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Abstract: Nanomedicine has revolutionized drug delivery in the last two decades. Nanoparticles
appear to be a promising drug delivery platform in the treatment of various gynecological disorders
including uterine leiomyoma, endometriosis, polycystic ovarian syndrome (PCOS), and menopause.
Nanoparticles are tiny (mean size < 1000 nm), biodegradable, biocompatible, non-toxic, safe, and
relatively inexpensive materials commonly used in imaging and the drug delivery of various thera-
peutics, such as chemotherapeutics, small molecule inhibitors, immune mediators, protein peptides
and non-coding RNA. We performed a literature review of published studies to examine the role
of nanoparticles in treating uterine leiomyoma, endometriosis, PCOS, and menopause. In uterine
leiomyoma, nanoparticles containing 2-methoxyestradiole and simvastatin, promising uterine fibroid
treatments, have been effective in significantly inhibiting tumor growth compared to controls in
in vivo mouse models with patient-derived leiomyoma xenografts. Nanoparticles have also shown
efficacy in delivering magnetic hyperthermia to ablate endometriotic tissue. Moreover, nanoparticles
can be used to deliver hormones and have shown efficacy as a mechanism for transdermal hormone
replacement therapy in individuals with menopause. In this review, we aim to summarize research
findings and report the efficacy of nanoparticles and nanotherapeutics in the treatment of various
benign gynecologic conditions.

Keywords: nanomedicine; nanoparticles; uterine leiomyoma; endometriosis; PCOS; menopause

1. Introduction

Since the 1970s, there has been a growing interest in utilizing nanoparticles, tiny struc-
tures with unique compositions ranging from 1–1000 nanometers (nm), in therapeutics to
aid in drug delivery and the treatment of various diseases [1]. Nanoparticles can be gener-
ated using lipids (i.e., micelles, liposomes, and lipid nanoparticles), polymers (i.e., Chitosan,
Albumin, Poly Lactic-co-Glycolic Acid (PLGA)) and metals (i.e., iron, gold, and silver) [2,3].
They have improved water solubility, stability, pharmacokinetics, bioavailability, targetabil-
ity, and safety compared to traditional drugs [4,5].

Nanoparticles are particularly useful in cancer treatment due to their excellent ability
to specifically target cancer cells, penetrate deep within a tumor, avoid drug resistance,
and minimize toxicities to the surrounding healthy cells [6]. In 1995, the Food and Drug
Administration (FDA) approved the first nano-drug, Doxil—a polyethylene glycol coated
(PEGylated) form of doxorubicin, a topoisomerase II inhibitor [7]. This drug improved
doxorubicin delivery in leukemia, lymphoma, breast, uterine, ovarian, and lung cancer
treatment [7]. In 2015, the FDA approved Onivyde, a PEGylated form of irinotacan, a DNA
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topoisomerase I inhibitor [8]. Onivyde is used to treat metastatic pancreatic cancer, and has
also shown promise in treating lung cancer, glioblastomas, and other solid tumors [8].

Though nanoparticles have mostly been studied to treat cancer, the recent litera-
ture reveals they have efficacy in the treatment of other diseases. Nanomedicine-based
approaches have also been applied to benign gynecologic disorders such as uterine leiomy-
oma, endometriosis, polycystic ovarian syndrome (PCOS), and menopause [9–12] (Figure 1).
Although there are established treatment algorithms for these gynecologic conditions, there
is still a need for more innovative treatment options to improve the quality of life of pa-
tients. Nanoparticles show promise in overcoming some of the current limitations related
to diagnosis and drug delivery in various gynecologic conditions. However, more research
is needed to understand the potential toxicities and impact on the immune system before
adopting the use of nanoparticles more widely. Though there are several studies applying
nanomedicine to benign gynecologic disorders, these studies have not been synthesized
into one collection. In this review, we strive to demonstrate the various ways nanoparticles
have been effective in the diagnosis and/or treatment of uterine leiomyoma, endometriosis,
PCOS, and menopause.
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dometriosis, PCOS, and menopause. Studies have shown nanoparticles improve diagnostic options
and/or patient symptoms for these benign gynecologic diseases. Figure created with Keynote.

