibitor

d Lipinski e PAINS

10d High No No No No Yes; 0 violation 0 alert
10f Low No No No No Yes; 1 violation 0 alert
12a High No No No No Yes; 0 violation 0 alert
12b Low No No No No Yes; 0 violation 0 alert
12e Low No No No No No; 2 violations 0 alert
12f Low No No No No No; 2 violations 0 alert

a GI absorption—according to the white of the BOILED-Egg. b BBB permeant—according to the yolk of the
BOILED-Egg. c P-gp substrate, CYP1A2 inhibitor, and CYP2D6 inhibitor—from Swiss ADME. d Lipinski (Pfizer)
filter—MW ≤ 500; MLOGP ≤ 4.15; N or O ≤ 10; NH or OH ≤ 5. e PAINS—Pan Assay Interference Structures.

2.5. Molecular Docking

We performed a molecular docking study of compounds 10i and 12b with the RNase
H active site (PDB code: 3QIP) [25]. The docking results for compounds 10i and 12b are
shown in Figure 4. The predicted binding modes of compounds 10i and 12b at the active
site of RNase H suggested an interaction between the amide group and diazo group with
Mg2+. On one side, Mg2+ ions were connected to the protein through the carboxyl groups
of the protein residues Asp443, Asp549, Asp498, and GLu478. On the other side, one
Mg2+ ion was involved in a five-membered ring chelation through the oxygen of the amide
group and the nitrogen of the diazo group, while another Mg2+ ion interacted with one
nitrogen atom in the azo group. The 2-position substituent on the Ar2 fragment could
participate in hydrogen bonding interactions with residue HIE539. In addition, the oxygen
substituent at the 2-position may interact with the Mg2+ ions. The significant increase in
activity may be attributed to the presence of polar substituents at the 2-position of the
aromatic moiety Ar2. The ester group on the thiazolopyrimidine core also exhibited a
hydrogen bonding interaction with GLN500. The entire diazo group was situated in the
hydrophilic region of the protein. The Ar1 and Ar2 fragments of compounds 10i and 12b
were located in the hydrophobic region of the protein. The compound 12b coordinated
with one magnesium ion through the amide and azo groups, while the nitrogen atom of
the azo group interacted with the other magnesium ion. Meanwhile, 5,6-dihydroxy-2-[(2-
phenyl-1H-indol-3-yl)methyl]pyrimidine-4-carboxylic acid interacted with one magnesium
ion through the carboxyl and hydroxyl groups, and its carbonyl and hydroxyl groups also
interacted with the magnesium ion. Both compounds exhibited similar interactions with
residue HIE539 via their carbonyl groups.

www.swissadme.ch/


Molecules 2024, 29, 2120 7 of 16

Molecules 2024, 29, 2120 7 of 17 
 

 

nitrogen atom in the azo group. The 2-position substituent on the Ar2 fragment could par-
ticipate in hydrogen bonding interactions with residue HIE539. In addition, the oxygen 
substituent at the 2-position may interact with the Mg2+ ions. The significant increase in 
activity may be attributed to the presence of polar substituents at the 2-position of the 
aromatic moiety Ar2. The ester group on the thiazolopyrimidine core also exhibited a hy-
drogen bonding interaction with GLN500. The entire diazo group was situated in the hy-
drophilic region of the protein. The Ar1 and Ar2 fragments of compounds 10i and 12b were 
located in the hydrophobic region of the protein. The compound 12b coordinated with 
one magnesium ion through the amide and azo groups, while the nitrogen atom of the 
azo group interacted with the other magnesium ion. Meanwhile, 5,6-dihydroxy-2-[(2-phe-
nyl-1H-indol-3-yl)methyl]pyrimidine-4-carboxylic acid interacted with one magnesium 
ion through the carboxyl and hydroxyl groups, and its carbonyl and hydroxyl groups also 
interacted with the magnesium ion. Both compounds exhibited similar interactions with 
residue HIE539 via their carbonyl groups. 

 
Figure 4. (A–C) Molecular docking of compound 12b with RNase H (PDB code: 3QIP); (D) overlay 
of 12b and 10i within the binding pocket of RNase H; (E) the crystal structure of 5,6-dihydroxy-2-
[(2-phenyl-1H-indol-3-yl)methyl]pyrimidine-4-carboxylic acid with RNase H (PDB code: 3QIP); (F) 
overlay of 12b and 5,6-dihydroxy-2-[(2-phenyl-1H-indol-3-yl)methyl]pyrimidine-4-carboxylic acid 

Figure 4. (A–C) Molecular docking of compound 12b with RNase H (PDB code: 3QIP); (D) overlay
of 12b and 10i within the binding pocket of RNase H; (E) the crystal structure of 5,6-dihydroxy-
2-[(2-phenyl-1H-indol-3-yl)methyl]pyrimidine-4-carboxylic acid with RNase H (PDB code: 3QIP);
(F) overlay of 12b and 5,6-dihydroxy-2-[(2-phenyl-1H-indol-3-yl)methyl]pyrimidine-4-carboxylic
acid within the binding pocket of RNase H; the Mg2+ ions are represented by the purple sphere.
The interactions between residues, ligands, and Mg2+ ions are indicated by the yellow lines. The
molecular scaffold of 5,6-dihydroxy-2-[(2-phenyl-1H-indol-3-yl)methyl]pyrimidine-4-carboxylic acid
is green and the molecular scaffold of compound 12b is orange. Important amino acid residues are
represented in cyan.

2.6. Dynamic Simulation

We aimed to observe the dynamic binding of the small molecule 12b to the protein,
through molecular dynamics simulations. The RMSF values of Chain were within the
range of 0.1 to 0.4 nm (Figure 5A,B). The RMSD fluctuation plot (Figure 5C) indicated
that the compound 12b rapidly reached equilibrium during the dynamic binding process.
The RMSD fluctuation range was within 0.25 to 0.45 nm, which was within a reasonable
range. Comparison plots of three dynamic simulations are shown in the Supplementary
Information (SI). Compound 12b did not dissociate from the docking pocket during the
simulation that affirmed compound 12b’s reliability as an inhibitor for the RNase H. The
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hydrogen bonds (Figure 5D) showed that, apart from the coordination interactions with
Mg2+, the dynamic changes in hydrogen bond formation between compound 12b and the
protein generally ranged from 1 to 2.
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2.7. Magnesium Complexation