2. Nanoparticles Overview

Nanoparticles are composed of either lipids, polymers, or metals [2,3]. Lipid-based
nanoparticles (LBNPs) include liposomes, solid lipid nanoparticles (SLNs), and nanos-
tructures lipid carriers (NLCs) [13]. LBNPs can transport hydrophobic and hydrophilic
molecules and drugs while increasing drug activity and maintaining a relatively low
toxicity profile, though more research is needed to understand the full scope of poten-
tial toxicities [13]. Many chemotherapy drugs have been administered using lipid-based
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nanoparticles, improving the efficacy of antitumor drugs [13]. Beyond their application
in cancer treatment, LBNPs have also shown efficacy in delivering drugs to the lymphatic
system, brain, lungs, and skin [14]. Polymeric nanoparticles (PNPs) are composed of natu-
ral polymers (i.e., gelatin, alginate, albumin) or synthetic polymers (i.e., block copolymer,
grafter polymer, and ionic polymers) [15]. PNPs can be formed as nanocapsules which are
composed of a polymeric shell and a hydrophobic core that hold drugs or nanospheres
which are composed of a continuous polymeric network where drugs are either inside or
absorbed into the PNP [16]. Ligands can be added to polymeric shells to improve drug
targeting by binding the PNPs to specific receptors [17]. Due to their structure, PNPs
have high mechanical strength, optical and thermal properties, and conductivity, which
allow them to stabilize active therapeutic drugs and enhance delivery [15,17]. PLGA-
nanoparticles are a popular form of PNPs because they produce lactic acid and glycolic
acid when hydrolyzed, which can be easily metabolized in the body [18]. The use of PLGAs
inspired the modification of nanoparticles with polyethylene glycol (PEG), a polymeric
agent, which improves bioavailability and reduces the body’s immune response [18,19]. As
a result, PEGylated nanoparticles have grown in popularity [19]. Metal-based nanoparticles
are often composed of gold, silver, copper, iron, zinc, and silica, and they can be built
into nanospheres, nanorods, nanostars, and other structures [20,21]. The intrinsic prop-
erties of metals allow for electrons to oscillate at the surface of the nanoparticles, giving
them photothermal properties [20,21]. Metal-based nanoparticles can be conjugated with
ligands or antibodies to improve the specificity of drug delivery [22]. Iron oxide nanoparti-
cles, a popular form of metal-based nanoparticles, have been effectively used as contrast
agents, drug-delivery vehicles, and thermal ablation therapeutics [20–22]. All three types of
nanoparticles improve drug delivery and drug bioavailability, and studies have shown their
efficacy in treating uterine leiomyoma, endometriosis, PCOS, and menopause (Table 1).

Table 1. List of nano-therapies used for benign gynecologic disorders.

Nano-Therapy Benign Gynecologic Disorder Type of Nanoparticle Original Study

Liposomal 2-ME nanoparticle Uterine Leiomyoma Lipid-based [23]

PEGy-PLGA nanoparticles loaded with 2-ME Uterine Leiomyoma Polymeric [9]

Simvastatin-loaded liposomal nanoparticles Uterine Leiomyoma Lipid-based [24]

Peptide-based vectors for suicide gene therapy Uterine Leiomyoma Polymeric [25]

Silicon naphthalocyanine loaded PEG-PCL Endometriosis Polymeric [26]

Ultra-small Super-magnetic iron oxide nanoparticles Endometriosis Metal-based [27]

Hyaluronic acid modified iron oxide nanoparticles Endometriosis Metal-based with
Polymeric modification [28]

NaGdF4@PEG@bevacizumab–Cy5.5 nanoparticles Endometriosis Metal-based with
Polymeric modification [29]

Gold nanoparticles conjugated with a fluorescein isothiocyanate dye Endometriosis Metal-based [30]

Iron oxide-based magnetic nanoparticles encapsulated into
PEG-PCL-based nanocarriers targeting VEGF 2 Endometriosis Metal-based with

Polymeric modification [10]

SiRNA RGD1-R6 nanoparticle carriers Endometriosis Polymeric [31]

Cerium oxide nanoparticles Endometriosis Metal-based [32]

Methotrexate carried in lipid nanoparticles Endometriosis Lipid-based [33]

Albumin-glucose oxidase-nanoparticles Endometriosis Lipid-based [34]

NiCosO4/rGO modified indium tin oxide nanomaterial PCOS Metal-based [35]

CS/copper-NPs/Fe3O4-NPs/GrO-NPs nanocomposite PCOS Metal-based [36]

Silver nanoparticles derived from Cinnamomum zeylanicum PCOS Metal-based [37]

Curcumin-encapsulated arginine and N-acetyl histidine-modified CS PCOS Polymeric [11]

Micellar nanoparticle estradiol emulsion Menopause Polymeric [38]

Nanostructured transdermal hormone replacement therapy Menopause Lipid-based [12]
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Table 1. Cont.

Nano-Therapy Benign Gynecologic Disorder Type of Nanoparticle Original Study

EDTA-modified 17β-estradiol (E2)-laden mesoporous
silica-coated upconversion nanoparticles Menopause Metal-based [39]

E2-loaded PLGA nanoparticles Menopause Polymeric [40]

Solid lipid nanoparticles Menopause Lipid-based [41]

CS nanoparticles loaded with RLX Menopause Metal-based [42]

RLX-loaded polymeric nanoparticles Menopause Polymeric [43]

Human serum albumin-based nanoparticles Menopause Polymeric [44]

RLX bio adhesive nanoparticles Menopause Polymeric [45]

3. Uterine Leiomyoma
3.1. Brief Background on Uterine Leiomyoma

Uterine leiomyomas (ULs) are the most common benign tumor of the female repro-
ductive tract [46]. While ULs are asymptomatic in up to 50% of women, UL can cause
a variety of symptoms, including irregular bleeding, heavy menstrual bleeding, severe
anemia, pelvic pressure, and pelvic pain [47,48]. In some cases, UL can compromise
fertility, leading to early pregnancy loss and pregnancy complications, such as preterm
labor, malpresentation, and postpartum hemorrhage [47,48]. The estimated prevalence
of UL is 40 to 60% and 70 to 80% in individuals under 35 and individuals over 50 years
old, respectively [47]. In the United States, the prevalence of UL varies by race, as Black
individuals have an increased burden of disease compared with White individuals [47,49].
Furthermore, at diagnosis, Black individuals are younger, more likely to be nulligravid,
and have a longer duration of symptoms due to UL [49]. The pathophysiology of UL is
still not fully understood, but many factors including exposure to estrogen, obesity, stress,
vitamin D deficiency, and genetic mutations may play a role in UL development [50].

Medical treatment of UL is guided by the symptoms an individual experiences. For
those experiencing abnormal uterine bleeding, treatment includes a levonorgestrel intrauter-
ine device, gonadotropin-releasing hormone (GnRH) agonists and antagonists, selective
progesterone receptor modulators (SPRMs), and oral contraceptive pills (OCPs) [46,51,52].
GnRH agonists, antagonists and SPRM are also used for those with UL experiencing “bulk
symptoms”, described as pelvic pressure, fullness, and heaviness [46,52]. GnRH agonists
are very effective in providing symptom relief and reducing UL volume by suppressing
estrogen and progesterone levels, which are important drivers of UL growth [53,54]. How-
ever, GnRH agonists are recommended for a maximum of six months to avoid negative
side effects, including the loss of bone density and worsening of diabetes [55]. Therefore,
GnRH agonists are commonly used in the pre-operative setting to reduce UL volume and
optimize surgical removal. GnRH antagonists Elagolix and Relugolix were approved by
the FDA in 2020 and 2021, respectively, and are a new orally available treatment option
for UL symptom management [56]. These drugs can be used for up to 24 months, which
is considerably longer than GnRH agonists; however, they are expensive and may not be
easily accessible to all patients [56].

The most effective surgical treatment option for UL is hysterectomy, which is con-
sidered definitive and curative, as the uterine tissue is entirely excised [57]. However,
this option is less desirable for many individuals who desire future pregnancy or want to
avoid a surgery [57]. Myomectomy is another surgical option for individuals who want
to keep their uterus and/or desire to preserve fertility [58]. Depending on the location of
the UL, myomectomy can be performed hysteroscopically or abdominally (laparoscopy or
laparotomy) for the optimal removal of UL [58].

Alternative non-surgical procedures can also be performed for those who want to
avoid surgery and keep their uterus. Uterine artery embolization (UAE) is a procedure
in which an embolic agent, such as polyvinyl alcohol, is injected into the uterine artery in
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order to block the blood supply to the uterus [59,60]. This procedure is considered safe
and effective in preserving the uterus; however, the ability to preserve fertility and carry a
pregnancy to term following UAE remains unclear [61]. Additionally, UL radiofrequency
ablation is another non-surgical technique to reduce the UL size and bleeding associated
with UL without removing the uterus. Similar to UAE, the impact on fertility following
UL radiofrequency ablation remains unclear [62]. Despite the array of treatment options,
medical management is not always effective in significantly improving patient symptoms
and more invasive surgical measures may not be preferred by patients due to their impact
on future pregnancies. Novel treatment options for UL are needed.

3.2. Nanomedicine for Uterine Leiomyoma

As described, the medical management of UL remains incomplete, as GnRH agonists
can only be used for a maximum of six months. Many individuals do not prefer surgical
interventions due to the potential threat posed to fertility. As such, recent research has
investigated the efficacy of various medications delivered through nanoparticles to reduce
UL size and burden. Current research remains in the pre-clinical stages, yet findings are
promising for forward momentum in UL therapeutics.

3.2.1. Liposomal 2-Methoxyestradiol (2-ME) Therapy

2-ME is an endogenous metabolite of estradiol, known for its pro-apoptotic nature in
cancer cells, including breast cancer, prostate cancer, and UL [13,23,63]. Previous studies
have found that 2-ME, an anti-tumor agent, inhibits cell proliferation and collagen biosyn-
thesis in human and rat UL cell lines [64,65]. However, the use of 2-ME as a therapeutic
agent has been hindered by low solubility and bioavailability [9]. Recent research has
focused on the use of 2-ME nanoparticles in patient-derived UL tissue xenografts [9,23].
Our laboratory found that the intraperitoneal injection of liposomal 2-ME nanoparticle
treatment is associated with significant tumor growth inhibition, in addition to the reduced
expression of Ki67, a proliferation marker [23]. Another study evaluated the intraperitoneal
injection of PEGylated poly(lactide-co-glycolide) (PEG-PLGA) nanoparticles loaded with
2-ME in UL-xenografted mice [9]. In vivo administration found 51% growth inhibition
after the treatment of 2-ME-loaded nanoparticles compared to the controls [9]. These
findings are a promising first step in establishing the efficacy of nanoparticles in ensuring
the appropriate delivery of 2-ME to targeted tissue, though further investigation is needed
to establish safety in humans [23].