To investigate the potential importance of the interaction between the active com-
pounds and Mg2+, spectrophotometric complexation studies were carried out on the good
active derivatives, 12a and 12b. In Figure 6, it can be observed that, upon the addition of
magnesium ions, the absorbance of the solution increased around the wavelength range
of 400–450 nm, indicating a certain interaction between compounds 12a and 12b with
magnesium ions.
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3. Conclusions

In this study, we have identified a novel class of thiazolone[3,2-a]pyrimidine-containing
RNase H inhibitors, derived from the hit compound 10i, by using a structure-based design
strategy. Some of these compounds had IC50 values in the low micromolar range. The
structure–activity relationship studies suggested that series 12 exhibited the best activ-
ity, with compound 12b displaying the highest inhibitory activity against RNase H (IC50
= 2.98 µM). Furthermore, the presence of electron-rich substituents at the 2-position of
Ar2 was favorable for increasing the ligand activity. The presence of aromatic fused-ring
substituents appears to enhance RNase H inhibition activity, suggesting a direction for
further design of inhibitor molecules. The QSAR model was also established to give a
predictive guide, which inferred their potential MOA with RNase H. We further validated
the reliability of this series of molecules in binding to the RNase H site through molec-
ular docking, dynamic simulations, and Mg2+ coordination experiments. In summary,
compound 12b can be used as a lead compound for the further development of potent
thiazolone[3,2-a]pyrimidine-based RNase H inhibitors.

4. Experimental
4.1. Chemistry

Commercially available reagents and solvents were procured for use. Thin-layer
chromatography (TLC) (Yantai Xinnuo new material Technology Co., Ltd., Yantai, China)
analysis was conducted using a 0.25 mm silica gel plate, followed by visualization under
UV light with a wavelength of 254 nm. The 1H NMR and 13C NMR spectra were analyzed
in DMSO-d6 or CDCl3, using a Bruker AV-400 spectrometer, with TMS serving as the
internal standard for characterization. Due to the low solubility of certain compounds, we
had to select relatively more favorable deuterated solvents for different compounds. The
determination of the melting point was conducted using the Hanon MP-430 digital melting
point instrument. The HRMS data were acquired using the Agilent 1290II-6545 spectrometer
(Q-TOF). Analysis of sample purity was performed on a Shimadzu SPD-20A/20AV HPLC
system using an Inertsil ODS-SP, 5 µm C18 column (150 mm × 4.6 mm).

4.1.1. General Procedure for the Synthesis of Compounds 8a–c

To a mixture of sulfourea (55 mmol, 1.1 eq), methyl acetoacetate (60 mmol, 1.2 eq),
and the proper aromatic aldehyde (50 mmol, 1 eq) in EtOH (100 mL), 5 mmol (0.1 eq)
sulfonamide was added as catalyst. The mixture was heated to 50 ◦C for 2 h, which was
monitored using TLC. In total, 100 mL of water was added to terminate the reaction and
then solid precipitates were observed. The precipitated solid was filtered, recrystallized
twice using 30 mL ethanol each time, and dried to obtain the pure product.

4.1.2. General Procedure for the Synthesis of Compounds 9a and 9c

The proper methyl 2-mercapto-4-methyl-6-aryl-1,6-dihydropyrimidine-5-carboxylate
(32 mmol, 1 eq) and pyridine (35.2 mmol, 1.1 eq) were added to 100 mL EtOH. Then,
35.2 mmol (1.1 eq) methyl bromoacetate was added to the system, which was stirred under
reflux for 3 h. Upon completion of the reaction, monitored using TLC, 100 mL water was
added to terminate the reaction, affording solid precipitates, which were then filtrated and
purified using gel column chromatography to give the pure products.

Methyl 7-methyl-3-oxo-5-phenyl-2,3-dihydro-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate (9a). Yel-
low solid; 1H NMR (CDCl3, 400 MHz): δ [ppm] 7.23–6.98 (m, 5H), 5.84 (s, 1H), 3.63 (d,
J = 17.5 Hz, 1H), 3.51 (d, J = 17.5 Hz, 1H), 3.42 (s, 3H), 2.26 (s, 3H).
Methyl 5-(4-methoxyphenyl)-7-methyl-3-oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate
(9c). Yellow solid; 1H NMR (CDCl3, 400 MHz): δ 7.29 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.7 Hz,
2H), 6.02 (s, 1H), 3.84 (d, J = 17.4 Hz, 1H), 3.78 (s, 3H), 3.73 (d, J = 17.5 Hz, 1H), 3.64 (s, 3H),
2.48 (s, 3H).
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4.1.3. General Procedure for the Synthesis of Compound 9b

Methyl 2-mercapto-4-methyl-6-(2,3,4-trimethoxyphenyl)-1,6-dihydropyrimidine-5-
carboxylate (16mmol, 1 eq) and pyridine (17.6 mmol, 1.1 eq) were added to 50 mL dioxane.
Then, 17.6 mmol (1.1 eq) methyl bromoacetate was added into the system. The resulting
mixtures was stirred under reflux for 3 h and then TLC was used to monitor the reaction.
A total of 50 mL water was added to terminate the reaction, then an extraction with ethyl
acetate (3 × 50 mL) was performed. The organic layer was dried over anhydrous sodium
sulfate and was concentrated under vacuum. The pure product was then obtained through
purification using silica gel column chromatography.

Methyl 7-methyl-3-oxo-5-(2,3,4-trimethoxyphenyl)-2,3-dihydro-5H-thiazolo[3,2-a]pyrimidine-6-
carboxylate (9b). Yellow solid; 1H NMR (CDCl3, 400 MHz): δ [ppm] 7.03 (d, J = 8.6 Hz, 1H),
6.58 (d, J = 8.7 Hz, 1H), 6.09 (s, 1H), 3.88 (s, 3H), 3.83 (s, 3H), 3.81 (s, 3H), 3.64 (s, 3H), 2.39
(s, 3H).

4.1.4. General Procedure for the Synthesis of Compounds 10a–n and 12a–f

The proper methyl 7-methyl-3-oxo-5-aryl-2,3-dihydro-5H-thiazolo[3,2-a]pyrimidine-
6-carboxylate (1 mmol, 1 eq) and pyridine (4 mmol, 4 eq) were dissolved in 5 mL EtOH
and stirred at 0 ◦C. The appropriate aromatic amine (1.2 mmol, 1.1 eq) was dissolved in
hydrochloric acid (3 mmol, 1 eq) aqueous solution and stirred at 0 ◦C. Then, a solution of
sodium nitrite (1.44 mmol, 1.44 eq) was added to the hydrochloric acid–aromatic amine
mixture. The above aqueous solution was stirred for 0.5 h at 0 ◦C to obtain the aromatic
diazonium salt. The resulting aqueous solution was then added dropwise into the ethanol
system and stirred for 1 h at 0 ◦C, followed by 3 h at room temperature, before being
quenched with water (10 mL). The crude product obtained from precipitation of a solid
was purified using silica gel column chromatography to yield the final product.