3.2.2. Liposomal Simvastatin Therapy

Simvastatin is a hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor
used to treat hypercholesterolemia. In UL, simvastatin has been shown to induce calcium-
dependent apoptosis, decrease proliferation, and reduce extracellular matrix deposition [66–68].
Simvastatin, similar to 2-ME, has a low bioavailability and short half-life and requires a vec-
tor to be delivered to target UL tissue. A study by El Sabeh et al. compared treatment with
simvastatin-loaded liposomal nanoparticles, subcutaneous simvastatin, and no treatment
in mice xenografted with UL tissue [24]. Treatment with simvastatin-loaded liposomal
nanoparticles significantly reduced UL volume and Ki67 expression in xenografted mice
compared to no treatment controls [24]. Simvastatin-loaded liposomal nanoparticles did
not demonstrate better outcomes compared to subcutaneous simvastatin; however, these
findings did establish the feasibility of delivering simvastatin with nanoparticles [24].

3.2.3. Suicide Gene Therapy

Suicide gene therapy (SGT) is defined as the integration of nucleic acids that promote
apoptosis in targeted cells [25]. SGT is among the new therapeutic strategies being pro-
posed for UL. Specifically, the Herpes Simplex Virus—Thymidine Kinase/Gancyclovir
(HSV-TK/GCV) system is considered promising as it integrates into DNA and halts DNA
replication, leading to the apoptosis of tumor cells [25]. However, the delivery of nucleic
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acids to UL cells is still being formulated. Viral vectors are established in research as achiev-
ing transfection efficiency, yet these vectors are limited by toxicity and immunogenicity [25].
These limitations have prompted investigation into non-viral vectors, including cationic
polymers (i.e., PEG-modified polyplexes) and peptide-based carriers.

Peptide-based vectors have shown promising results for SGT, as they have demon-
strated the ability to achieve serum resistance through polyanion coating [25]. Egorova et al.
used peptide-based vectors to deliver the HSV-TK gene to primary UL cells and found
an increase in apoptosis gene expression in transfected UL tissue [25]. This highlights the
ability of SGT to encourage apoptosis in UL if an appropriate vector is established. As such,
future directors of SGT include testing peptide-based vectors of SGT in animal models
xenografted with UL tissue.

4. Endometriosis
4.1. Brief Background on Endometriosis

Endometriosis is a benign gynecological disorder affecting 6–10% of women of repro-
ductive age [69]. It is defined as the presence of endometrial cells, glands, and stroma in
locations outside the uterus [69]. In endometriosis, ectopic cells are hormone responsive
and can be found on the ovaries, fallopian tubes, pelvic peritoneum and rectovaginal
septum, sigmoid colon, appendix, and upper abdomen [69,70]. Patients with endometriosis
may be asymptomatic, but commonly have symptoms such as dysmenorrhea, dyspareunia,
dysuria, chronic pelvic pain, irregular uterine bleeding, and infertility [69]. Endometriosis
is considered a multifactorial disease. While pathophysiology is not completely understood,
retrograde menstruation, coelomic metaplasia, and lymphatic and vascular metastasis are
thought to play a role [71]. Currently, endometriosis can be identified clinically, laparo-
scopically, or by imaging (MRI or ultrasound). However, MRI and ultrasound are limited
in their diagnostic ability, so definitive diagnoses must be performed through diagnostic
laparoscopy to visualize ectopic lesions [71,72]. Medical treatment of endometriosis is
limited to nonsteroidal anti-inflammatory drugs or hormonal medications such as OCPs.
The surgical excision of endometriosis lesions or removal of the entire uterus, fallopian
tubes, and/or ovaries are also treatment options, though they are more invasive [71]. Given
the dearth of treatment options for patients with endometriosis, there is a significant need
for novel treatments.

4.2. Nanotherapeutics for Endometriosis Diagnosis

Laparoscopy is currently the only method to definitively diagnose endometriosis.
Laparoscopy is an invasive procedure and though it is relatively safe, it comes with com-
mon surgical risks such as bleeding, infection, and damage to surrounding structures.
It can also be difficult to diagnose endometriosis, even during the laparoscopy because
lesions can vary in appearance, ranging from dark pigmented to pale lesions which can
be hard to identify by eye [72]. For patients willing to undergo laparoscopy, nanotechnol-
ogy has shown promise in improving a surgeon’s ability to identify ectopic endometrial
lesions through fluorescent tagging [72]. Silicon naphthalocyanine-loaded poly(ethylene
glycol)-block-poly(ε-caprolactone) (PEG-PCL) nanoparticles have successfully been used as
a targeting fluorescent molecule to identify endometriosis in surgery in mouse models [26].
Additionally, after the oral administration of 5-aminolevulinic acid-induced protopor-
phyrin IX (5-ALA-induced PPIX), there is a preferential accumulation of 5-ALA-induced
PPIX in non-pigmented endometrial lesions in patients with endometriosis, improving the
identification of these lesions [73]. However, pigmented endometriosis lesions do not fluo-
resce after 5-ALA-induced PPIX administration. Studies show nano-delivery mechanisms
can be used to improve the delivery of 5-ALA-induced PPIX to skin and gastrointestinal
cancer lesions [74]. Perhaps, nanotechnology can be used to improve 5-ALA-induced
PPIX delivery to pigmented endometriosis lesions. Incorporating nanoparticles to im-
prove the fluorescence of endometriosis lesions with standard laparoscopy protocols could
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help surgeons identify tissue that may have been missed previously when identifying
endometriosis by eye.

Many patients may not prefer to undergo invasive laparoscopic diagnostic proce-
dures to identify endometriosis. More effective and less invasive diagnostic measures
are needed. Nanotechnology in conjunction with varying imaging modalities has shown
promise as an alternative to laparoscopy for endometriosis diagnosis [75]. In rat models,
the intravenous injection of ultrasmall super-magnetic iron oxide (USPIO) and synthesized
hyaluronic-acid-modified iron oxide nanoparticles (HAIONPs) as MRI contrast agents
amplify the signal of ectopic tissue and improve the identification of endometriosis via
MRI imaging [27,28,72]. In mouse models, iron oxide-based magnetic nanoparticles encap-
sulated in PEG-PCL-based nanocarriers successfully target endometriosis tissue by binding
vascular endothelial growth factor (VEGF) receptors and increasing T2-weighted signal-
ing via MRI [72]. NaGdF4@PEG@bevacizumab–Cy5.5 nanoparticles (NPBCNs) have also
shown promise targeting VEGF in endometriotic lesions, allowing for better visualization
through MRI and fluorescence imaging [29]. Nanoparticles also improve the effectiveness
of photoacoustic imaging to aid in the detection of deep tissues [30]. Gold nanoparti-
cles conjugated with a fluorescein isothiocyanate dye have shown efficacy in identifying
endometriosis lesions through amplified photoacoustic signaling in mouse models [30].

4.3. Nanomedicine for Endometriosis Treatment

Beyond identification, nanomedicine can be used to treat endometriosis. Endometrio-
sis is angiogenesis dependent, and factors including VEGF, bradykinin, reactive oxygen
species, nitric oxide, and prostaglandins are important to the vascular permeability associ-
ated with endometriosis [72]. Nanoparticle-mediated magnetic hyperthermia is a successful
cancer intervention that has been applied to endometriosis by delivering increased tem-
peratures through heat-sensitive materials to induce the apoptosis and necrosis of target
tissue [10]. Park et al. designed iron oxide-based magnetic nanoparticles encapsulated
into PEG-PCL-based nanocarriers that targeted VEGF 2, a protein overexpressed in en-
dometriotic cells, in mouse models [10]. This nanoparticle-based therapeutic was injected
in mice and successfully targeted endometriosis cells, distributed throughout the entire en-
dometriosis lesion, and increased their temperature to >46 ◦C in the endometriosis lesions,
destroying the lesions while causing little damage to surrounding structures [10]. Though
these nanoparticle-based therapeutics are promising, the intensity of the light required for
treatment may limit these therapies to only be adjunct to surgical interventions [34]. VEGF
has also been targeted by nanoparticles through the delivery of small interfering RNA
(siRNA) to endometrial lesions in vitro and in vivo using RGD1-R6 nanoparticle carriers,
reducing the size of endometriosis lesion by decreasing VEGFA expression and increasing
anti-angiogenic effects [31]. Free radicals are also thought to play an important role in the
pathogenesis of endometriosis [32]. In mouse models, cerium oxide nanoparticles (nanoce-
ria) have unique anti-inflammatory properties like antioxidants, and they have shown
effectiveness in decreasing oxidative stress, or damage due to increased free radicals, and
angiogenesis in endometrial lesions [32]. Moreover, a new pilot study conducted in human
subjects showed that methotrexate, an antiproliferative and immunosuppressive drug,
carried in lipid nanoparticles improved endometriosis symptoms in study participants,
though lesion size did not change [33].

Nanomedicine focused on recruiting neutrophils to target endometriosis lesions may
be another treatment approach [34]. In mouse models, intraperitoneally injected bovine
serum albumin–glucose oxidase nanoparticles were internalized by neutrophils in vivo
and produced an anti-endometriosis effect by inducing the apoptosis of ectopic lesions
through activated neutrophils [34].
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5. PCOS
5.1. Brief Background on PCOS

With a worldwide prevalence of 4–20%, PCOS is a common hormonal disorder af-
fecting reproductive-aged patients [76]. Primarily a disorder of hyperandrogenism and
chronic anovulation, those with PCOS may also experience acne, amenorrhea, excessive
hair growth, ovarian cysts, and infertility [77,78]. PCOS is also associated with multiple
comorbidities with over 50% of patients developing prediabetes or diabetes after initial
PCOS diagnosis [79]. Patients with PCOS also experience increased risk of myocardial
infarction, hyperlipidemia, hypertension, anxiety, depression, and endometrial cancer [79].
Those with PCOS, who can successfully conceive, experience increased rates of miscarriage,
gestational diabetes, pre-eclampsia, and premature delivery [79]. Both those at risk of and
with a confirmed case of PCOS may benefit from patient education, diet and lifestyle inter-
ventions, and different therapies targeting symptoms [77]. Common medical treatments
include OCPs, anti-diabetes drugs, and statins [78]. As a polygenic and multifactorial
syndromic disorder, obtaining a PCOS diagnosis can be difficult. The pathophysiology
of PCOS involves various pathways and proteins, rendering single genetic diagnostic
tests unusable [80]. There are currently three diagnostic tools used in practice for those
presenting with PCOS, which are as follows: the National Institute of Child Health and
Human Development/National Institutes of Health (NICHD/NIH) Criteria (1990), which
includes hyperandrogenism, oligo-ovulation/anovulation, and exclusion of other related
disorders; the European Society of Human Reproduction and Embryology/American
Society for Reproductive Medicine (ESHREA/ASRM) Rotterdam Criteria (2003), which
includes hyperandrogenism, oligo-ovulation/anovulation, and polycystic ovaries; and the
Androgen Excess Society (AES) Criteria (2006), which includes hyperandrogenism, oligo-
ovulation/anovulation, polycystic ovaries, and the exclusion of other related disorders [78].
These diagnostic parameters rely on the presence of a constellation of symptoms, hormone
labs (ex: follicle-stimulating hormone (FSH), testosterone, dehydroepiandrosterone-sulfate
(DHEA-S), 17 hydroxyprogesterone), and the imaging of ovaries [81]. Making a PCOS
diagnosis can be difficult because PCOS shares similar symptoms with other endocrine
disorders and PCOS symptoms can be heterogenic [82]. There is a significant need to
revolutionize PCOS diagnosis and treatment.