Methyl 2-(2-(2-hydroxyphenyl)hydrazineylidene)-7-methyl-3-oxo-5-phenyl-2,3-dihydro-5H-thiazolo[3,2-
a]pyrimidine-6-carboxylate (10a). Yellow solid, yield: 75%, mp: 227–229 ◦C; 1H NMR (400 MHz,
CDCl3) δ 7.43 (d, J = 7.0 Hz, 2H), 7.34 (t, J = 8.1 Hz, 4H), 6.90 (dd, J = 17.3, 7.9 Hz, 3H), 6.25
(s, 1H), 3.69 (s, 3H), 2.56 (s, 3H). 13C NMR (101 MHz, CDCl3 + CD3OD) δ 169.99, 165.12,
158.27, 155.99, 148.44, 143.42, 132.78, 132.67, 131.74, 131.64, 127.66, 124.38, 119.38, 119.03,
117.17, 113.45, 59.07, 55.51, 26.23. HRMS (ESI) m/z: calcd for C21H18N4O4S, [M − H]−:
421.0969; found: 421.0972.
(2-(6-(Methoxycarbonyl)-7-methyl-3-oxo-5-phenyl-5H-thiazolo[3,2-a]pyrimidin-2(3H)-ylidene)
hydrazineyl)-3-methylbenzoic acid (10b). Yellow solid, yield: 88%, mp: 261–263 ◦C; 1H
NMR (400 MHz, DMSO-d6) δ 11.60 (s, 1H), 7.77 (d, J = 6.4 Hz, 1H), 7.45 (d, J = 7.4 Hz, 1H),
7.40–7.27 (m, 5H), 7.10 (t, J = 7.7 Hz, 1H), 6.02 (s, 1H), 3.60 (s, 3H), 2.40 (s, 3H), 2.39 (s,
3H). 13C NMR (101 MHz, DMSO-d6) δ 170.42, 166.07, 160.50, 155.59, 152.61, 145.89, 141.48,
135.24, 129.77, 129.22, 128.87, 127.63, 126.41, 123.47, 121.49, 118.56, 108.42, 54.54, 51.86, 23.08,
22.26. HRMS (ESI) m/z: calcd for C23H20N4O5S, [M + H]+: 465.1255; found: 465.1262.
Methyl 7-methyl-3-oxo-5-phenyl-2-(2-(3,4,5-trimethoxyphenyl)hydrazineylidene)-2,3-dihydro-5H-
thiazolo[3,2-a]pyrimidine-6-carboxylate (10c). Yellow solid, yield: 85%, mp: 211–213 ◦C; 1H
NMR (400 MHz, DMSO-d6) δ 10.90 (s, 1H), 7.38–7.26 (m, 5H), 6.52 (s, 2H), 6.01 (s, 1H), 3.74
(s, 6H), 3.59 (d, J = 2.7 Hz, 6H), 2.38 (s, 3H). 13C NMR (101 MHz, CDCl3 + CD3OD) δ 169.98,
165.53, 159.24, 157.73, 155.80, 143.54, 143.16, 137.62, 132.77, 132.65, 131.74, 131.68, 123.04, 113.28,
96.06, 64.82, 59.83, 59.05, 55.52, 26.23. HRMS (ESI) m/z: calcd for C24H24N4O6S, [M + H]+:
497.1551; found: 497.1567.
Methyl 2-((2-(methoxycarbonyl)phenyl)diazenyl)-7-methyl-3-oxo-5-phenyl-2,3-dihydro-5H-thiazolo
pyrimidine-6-carboxylate (10d). Yellow solid, yield: 65%, mp: 184–186 ◦C; 1H NMR
(400 MHz, CDCl3) δ 11.35 (s, 1H), 7.95 (d, J = 6.5 Hz, 1H), 7.76 (d, J = 8.6 Hz, 1H), 7.50 (t, J
= 7.1 Hz, 1H), 7.44–7.38 (m, 2H), 7.33–7.27 (m, 3H), 7.00 (t, J = 7.9 Hz, 1H), 6.24 (s, 1H), 3.94
(s, 3H), 3.66 (s, 3H), 2.53 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 168.77, 165.79, 160.71, 152.63,
152.34, 145.05, 139.43, 134.95, 130.80, 128.86, 128.79, 127.99, 125.98, 121.59, 115.00, 112.12, 109.92,
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55.27, 52.51, 51.65, 22.75. HRMS (ESI) m/z: calcd for C23H20N4O5S, [M + H]+: 465.1254; found:
465.1274.
5-Methoxy-2-(2-(6-(methoxycarbonyl)-7-methyl-3-oxo-5-phenyl-5H-thiazolo[3,2-a]pyrimidin-2(3H)-
ylidene)hydrazineyl)benzenesulfonic acid (10e). Yellow solid, yield: 86%, mp: 247–249 ◦C;
1H NMR (400 MHz, DMSO-d6) δ 10.89 (s, 1H), 7.38–7.25 (m, 6H), 6.91 (d, J = 8.8 Hz, 1H),
6.86 (d, J = 2.5 Hz, 1H), 6.01 (s, 1H), 3.70 (s, 3H), 3.60 (s, 3H), 2.38 (s, 3H). 13C NMR
(101 MHz, DMSO-d6) δ 165.88, 160.45, 154.77, 153.42, 151.61, 140.83, 133.90, 132.26, 129.29,
129.04, 127.65, 122.12, 117.29, 115.59, 112.36, 109.68, 55.90, 55.05, 52.01, 22.87. HRMS (ESI)
m/z: calcd for C22H20N4O7S2, [M + H]+: 517.0854; found: 517.0848.
(6-(Methoxycarbonyl)-7-methyl-3-oxo-5-phenyl-5H-thiazolo[3,2-a]pyrimidin-2(3H)-ylidene)hydrazineyl)
naphthalene-1-sulfonic acid (10f). Yellow solid, yield: 80%, mp: 289–293 ◦C; 1H NMR (400 MHz,
DMSO-d6) δ 12.84 (s, 1H), 8.83 (d, J = 9.1 Hz, 1H), 7.91 (d, J = 9.2 Hz, 1H), 7.80 (d, J = 7.6 Hz,
1H), 7.71 (d, J = 9.1 Hz, 1H), 7.51–7.45 (m, 1H), 7.41–7.28 (m, 6H), 6.07 (s, 1H), 3.62 (s, 3H),
2.40 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 165.87, 160.55, 153.48, 151.54, 146.57, 142.85,
140.77, 136.52, 131.87, 130.90, 130.18, 129.30, 129.06, 128.44, 127.71, 127.60, 127.11, 124.75,
124.56, 123.61, 114.57, 109.77, 55.11, 52.03, 22.87. HRMS (ESI) m/z: calcd for C25H20N4O6S2,
[M − H]−: 535.0744; found: 535.0749.
Methyl 2-(2-(2-acetylphenyl)hydrazineylidene)-7-methyl-3-oxo-5-phenyl-2,3-dihydro-5H-thiazolo
pyrimidine-6-carboxylate (10g). Yellow solid, yield: 78%, mp: 199–202 ◦C; 1H NMR
(400 MHz, CDCl3) δ 12.07 (s, 1H), 7.73 (t, J = 7.4 Hz, 2H), 7.43 (t, J = 7.1 Hz, 1H), 7.34
(d, J = 6.5 Hz, 2H), 7.26–7.17 (m, 3H), 6.94 (t, J = 7.6 Hz, 1H), 6.15 (s, 1H), 3.59 (s, 3H), 2.58
(s, 3H), 2.46 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 202.76, 165.80, 160.71, 152.67, 152.32,
145.11, 139.38, 135.46, 131.71, 128.89, 128.81, 128.01, 126.48, 121.37, 118.97, 115.25, 109.95,
55.28, 51.70, 27.99, 22.74. HRMS (ESI) m/z: calcd for C23H20N4O4S, [M − H]−: 447.1125;
found: 447.1126.
Methyl 2-(2-(3,4-dimethoxyphenyl)hydrazineylidene)-7-methyl-3-oxo-5-phenyl-2,3-dihydro-5H-
thiazolo[3,2-a]pyrimidine-6-carboxylate (10h). Yellow solid, yield: 73%, mp: 204–206 ◦C; 1H
NMR (400 MHz, CDCl3) δ 8.44 (s, 1H), 7.32 (d, J = 6.6 Hz, 2H), 7.26–7.17 (m, 3H), 6.79 (d,
J = 2.5 Hz, 1H), 6.65 (d, J = 8.6 Hz, 1H), 6.55 (dd, J = 8.6, 2.5 Hz, 1H), 6.13 (s, 1H), 3.74 (s,
3H), 3.70 (s, 3H), 3.58 (s, 3H), 2.44 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 166.04, 159.82,
150.05, 149.95, 145.88, 145.78, 139.95, 136.04, 128.87, 128.84, 127.99, 127.82, 121.04, 111.74,
111.65, 109.44, 108.11, 106.59, 105.80, 99.27, 98.11, 55.99, 55.37, 54.87, 51.79, 22.91. HRMS
(ESI) m/z: calcd for C23H22N4O5S, [M + H]+: 467.1430; found: 467.1438.
Methyl 2-(2-(2-methoxyphenyl)hydrazineylidene)-7-methyl-3-oxo-5-phenyl-2,3-dihydro-5H-thiazolo
pyrimidine-6-carboxylate (10i). Yellow solid, yield: 55%, mp: 189–192 ◦C; 1H NMR (400 MHz,
DMSO-d6) δ 10.35 (s, 1H), 7.39–7.24 (m, 6H), 7.03 (q, J = 7.9 Hz, 2H), 6.93 (t, J = 6.9 Hz,
1H), 6.02 (s, 1H), 3.86 (s, 3H), 3.60 (s, 3H), 2.38 (s, 3H). 13C NMR (101 MHz, CDCl3) δ
165.73, 160.61, 153.08, 152.02, 146.28, 139.44, 130.96, 128.88, 128.85, 128.79, 127.99, 127.79,
123.35, 121.62, 114.51, 110.40, 109.74, 55.76, 55.23, 51.66, 22.53. HRMS (ESI) m/z: calcd for
C22H20N4O4S, [M + H]+: 437.1321; found: 437.1332.
Methyl 7-methyl-3-oxo-5-phenyl-2-(2-phenylhydrazineylidene)-2,3-dihydro-5H-thiazolo[3,2-a]
pyrimidine-6-carboxylate (10j). Yellow solid, yield: 49%, mp: 124–127 ◦C; 1H NMR
(400 MHz, DMSO-d6) δ 10.99 (s, 1H), 7.38–7.29 (m, 7H), 7.23 (d, J = 7.4 Hz, 2H), 6.99
(t, J = 7.3 Hz, 1H), 6.04 (s, 1H), 3.61 (s, 3H), 2.39 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 165.80,
160.84, 152.95, 152.17, 141.94, 139.43, 129.44, 128.89, 128.86, 128.83, 127.97, 123.56, 122.08, 114.62,
109.82, 55.27, 51.70, 22.67. HRMS (ESI) m/z: calcd for C21H18N4O3S, [M − H]−: 405.1020;
found: 405.1022.
(2-(6-(Methoxycarbonyl)-7-methyl-3-oxo-5-phenyl-5H-thiazolo[3,2-a]pyrimidin-2(3H)-ylidene)
hydrazineyl)benzenesulfonic acid (10k). Yellow solid, yield: 84%, mp: 262–266 ◦C; 1H NMR
(400 MHz, DMSO-d6) δ 11.24 (s, 1H), 7.99–7.82 (m, 2H), 7.57 (d, J = 7.3 Hz, 1H), 7.37–7.29 (m,