5.2. Nanomedicine for PCOS Diagnosis

Early detection of PCOS is vital for preventive therapy, preserving fertility, and improv-
ing reproductive, metabolic, and cardiovascular risks in patients [83]. Current approaches
for PCOS screening are expensive, limited in their sensitivity, and time consuming. Testing
the levels of hormones such as follicle-stimulating hormone (FSH) or testosterone can be
helpful in reaching a PCOS diagnosis [81]; however, these tests are limited by the sensitivity
of current laboratory tools. Studies show that nanoparticles may improve hormone screens.
The development of a novel FSH polymer film imprinted onto the NiCosO4/rGO-modified
indium tin oxide nanomaterial electrode has shown promise in PCOS diagnosis [35]. This
biosensor can overcome the drawbacks of traditional FSH screening by offering a dynamic
detection range with a lower limit of detection, improved sensitivity, and speed of detec-
tion at a lower cost [35]. Additionally, elevated testosterone (both total and free) can be
diagnostic for excess ovarian androgens in patients with PCOS; thus, it is considered an
effective compound for the early detection and monitoring of PCOS manifestations [84].
However, in PCOS, sex hormone-binding globulin (SHBG) levels are often low, possibly
resulting in falsely low testosterone measurements [85]. Thus, the variability of SHBG is
the preferred assay for explicating bioavailable testosterone. One study using a CS/copper-
NPs/Fe3O4-NPs/GrO-NPs nanocomposite in the fabrication of a SHBG immunosensor
demonstrated the improved efficacy of the immunosensor’s analytic performance and
detection of SHBG [36]. Therefore, the use of nanomaterials is a robust choice for the
detection of SHBG for early diagnosis of PCOS as it is faster, cheaper, and more sensitive
and specific than other traditional methods [86].
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5.3. Nanomedicine for PCOS Treatment

While standard practices may be limited, there have been recent advances in nan-
otechnology for treating PCOS. Recent exploration of innovative therapeutic options for
PCOS has included nanoparticles such as silver and selenium, lipid-based nanocarriers,
and many herbal-based nanosystems, either alone or in combination with other drugs [86].
Silver nanoparticles synthesized from Cinnamomum zeylanicum are useful in treating inflam-
mation and have shown efficacy in lowering inflammatory markers in rats with PCOS [37].
This finding is important because patients with PCOS have high levels of inflammatory
cytokines, so reducing inflammation in patients with PCOS may reduce or relieve their
symptoms. Additionally, curcumin is a phenolic compound with anti-inflammatory and an-
tioxidant properties [87]. Curcumin has demonstrated potential in reducing hyperglycemia,
hyperlipidemia, hyperandrogenism, and insulin resistance in those with PCOS [88], but
it has limited use due to its solubility and poor body pH availability [88]. However, the
bio-compatible nano-curcumin has increased polarity, improved oral absorption, amplified
bioavailability, and increased potential for bodily absorption, which could only further im-
prove the symptoms associated with PCOS [86]. In fact, Raja et al. found success fabricating
nanoparticles containing curcumin-encapsulated arginine and N-acetyl histidine-modified
chitosan (CS) nanoparticles, which showed increased cellular uptake in in vitro PCOS
models [11]. CS-nanoparticles are cationic polysaccharides and are widely used for the
encapsulation of molecules such as antimicrobials, painkillers, and anti-inflammatory
drugs [89,90]. The administration of the curcumin-encapsulated arginine and N-acetyl
histidine-modified CS nanoparticles in rats with PCOS caused the suppression of the
serum luteinizing hormone (LH), prolactin, testosterone, and insulin compared to control
models [11]. This study is a promising first step in the prospective use of nanoparticles as
an effective delivery platform for curcumin to treat PCOS.