6H), 6.05 (s, 1H), 3.62 (s, 3H), 2.39 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 165.85, 160.46,
153.24, 151.42, 140.71, 138.56, 132.72, 131.07, 129.30, 129.07, 128.00, 127.69, 123.86, 122.28, 113.90,
109.90, 55.14, 52.04, 22.85. HRMS (ESI) m/z: calcd for C21H18N4O6S2, [M − H]−: 485.0588;
found: 485.0593.
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Methyl 7-methyl-2-(2-(3-nitrophenyl)hydrazineylidene)-3-oxo-5-phenyl-2,3-dihydro-5H-thiazolo
pyrimidine-6-carboxylate (10l). Yellow solid, yield: 71%, mp: 250–252 ◦C; 1H NMR (400 MHz,
CDCl3) δ 8.00 (s, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.67 (s, 1H), 7.57 (d, J = 9.5 Hz, 1H), 7.47 (t,
J = 8.2 Hz, 1H), 7.41 (d, J = 6.4 Hz, 2H), 7.31 (q, J = 8.5, 7.5 Hz, 3H), 6.24 (s, 1H), 3.67 (s,
3H), 2.54 (s, 3H). 13C NMR (101 MHz, CDCl3 + CD3OD) δ 165.78, 161.05, 154.73, 148.99,
144.07, 139.16, 130.11, 128.94, 128.77, 127.84, 120.16, 117.17, 109.71, 109.31, 55.16, 51.69, 22.22.
HRMS (ESI) m/z: calcd for C21H17N5O5S, [M − H]−: 450.0870; found: 450.0879.
Methyl 2-(2-(3-acetylphenyl)hydrazineylidene)-7-methyl-3-oxo-5-phenyl-2,3-dihydro-5H-thiazolo
pyrimidine-6-carboxylate (10m). Yellow solid, yield: 45%, mp: 213–216 ◦C; 1H NMR
(400 MHz, DMSO-d6) δ 11.12 (s, 1H), 7.76 (s, 1H), 7.59 (d, J = 3.1 Hz, 1H), 7.51–7.41 (m, 2H),
7.40–7.25 (m, 5H), 6.01 (s, 1H), 3.61 (s, 3H), 2.56 (s, 3H), 2.38 (s, 3H). 13C NMR (101 MHz,
CDCl3) δ 203.14, 169.95, 165.43, 158.98, 155.78, 147.26, 143.38, 141.80, 133.57, 132.81, 132.77,
132.68, 131.85, 131.77, 126.77, 124.72, 123.21, 118.11, 113.44, 59.05, 55.56, 30.51, 26.25. HRMS
(ESI) m/z: calcd for C23H20N4O4S, [M + H]+: 449.1295; found: 449.1286.
Methyl 2-(2-(3-(methoxycarbonyl)phenyl)hydrazineylidene)-7-methyl-3-oxo-5-phenyl-2,3-dihydro-
5H-thiazolo[3,2-a]pyrimidine-6-carboxylate (10n). Yellow solid, yield: 42%, mp: 214–216 ◦C;
1H NMR (400 MHz, DMSO-d6) δ 11.14 (s, 1H), 7.92–7.17 (m, 9H), 6.03 (s, 1H), 3.86 (s, 3H),
3.61 (s, 3H), 2.39 (s, 3H). 13C NMR (101 MHz, CDCl3 + CD3OD) δ 167.07, 165.87, 161.21,
154.60, 151.85, 142.92, 139.45, 130.97, 129.46, 128.86, 128.76, 127.88, 123.97, 121.17, 118.97,
118.92, 115.50, 115.45, 55.11, 52.30, 51.68, 22.45. HRMS (ESI) m/z: calcd for C23H20N4O5S,
[M + H]+: 465.1254; found: 465.1252.
Methyl 2-(2-(2-acetylphenyl)hydrazineylidene)-5-(4-methoxyphenyl)-7-methyl-3-oxo-2,3-dihydro-
5H-thiazolo[3,2-a]pyrimidine-6-carboxylate (12a). Yellow solid, yield: 64%, mp: 199–201 ◦C;
1H NMR (400 MHz, CDCl3) δ 12.07 (s, 1H), 7.74 (t, J = 8.5 Hz, 2H), 7.43 (t, J = 8.6 Hz, 1H),
7.26 (d, J = 8.8 Hz, 2H), 7.02–6.89 (m, 1H), 6.75 (d, J = 8.7 Hz, 2H), 6.11 (s, 1H), 3.68 (s, 3H),
3.59 (s, 3H), 2.59 (s, 3H), 2.46 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 202.71, 165.88, 160.81,
159.88, 152.48, 152.03, 145.15, 135.44, 131.70, 131.66, 129.41, 126.67, 121.33, 118.98, 115.28,
114.08, 110.10, 55.27, 54.74, 51.69, 27.98, 22.69. HRMS (ESI) m/z: calcd for C24H22N4O5S,
[M − H]−: 477.1231; found: 477.1236.
Methyl 2-(2-(2-(methoxycarbonyl)phenyl)hydrazineylidene)-5-(4-methoxyphenyl)-7-methyl-3-oxo-
2,3-dihydro-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate (12b). Yellow solid, yield: 75%, mp:
219–221 ◦C; 1H NMR (400 MHz, CDCl3) δ 11.32 (s, 1H), 7.94 (d, J = 6.4 Hz, 1H), 7.76 (d,
J = 7.3 Hz, 1H), 7.49 (t, J = 7.4 Hz, 1H), 7.34 (d, J = 8.8 Hz, 2H), 6.99 (t, J = 8.1 Hz, 1H), 6.82