Metformin is a drug commonly used for PCOS treatment, and has demonstrated positive
effects of restoring ovulation, reducing weight gain, reducing androgen level circulation,
reducing the risk of miscarriage, and reducing the risk of diabetes mellitus [91,92]. However,
Metformin is associated with a myriad of gastrointestinal side effects including nausea, diar-
rhea, bloating, metallic taste, and abdominal pain [91]. Side effects are often exacerbated by
repeated applications of high doses of Metformin, necessitated by its low oral bioavailability
and short biological half-life [93]. Several studies have investigated metformin-containing
nanoparticles and highlighted the use of nanoparticles as a drug-delivery strategy to im-
prove its bioavailability [93]. While Metformin-containing nanoparticles have not yet
been studied in the context of PCOS, researchers hypothesize that the use of nanoparticles
could increase the efficacy of Metformin as a treatment for PCOS to reduce weight and
improve ovulation [93].

6. Menopause
6.1. Brief Background on Menopause

Menopause describes the natural and permanent end of menstruation caused by an
estrogen deficiency that is unrelated to a pathologic condition [94]. In the US, over one
million individuals go through menopause annually [95]. Most previously menstruating
individuals go through menopause between 45 and 56 years old; in the US, 51 is the
typical age at which menopause naturally occurs [96]. Most individuals who go through
menopause experience vasomotor symptoms (e.g., hot flashes and night sweats), but many
other organ systems, such as the urogenital, psychogenic, and cardiovascular, can also be
affected [97]. The pathophysiology of menopause is related to the reduction of ovarian
follicles with age due to ovulation [94]. The levels of the anti-Mullerian hormone (AMH),
inhibin B, and estradiol decrease, while LH and FSH synthesis increase [94].

Black and Hispanic individuals are more likely than White individuals to go through
early and premature menopause [98]. Additionally, Black individuals frequently encounter
more bothersome and longer-lasting vasomotor symptoms compared to other races [98].
Eighty percent of Black individuals who undergo menopause have vasomotor symptoms
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which last, on average, 10.1 years, while 65% of White individuals who undergo menopause
report having vasomotor symptoms which last, on average, 6.5 years [98].

6.2. Nanomedicine for Menopause Treatment

Menopause has historically been treated with systemic hormonal treatment, local
estrogen treatment, and selective estrogen receptor modulators to manage vasomotor and
other associated symptoms. Though these treatments provide adequate symptomatic relief
to many patients, the delivery of these medications to target tissues can be improved upon.

6.2.1. Systemic and Local Hormonal Treatment

Systemic hormonal treatments are used in individuals undergoing menopause to treat
vasomotor symptoms and insomnia, prevent osteoporosis and associated fractures, and
improve cognitive function [99]. Patients can be prescribed progestin-only, estrogen-only,
an estrogen–progestin combo, and estrogen–bazedoxifene for symptoms management [100].
Systemic hormone therapy should only be used for a short period of time and at its lowest
effective dose because it increases the relative risk of deep vein thrombosis, stroke, and
breast cancer [101].

Though hormonal therapies have shown efficacy in the treatment of a variety of
menopause-related symptoms, the hormonal treatments have limited bioavailability. Stud-
ies show nanoparticles can improve the delivery and availability of systemic hormonal
treatments through various delivery techniques. In a multicenter, randomized, double-
blind, placebo-controlled study, Simon et al. found that patients with severe hot flashes
(more than seven times/day) had a significant reduction in the frequency of moderate
and severe vasomotor symptoms after receiving a micellar nanoparticle estradiol emulsion
(MNPEE), compared to patients who received estradiol delivered in a placebo emulsion,
likely due to improved bioavailability [38]. Botelho et al. showed the safety and efficacy of
nanostructured transdermal hormone replacement therapy (10% progesterone, 0.1% estriol,
and 0.25 estradiol + Biolipid/B2 nanoparticle formulations) [12]. Traditionally, transdermal
menopause hormone replacement therapy is associated with an increased risk of venous
thromboembolism [102]. However, patients who received nanostructured transdermal hor-
mone replacement therapy saw an improvement in menopause symptoms with no negative
health impacts after a 60-month course of medication [12]. Moreover, the lack of estrogen
in menopause can increase the risk for osteoporosis due to increased bone turnover [103].
Current hormone treatments can lower the risk of osteoporosis, but Chen et al. showed
that the use of a 17β-estradiol (E2)-laden mesoporous silica-coated upconversion nanopar-
ticle with a surface modification of ethylenediaminetetraacetic acid (EDTA) in in vivo and
in vitro models offered long-lasting drug release, the reversal of estrogen-deficient induced
osteoporosis and the decreased damage of estrogen to the uterus [39]. Compared to the
ovariectomized group, the bone mineral density in the nanocomposite treatment group
was almost twice as high [39]. Nanoparticles may also aid in the delivery of hormones to
improve cognition in individuals undergoing menopause. In in vitro rat models, E2-loaded
Poly(lactic-co-glycolic Acid) (PLGA) nanoparticles improved learning and memory com-
pared to E2 loaded with a vehicle control [40]. Additionally, older studies have shown the
efficacy and safety of intranasally administered hormone replacement therapy, especially
in postmenopausal patients with an intact uterus [104]. However, intranasal hormone re-
placement therapy has not been popularized. In the diseases of the central nervous system,
intranasal polymeric and lipid-based nanoparticles have shown efficacy and promise in
drug delivery [105]. Perhaps, nanoparticles can be valuable in improving the delivery
and efficacy of intranasal hormone replacement therapy in post-menopausal patients in
the future.