(d, J = 8.7 Hz, 2H), 6.19 (s, 1H), 3.94 (s, 3H), 3.76 (s, 3H), 3.66 (s, 3H), 2.52 (s, 3H). 13C NMR
(101 MHz, CDCl3) δ 168.79, 165.90, 160.87, 159.86, 152.47, 152.10, 145.07, 134.97, 131.68,
130.81, 129.41, 126.12, 121.58, 115.02, 114.08, 112.12, 110.05, 55.28, 54.72, 52.53, 51.69, 22.72.
HRMS (ESI) m/z: calcd for C24H22N4O6S, [M + H]+: 495.1348; found: 495.1339.
Methyl 2-(2-(3-(methoxycarbonyl)phenyl)hydrazineylidene)-5-(4-methoxyphenyl)-7-methyl-3-oxo-
2,3-dihydro-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate (12c). Yellow solid, yield: 80%, mp:
209–211 ◦C; 1H NMR (400 MHz, CDCl3) δ 7.78 (s, 1H), 7.59 (d, J = 7.7 Hz, 1H), 7.48 (d,
J = 7.7 Hz, 1H), 7.30 (dt, J = 10.7, 3.3 Hz, 2H), 7.24 (s, 1H), 6.77 (d, J = 8.7 Hz, 2H),
6.09 (s, 1H), 3.84 (s, 3H), 3.70 (s, 3H), 3.61 (s, 3H), 2.44 (s, 3H). 13C NMR (101 MHz,
CDCl3 + CD3OD) δ 167.17, 165.99, 161.34, 159.78, 154.75, 151.54, 143.05, 131.74, 130.94,
129.42, 129.24, 123.90, 120.95, 118.95, 115.46, 114.00, 109.59, 55.16, 54.50, 52.21, 51.62, 22.29.
HRMS (ESI) m/z: calcd for C24H22N4O6S, [M + H]+: 495.1348; found: 495.1341.
(2-(6-(Methoxycarbonyl)-5-(4-methoxyphenyl)-7-methyl-3-oxo-5H-thiazolo[3,2-a]pyrimidin-2(3H)-
ylidene)hydrazineyl)-3-methylbenzoic acid (12d). Yellow solid, yield: 77%, mp: 265–267 ◦C;
1H NMR (400 MHz, DMSO-d6) δ 7.82 (d, J = 7.7 Hz, 1H), 7.22 (d, J = 8.7 Hz, 2H), 7.17 (d,
J = 7.4 Hz, 1H), 6.90 (d, J = 8.8 Hz, 2H), 6.85 (d, J = 7.5 Hz, 1H), 5.98 (s, 1H), 3.72 (s, 3H), 3.60
(s, 3H), 2.43 (s, 3H), 2.38 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 166.07, 160.56, 159.66,
154.97, 152.20, 145.25, 135.40, 133.40, 129.80, 129.10, 126.60, 123.18, 121.74, 119.44, 114.49,
108.80, 55.55, 54.04, 51.90, 23.00, 22.11. HRMS (ESI) m/z: calcd for C24H22N4O6S, [M + H]+:
495.1348; found: 495.1344.
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Methyl 5-(4-methoxyphenyl)-7-methyl-3-oxo-2-(2-(3,4,5-trimethoxyphenyl)hydrazineylidene)-2,3-
dihydro-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate (12e). Yellow solid, yield: 65%, mp:
204–206 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 10.88 (s, 1H), 7.22 (d, J = 8.7 Hz, 2H), 6.90
(d, J = 8.8 Hz, 2H), 6.54 (s, 2H), 5.97 (s, 1H), 3.76 (s, 6H), 3.72 (s, 3H), 3.61 (s, 3H), 3.60 (s,
3H), 2.39 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 165.93, 160.85, 159.75, 154.21, 154.01,
151.69, 139.69, 133.50, 132.94, 129.21, 120.34, 114.50, 109.39, 92.19, 60.61, 56.13, 55.57, 55.36,
54.36, 51.95, 22.86. HRMS (ESI) m/z: calcd for C25H26N4O7S, [M + H]+: 527.1619; found:
527.1632.
(6-(Methoxycarbonyl)-5-(4-methoxyphenyl)-7-methyl-3-oxo-5H-thiazolo[3,2-a]pyrimidin-2(3H)-
ylidene)hydrazineyl)naphthalene-1-sulfonic acid (12f). Yellow solid, yield: 90%, mp:
271–273 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 12.81 (s, 1H), 8.84 (d, J = 7.7 Hz, 1H), 7.92 (d,
J = 9.1 Hz, 1H), 7.80 (d, J = 6.7 Hz, 1H), 7.73 (d, J = 9.1 Hz, 1H), 7.48 (t, J = 7.0 Hz, 1H), 7.37 (t,
J = 6.8 Hz, 1H), 7.24 (d, J = 8.7 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 6.02 (s, 1H), 3.72 (s, 3H), 3.62 (s,
3H), 2.41 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 165.93, 160.60, 159.78, 153.19, 151.35, 136.56,
132.82, 131.90, 130.90, 130.17, 129.16, 128.45, 127.57, 127.13, 124.56, 123.76, 114.58, 109.92, 55.58,
54.53, 52.03, 22.83. HRMS (ESI) m/z: calcd for C26H22N4O7S2, [M + H]+: 567.1016; found:
567.1003.