The genitourinary syndrome of menopause describes chronic, progressive, vulvovagi-
nal, sexual and urinary conditions that occur during the menopausal period [106]. Patients
often present with vaginal dryness and dyspareunia [106]. Symptoms can be managed with
over-the-counter lubricants or with local estrogen therapy [107]. Local estrogen therapy
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improves vaginal atrophy by increasing blood flow, acidifying the vagina, and promoting
lactobacillus dominance in the flora [108]. However, the vaginal delivery of estrogen is
limited by poor adhesion and solubility [41]. Solid lipid nanoparticle (SLP)-based CS gels
have shown efficacy in improving the solubility, surface area, and permeability of estrogen
for vaginal delivery in in vitro models [41].

6.2.2. Selective Estrogen Receptor Modulators

Selective estrogen receptor modulators (SERMs) are promising drugs for menopause
management due to their ability to bind to estrogen receptors and confer agonist or an-
tagonist effects depending on the target tissue [109]. Raloxifene (RLX) is the only SERM
approved to prevent and treat osteoporosis and vertebral fractures, while preventing breast
cancer in post-menopausal women [109]. Though SERMs provide many benefits, their side
effects include hot flashes and venous thromboembolism [110,111]. Studies show nanopar-
ticles are important in increasing the bioavailability of RLX. Saini et al. demonstrated that
CS nanoparticles loaded with RLX had superior bioavailability, making them a potentially
effective method for delivering RLX intravenously for the management of osteoporosis
compared to an RLX suspension [42]. Additionally, Guo et al. showed that, when compared
to an RLX suspension, RLX-loaded polymeric nanoparticles (RLX-PNPs) had significantly
increased bioavailability and sustained release, causing decreased serum calcium and
alkaline phosphate levels in rats with osteoporosis [43]. Additionally, the bioavailability of
RLX increased with the intravenous administration of human serum albumin (HSA)-based
nanoparticles (Ral/HSA/PSS NPs) or the oral administration of RLX bio-adhesive nanopar-
ticles (RLX-bNPs) in rats [44,45]. These studies indicate that RLX-loaded nanoparticles may
be a powerful nanomedicine candidate for treating postmenopausal osteoporosis at lower
raloxifene dosages.

7. Potential Toxicity of Nanoparticles

Despite the promise of nanoparticles as a treatment option for benign gynecologic dis-
orders and other disease processes, there are limitations to the current use of nanoparticles
as a primary treatment method. Nanoparticles, like any other drug, can cause toxici-
ties at the molecular, cellular, and tissue level [112] (Figure 2). Because nanoparticles
are incredibly small, they can easily move throughout the body [112]. Though studies
have shown, in in vitro and in vivo models, that nanoparticles have a high binding affin-
ity to their targets [72], the distribution and interaction of nanoparticles throughout the
body—particularly across the blood–brain barrier or with the coagulation pathways—are
not fully understood [113]. Nanoparticles crossing through the blood–brain barrier or inter-
acting with the body’s ability to respond to bleeding could have potentially life-threatening
effects and should be studied further. Nanoparticles may also induce endogenous tissues
and cells to undergo changes that lead to significant toxicities [114]. Poland et al. showed
that carbon-based nanoparticles may induce mesothelioma, a relatively rare lung cancer
normally caused by asbestos inhalation in in vitro and in vivo models [115]. Additionally,
Wyss et al. and Steiner et al. showed that 5-ALA-induced PPIX, a nanoparticle used
to fluoresce endometriosis ectopic lesions, caused endometrial atrophy in rat and rabbit
models [116,117]. There is also a risk of an immune response, or the recognition and
activation of immune cells like macrophages, with nanoparticle administration. Efforts
have been made to reduce immune responses by decreasing the opportunity for protein
binding by coating nanoparticles with polyethylene glycol [112]. However, this coating
does not completely prevent immune recognition and, in some cases, may even trigger an
inflammatory response [118]. It is important to note that the side effects listed here are not
unique to nanoparticles and should not necessarily prohibit their use clinically. Other drugs
like chemotherapy agents have an extensive side effect profile and are still recommended
for patients [119]. The specific limitation with nanoparticles is the lack of knowledge
regarding the full scope of the potential toxicity of nanoparticles. Though nanoparticles
are being studied in clinical studies around the world, there is limited research focused
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specifically on the widespread safety profile of nanoparticles [112]. More research is needed
to understand the toxicities associated with each nanoparticle before they can be widely
used as a standard treatment option.
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8. Conclusions and Future Directions

In conclusion, nanoparticles are a promising new treatment option for many pa-
tients suffering from benign gynecologic conditions that lack less-invasive diagnostic
and treatment options. The literature shows nanoparticles are effective in the diagnosis
and/or treatment of UL, endometriosis, PCOS, and menopause in in vitro and in vivo
models. However, there have been few applications of these studies in human subjects.
More research is needed to understand the effectiveness and potential toxicities of using
nanoparticles in patients with various benign gynecologic conditions. Nanoparticles could
revolutionize the way patients are treated for UL, endometriosis, PCOS, and menopause,
improving the livelihood of millions worldwide.
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