4.1.5. General Procedure for the Synthesis of Compounds 11a–k

The methyl 7-methyl-3-oxo-5-(2,3,4-trimethoxyphenyl)-2,3-dihydro-5H-thiazolo[3,2-
a]pyrimidine-6-carboxylate (1 mmol, 1 eq) and pyridine (4 mmol, 4 eq) were dissolved in
5 mL of dioxane at 0 ◦C. An appropriate aromatic amine (1.2 mmol, 1.2 eq) was dissolved
in an aqueous solution of hydrochloric acid (3 mmol, 3 eq) and stirred at 0 ◦C. Then, a
solution of sodium nitrite (1.44 mmol, 1.44 eq) was added to the hydrochloric acid–aromatic
amine mixture to obtain the aromatic diazonium salt by stirring the above aqueous solution
for 0.5 h at 0 ◦C. The resulting solution was added to the dioxane system and stirred at a
temperature of -18 ◦C for 1 h, before raising it to room temperature and stirring for 3 h. The
reaction was quenched by adding 10 mL of water, which resulted in precipitation of a solid
product that was subsequently purified using silica gel column chromatography.

Methyl 2-(2-(2-methoxyphenyl)hydrazineylidene)-7-methyl-3-oxo-5-(2,3,4-trimethoxyphenyl)-2,3-
dihydro-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate (11a). Yellow solid, yield: 61%, mp:
178–180 ◦C; 1H NMR (400 MHz, CDCl3) δ 7.89 (s, 1H), 7.49 (dd, J = 7.7, 1.9 Hz, 1H), 7.08 (d,
J = 8.7 Hz, 1H), 7.00–6.89 (m, 2H), 6.85 (dd, J = 7.8, 1.6 Hz, 1H), 6.58 (d, J = 8.7 Hz, 1H), 6.22
(s, 1H), 3.90 (s, 6H), 3.81 (s, 3H), 3.78 (s, 3H), 3.67 (s, 3H), 2.43 (s, 3H). 13C NMR (101 MHz,
CDCl3) δ 166.24, 160.68, 154.31, 152.64, 146.17, 142.02, 131.14, 125.57, 124.93, 123.04, 121.58,
114.36, 110.32, 109.46, 106.41, 60.68, 60.56, 55.91, 55.75, 53.54, 51.45, 22.79. HRMS (ESI) m/z:
calcd for C25H26N4O7S, [M + H]+: 527.1619; found: 527.1634.
Methyl 7-methyl-3-oxo-2-(2-phenylhydrazineylidene)-5-(2,3,4-trimethoxyphenyl)-2,3-dihydro-5H-
thiazolo [3,2-a]pyrimidine-6-carboxylate (11b). Yellow solid, yield: 46%, mp: 189–192 ◦C; 1H
NMR (400 MHz, CDCl3) δ 7.49 (s, 1H), 7.33 (t, J = 7.8 Hz, 2H), 7.22 (d, J = 7.6 Hz, 2H), 7.11
(d, J = 8.6 Hz, 1H), 7.05 (t, J = 7.3 Hz, 1H), 6.61 (d, J = 8.7 Hz, 1H), 6.25 (s, 1H), 3.92 (s, 3H),
3.85 (s, 3H), 3.82 (s, 3H), 3.70 (s, 3H), 2.46 (s, 3H). 13C NMR (101 MHz, CDCl3 + CD3OD) δ
166.53, 161.55, 155.53, 154.35, 152.60, 150.25, 142.88, 141.98, 129.27, 125.73, 125.00, 123.04,
119.80, 114.63, 109.05, 106.56, 60.61, 60.55, 55.90, 53.47, 51.48, 22.45. HRMS (ESI) m/z: calcd
for C24H24N4O6S, [M + H]+: 497.1509; found: 497.1519.
(2-(6-(Methoxycarbonyl)-7-methyl-3-oxo-5-(2,3,4-trimethoxyphenyl)-5H-thiazolo[3,2-a]pyrimidin-
2(3H)-ylidene)hydrazineyl)-3-methylbenzoic acid (11c). Yellow solid, yield: 30%, mp: 209–213 ◦C;
1H NMR (400 MHz, DMSO-d6) δ 7.81 (s, 1H), 7.15 (d, J = 7.3 Hz, 1H), 6.96 (d, J = 8.6 Hz, 1H),
6.84 (t, J = 7.4 Hz, 1H), 6.75 (d, J = 8.7 Hz, 1H), 6.06 (s, 1H), 3.78 (s, 6H), 3.71 (s, 3H), 3.58
(s, 3H), 2.41 (s, 3H), 2.30 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 166.36, 160.48, 154.96,
154.12, 152.26, 150.82, 145.44, 141.92, 135.32, 129.72, 126.58, 126.26, 125.23, 123.13, 121.53,
119.69, 108.38, 107.56, 61.00, 60.62, 56.24, 52.70, 51.62, 23.04, 22.06. HRMS (ESI) m/z: calcd
for C26H26N4O8S, [M + H]+: 554.1570; found: 555.1573.
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Methyl 7-methyl-2-(2-(3-nitrophenyl)hydrazineylidene)-3-oxo-5-(2,3,4-trimethoxyphenyl)-2,3-dihydro-
5H-thiazolo[3,2-a]pyrimidine-6-carboxylate (11d). Yellow solid, yield: 48%, mp: 236–238 ◦C;
1H NMR (400 MHz, CDCl3) δ 8.20 (s, 1H), 7.97 (t, J = 2.2 Hz, 1H), 7.82 (d, J = 6.8 Hz, 1H),
7.50 (d, J = 9.4 Hz, 1H), 7.41 (t, J = 8.1 Hz, 1H), 7.08 (d, J = 8.6 Hz, 1H), 6.58 (d, J = 8.7 Hz,
1H), 6.21 (s, 1H), 3.88 (s, 3H), 3.82 (s, 3H), 3.79 (s, 3H), 3.68 (s, 3H), 2.43 (s, 3H). 13C NMR
(101 MHz, CDCl3) δ 166.05, 160.48, 154.50, 152.60, 149.70, 149.01, 143.49, 142.01, 130.29,
125.72, 124.27, 120.09, 117.56, 109.84, 109.35, 106.46, 60.72, 60.60, 55.91, 54.00, 51.62, 22.59.
HRMS (ESI) m/z: calcd for C24H23N5O8S, [M + H]+: 541.1357; found: 542.1361.
2-(2-(6-(Methoxycarbonyl)-7-methyl-3-oxo-5-(2,3,4-trimethoxyphenyl)-5H-thiazolo[3,2-a]pyrimidin-
2(3H)-ylidene)hydrazineyl)benzenesulfonic acid (11e). Yellow solid, yield: 74%, mp: 238–240 ◦C; 1H
NMR (400 MHz, DMSO-d6) δ 11.15 (s, 1H), 7.59 (d, J = 7.7 Hz, 1H), 7.35 (d, J = 7.7 Hz, 2H),
6.99 (d, J = 8.6 Hz, 2H), 6.76 (d, J = 8.7 Hz, 1H), 6.07 (s, 1H), 3.78 (s, 6H), 3.70 (s, 3H), 3.60 (s,
3H), 2.31 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 166.17, 160.32, 154.31, 152.88, 152.37, 149.94,
141.89, 138.67, 132.55, 131.04, 127.98, 125.50, 125.35, 124.20, 122.06, 113.76, 109.42, 107.44, 61.02,
60.64, 56.24, 53.38, 51.82, 22.86. HRMS (ESI) m/z: calcd for C24H24N4O9S2, [M + H]+: 577.1067;
found: 577.1062.
5-Methoxy-2-(2-(6-(methoxycarbonyl)-7-methyl-3-oxo-5-(2,3,4-trimethoxyphenyl)-5H-thiazolo[3,2-
a]pyrimidin-2(3H)-ylidene)hydrazineyl)benzenesulfonic acid (11f). Yellow solid, yield: 76%, mp:
244–246 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 10.93 (s, 1H), 7.31 (d, J = 8.9 Hz, 1H), 7.13
(s, 1H), 6.98 (d, J = 8.6 Hz, 2H), 6.75 (d, J = 8.6 Hz, 1H), 6.06 (s, 1H), 3.77 (s, 6H), 3.73 (s,
3H), 3.70 (s, 3H), 3.59 (s, 3H), 2.31 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 166.19, 160.34,
154.58, 154.28, 153.06, 152.36, 150.10, 141.87, 133.57, 132.38, 125.47, 122.52, 117.31, 115.45,
112.32, 109.23, 107.43, 61.02, 60.63, 56.22, 55.88, 53.30, 51.79, 22.87. HRMS (ESI) m/z: calcd
for C25H26N4O10S2, [M − H]−: 605.1010; found: 605.1006.
(2-(6-(Methoxycarbonyl)-7-methyl-3-oxo-5-(2,3,4-trimethoxyphenyl)-5H-thiazolo[3,2-a]pyrimidin-
2(3H)-ylidene)hydrazineyl)naphthalene-1-sulfonic acid (11g). Yellow solid, yield: 76%, mp:
241–244 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 12.74 (s, 1H), 8.85 (d, J = 8.9 Hz, 1H), 7.90
(d, J = 9.0 Hz, 1H), 7.79 (d, J = 8.1 Hz, 1H), 7.71 (d, J = 9.0 Hz, 1H), 7.48 (t, J = 7.8 Hz, 1H),
7.36 (t, J = 7.5 Hz, 1H), 7.00 (d, J = 8.7 Hz, 1H), 6.77 (d, J = 8.6 Hz, 1H), 6.09 (s, 1H), 3.78
(d, J = 4.4 Hz, 6H), 3.70 (s, 3H), 3.60 (s, 3H), 2.32 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ
166.20, 160.41, 154.32, 153.09, 152.36, 150.03, 141.95, 136.69, 131.82, 130.95, 130.10, 128.42,
127.57, 127.08, 125.49, 125.43, 124.55, 124.46, 123.96, 114.59, 109.41, 107.54, 61.04, 60.64, 56.28,
53.29, 51.77, 22.86. HRMS (ESI) m/z: calcd for C28H26N4O9S2, [M − H]−: 625.1061; found:
625.1056.
Methyl 2-(2-(2-(methoxycarbonyl)phenyl)hydrazineylidene)-7-methyl-3-oxo-5-(2,3,4-trimethoxyphenyl)-
2,3-dihydro-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate (11h). Yellow solid, yield: 55%, mp:
200–202 ◦C; 1H NMR (400 MHz, CDCl3) δ 11.29 (s, 1H), 7.95 (d, J = 6.4 Hz, 1H), 7.74
(d, J = 8.4 Hz, 1H), 7.48 (t, J = 7.1 Hz, 1H), 7.08 (d, J = 8.6 Hz, 1H), 7.01–6.94 (m, 1H), 6.58
(d, J = 8.6 Hz, 1H), 6.23 (s, 1H), 3.95 (s, 3H), 3.90 (s, 3H), 3.82 (s, 3H), 3.79 (s, 3H), 3.67 (s,
3H), 2.43 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 168.42, 165.89, 160.36, 153.97, 152.29, 144.83,
141.67, 134.57, 130.44, 126.06, 125.20, 124.48, 121.03, 114.60, 111.66, 109.27, 106.03, 60.31,
60.21, 55.56, 53.22, 52.14, 51.10, 22.49. HRMS (ESI) m/z: calcd for C26H26N4O8S, [M + H]+:
554.1570; found: 555.1574.
Methyl 2-(2-(2-acetylphenyl)hydrazineylidene)-7-methyl-3-oxo-5-(2,3,4-trimethoxyphenyl)-2,3-
dihydro-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate (11i). Yellow solid, yield: 52%, mp:
205–208 ◦C; 1H NMR (400 MHz, CDCl3) δ 12.12 (s, 1H), 7.81 (dd, J = 15.9, 8.3 Hz, 2H), 7.49
(t, J = 7.2 Hz, 1H), 7.08 (d, J = 8.6 Hz, 1H), 7.01 (t, J = 7.0 Hz, 1H), 6.58 (d, J = 8.7 Hz, 1H),
6.23 (s, 1H), 3.90 (s, 3H), 3.82 (s, 3H), 3.78 (s, 3H), 3.67 (s, 3H), 2.67 (s, 3H), 2.44 (s, 3H).
13C NMR (101 MHz, CDCl3) δ 202.65, 166.25, 160.69, 154.31, 152.63, 152.54, 150.55, 145.27,
142.02, 135.40, 131.69, 127.02, 125.55, 124.83, 121.12, 118.88, 115.20, 109.68, 106.39, 60.68,
60.56, 55.91, 53.55, 51.46, 27.98, 22.88. HRMS (ESI) m/z: calcd for C26H26N4O7S, [M + H]+:
539.1609; found: 539.1605.
Methyl 2-(2-(3-(methoxycarbonyl)phenyl)hydrazineylidene)-7-methyl-3-oxo-5-(2, 3, 4-trimethoxyphenyl)-
2, 3-dihydro-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate (11j). Yellow solid, yield: 67%, mp:
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213–215 ◦C; 1H NMR (400 MHz, CDCl3) δ 7.94 (s, 1H), 7.72 (d, J = 7.6 Hz, 1H), 7.60
(d, J = 8.3 Hz, 1H), 7.44 (d, J = 8.4 Hz, 1H), 7.16 (d, J = 8.7 Hz, 1H), 6.69 (d, J = 8.7 Hz,
1H), 6.27 (s, 1H), 3.97 (d, J = 5.4 Hz, 6H), 3.91 (s, 6H), 3.76 (s, 3H), 2.50 (s, 3H). 13C NMR
(101 MHz, CDCl3 + CD3OD) δ 167.36, 166.49, 161.39, 155.14, 154.43, 152.66, 150.18, 143.33,
142.05, 131.10, 129.54, 125.80, 124.89, 123.91, 121.30, 119.05, 115.54, 109.27, 60.67, 60.62, 55.97,
53.65, 52.34, 51.56, 22.55. HRMS (ESI) m/z: calcd for C26H26N4O8S, [M + H]+: 661.2733;
found: 555.1577.
Methyl 2-(2-(3-acetylphenyl)hydrazineylidene)-7-methyl-3-oxo-5-(2,3,4-trimethoxyphenyl)-2,3-
dihydro-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate (11k). Yellow solid, yield: 40%, mp:
216–219 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 11.00 (s, 1H), 7.75 (s, 1H), 7.59 (dt,
J = 6.4, 2.1 Hz, 1H), 7.51–7.40 (m, 2H), 6.97 (d, J = 8.7 Hz, 1H), 6.75 (d, J = 8.8 Hz, 1H), 6.04
(s, 1H), 3.78 (s, 6H), 3.70 (s, 3H), 3.59 (s, 3H), 2.56 (s, 3H), 2.31 (s, 3H). 13C NMR (101 MHz,
DMSO-d6) δ 198.09, 166.19, 160.67, 154.25, 152.31, 141.86, 138.23, 130.31, 125.45, 122.89,
119.04, 109.04, 107.46, 61.05, 60.62, 56.24, 53.08, 51.78, 27.25, 22.90. HRMS (ESI) m/z: calcd
for C26H26N4O7S, [M + H]+: 539.1609; found: 539.1604.

4.2. Other Protocols

Additional experimental methods are provided in the Supporting Information.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules29092120/s1, Figure S1: Ligand-RMSD comparison of three-time
molecular dynamics simulation; Figure S2: Inhibitory profile of compounds on HIV-1 RNase H
activity; References citation [26–28].
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